Properties

Label 507.2.f.g.239.18
Level $507$
Weight $2$
Character 507.239
Analytic conductor $4.048$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(239,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.18
Character \(\chi\) \(=\) 507.239
Dual form 507.2.f.g.437.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.928351 + 0.928351i) q^{2} +(-1.37245 + 1.05658i) q^{3} -0.276330i q^{4} +(2.12536 + 2.12536i) q^{5} +(-2.25500 - 0.293240i) q^{6} +(2.06528 + 2.06528i) q^{7} +(2.11323 - 2.11323i) q^{8} +(0.767265 - 2.90022i) q^{9} +3.94616i q^{10} +(1.88395 - 1.88395i) q^{11} +(0.291966 + 0.379251i) q^{12} +3.83461i q^{14} +(-5.16258 - 0.671341i) q^{15} +3.37098 q^{16} +0.198832 q^{17} +(3.40472 - 1.98013i) q^{18} +(-3.75211 + 3.75211i) q^{19} +(0.587301 - 0.587301i) q^{20} +(-5.01665 - 0.652364i) q^{21} +3.49793 q^{22} -3.30077 q^{23} +(-0.667511 + 5.13312i) q^{24} +4.03430i q^{25} +(2.01129 + 4.79111i) q^{27} +(0.570700 - 0.570700i) q^{28} +3.73266i q^{29} +(-4.16944 - 5.41592i) q^{30} +(0.550550 - 0.550550i) q^{31} +(-1.09701 - 1.09701i) q^{32} +(-0.595087 + 4.57618i) q^{33} +(0.184586 + 0.184586i) q^{34} +8.77893i q^{35} +(-0.801420 - 0.212019i) q^{36} +(-3.60812 - 3.60812i) q^{37} -6.96655 q^{38} +8.98276 q^{40} +(-2.69398 - 2.69398i) q^{41} +(-4.05158 - 5.26283i) q^{42} +11.6558i q^{43} +(-0.520592 - 0.520592i) q^{44} +(7.79473 - 4.53331i) q^{45} +(-3.06427 - 3.06427i) q^{46} +(4.29586 - 4.29586i) q^{47} +(-4.62652 + 3.56172i) q^{48} +1.53077i q^{49} +(-3.74525 + 3.74525i) q^{50} +(-0.272889 + 0.210083i) q^{51} -13.6276i q^{53} +(-2.58064 + 6.31501i) q^{54} +8.00814 q^{55} +8.72884 q^{56} +(1.18519 - 9.11402i) q^{57} +(-3.46521 + 3.46521i) q^{58} +(-2.36073 + 2.36073i) q^{59} +(-0.185512 + 1.42658i) q^{60} -2.70094 q^{61} +1.02221 q^{62} +(7.57440 - 4.40516i) q^{63} -8.77879i q^{64} +(-4.80075 + 3.69585i) q^{66} +(5.33624 - 5.33624i) q^{67} -0.0549435i q^{68} +(4.53015 - 3.48753i) q^{69} +(-8.14992 + 8.14992i) q^{70} +(-3.78131 - 3.78131i) q^{71} +(-4.50744 - 7.75026i) q^{72} +(3.46215 + 3.46215i) q^{73} -6.69920i q^{74} +(-4.26258 - 5.53690i) q^{75} +(1.03682 + 1.03682i) q^{76} +7.78177 q^{77} -11.1376 q^{79} +(7.16454 + 7.16454i) q^{80} +(-7.82261 - 4.45048i) q^{81} -5.00192i q^{82} +(-1.84014 - 1.84014i) q^{83} +(-0.180268 + 1.38625i) q^{84} +(0.422590 + 0.422590i) q^{85} +(-10.8207 + 10.8207i) q^{86} +(-3.94386 - 5.12290i) q^{87} -7.96245i q^{88} +(-0.776855 + 0.776855i) q^{89} +(11.4447 + 3.02775i) q^{90} +0.912102i q^{92} +(-0.173903 + 1.33731i) q^{93} +7.97613 q^{94} -15.9492 q^{95} +(2.66469 + 0.346516i) q^{96} +(8.60129 - 8.60129i) q^{97} +(-1.42109 + 1.42109i) q^{98} +(-4.01839 - 6.90936i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{9} - 8 q^{16} + 112 q^{22} - 84 q^{27} + 128 q^{40} - 56 q^{42} - 188 q^{48} + 8 q^{55} + 56 q^{61} - 92 q^{66} - 72 q^{81} - 112 q^{87} + 296 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.928351 + 0.928351i 0.656443 + 0.656443i 0.954537 0.298094i \(-0.0963508\pi\)
−0.298094 + 0.954537i \(0.596351\pi\)
\(3\) −1.37245 + 1.05658i −0.792387 + 0.610018i
\(4\) 0.276330i 0.138165i
\(5\) 2.12536 + 2.12536i 0.950489 + 0.950489i 0.998831 0.0483414i \(-0.0153935\pi\)
−0.0483414 + 0.998831i \(0.515394\pi\)
\(6\) −2.25500 0.293240i −0.920599 0.119715i
\(7\) 2.06528 + 2.06528i 0.780603 + 0.780603i 0.979932 0.199330i \(-0.0638765\pi\)
−0.199330 + 0.979932i \(0.563876\pi\)
\(8\) 2.11323 2.11323i 0.747141 0.747141i
\(9\) 0.767265 2.90022i 0.255755 0.966742i
\(10\) 3.94616i 1.24788i
\(11\) 1.88395 1.88395i 0.568032 0.568032i −0.363545 0.931577i \(-0.618434\pi\)
0.931577 + 0.363545i \(0.118434\pi\)
\(12\) 0.291966 + 0.379251i 0.0842833 + 0.109480i
\(13\) 0 0
\(14\) 3.83461i 1.02484i
\(15\) −5.16258 0.671341i −1.33297 0.173340i
\(16\) 3.37098 0.842745
\(17\) 0.198832 0.0482240 0.0241120 0.999709i \(-0.492324\pi\)
0.0241120 + 0.999709i \(0.492324\pi\)
\(18\) 3.40472 1.98013i 0.802499 0.466722i
\(19\) −3.75211 + 3.75211i −0.860793 + 0.860793i −0.991430 0.130637i \(-0.958298\pi\)
0.130637 + 0.991430i \(0.458298\pi\)
\(20\) 0.587301 0.587301i 0.131325 0.131325i
\(21\) −5.01665 0.652364i −1.09472 0.142358i
\(22\) 3.49793 0.745761
\(23\) −3.30077 −0.688257 −0.344129 0.938923i \(-0.611826\pi\)
−0.344129 + 0.938923i \(0.611826\pi\)
\(24\) −0.667511 + 5.13312i −0.136255 + 1.04779i
\(25\) 4.03430i 0.806861i
\(26\) 0 0
\(27\) 2.01129 + 4.79111i 0.387073 + 0.922049i
\(28\) 0.570700 0.570700i 0.107852 0.107852i
\(29\) 3.73266i 0.693137i 0.938025 + 0.346568i \(0.112653\pi\)
−0.938025 + 0.346568i \(0.887347\pi\)
\(30\) −4.16944 5.41592i −0.761232 0.988808i
\(31\) 0.550550 0.550550i 0.0988817 0.0988817i −0.655935 0.754817i \(-0.727726\pi\)
0.754817 + 0.655935i \(0.227726\pi\)
\(32\) −1.09701 1.09701i −0.193926 0.193926i
\(33\) −0.595087 + 4.57618i −0.103591 + 0.796611i
\(34\) 0.184586 + 0.184586i 0.0316563 + 0.0316563i
\(35\) 8.77893i 1.48391i
\(36\) −0.801420 0.212019i −0.133570 0.0353365i
\(37\) −3.60812 3.60812i −0.593171 0.593171i 0.345315 0.938487i \(-0.387772\pi\)
−0.938487 + 0.345315i \(0.887772\pi\)
\(38\) −6.96655 −1.13012
\(39\) 0 0
\(40\) 8.98276 1.42030
\(41\) −2.69398 2.69398i −0.420729 0.420729i 0.464726 0.885455i \(-0.346153\pi\)
−0.885455 + 0.464726i \(0.846153\pi\)
\(42\) −4.05158 5.26283i −0.625173 0.812072i
\(43\) 11.6558i 1.77749i 0.458398 + 0.888747i \(0.348423\pi\)
−0.458398 + 0.888747i \(0.651577\pi\)
\(44\) −0.520592 0.520592i −0.0784823 0.0784823i
\(45\) 7.79473 4.53331i 1.16197 0.675785i
\(46\) −3.06427 3.06427i −0.451802 0.451802i
\(47\) 4.29586 4.29586i 0.626616 0.626616i −0.320599 0.947215i \(-0.603884\pi\)
0.947215 + 0.320599i \(0.103884\pi\)
\(48\) −4.62652 + 3.56172i −0.667780 + 0.514090i
\(49\) 1.53077i 0.218681i
\(50\) −3.74525 + 3.74525i −0.529658 + 0.529658i
\(51\) −0.272889 + 0.210083i −0.0382120 + 0.0294175i
\(52\) 0 0
\(53\) 13.6276i 1.87189i −0.352142 0.935947i \(-0.614546\pi\)
0.352142 0.935947i \(-0.385454\pi\)
\(54\) −2.58064 + 6.31501i −0.351181 + 0.859364i
\(55\) 8.00814 1.07982
\(56\) 8.72884 1.16644
\(57\) 1.18519 9.11402i 0.156982 1.20718i
\(58\) −3.46521 + 3.46521i −0.455005 + 0.455005i
\(59\) −2.36073 + 2.36073i −0.307341 + 0.307341i −0.843877 0.536536i \(-0.819732\pi\)
0.536536 + 0.843877i \(0.319732\pi\)
\(60\) −0.185512 + 1.42658i −0.0239495 + 0.184170i
\(61\) −2.70094 −0.345820 −0.172910 0.984938i \(-0.555317\pi\)
−0.172910 + 0.984938i \(0.555317\pi\)
\(62\) 1.02221 0.129820
\(63\) 7.57440 4.40516i 0.954284 0.554998i
\(64\) 8.77879i 1.09735i
\(65\) 0 0
\(66\) −4.80075 + 3.69585i −0.590932 + 0.454928i
\(67\) 5.33624 5.33624i 0.651925 0.651925i −0.301531 0.953456i \(-0.597498\pi\)
0.953456 + 0.301531i \(0.0974977\pi\)
\(68\) 0.0549435i 0.00666287i
\(69\) 4.53015 3.48753i 0.545366 0.419850i
\(70\) −8.14992 + 8.14992i −0.974102 + 0.974102i
\(71\) −3.78131 3.78131i −0.448759 0.448759i 0.446183 0.894942i \(-0.352783\pi\)
−0.894942 + 0.446183i \(0.852783\pi\)
\(72\) −4.50744 7.75026i −0.531207 0.913377i
\(73\) 3.46215 + 3.46215i 0.405214 + 0.405214i 0.880066 0.474852i \(-0.157498\pi\)
−0.474852 + 0.880066i \(0.657498\pi\)
\(74\) 6.69920i 0.778766i
\(75\) −4.26258 5.53690i −0.492200 0.639346i
\(76\) 1.03682 + 1.03682i 0.118932 + 0.118932i
\(77\) 7.78177 0.886815
\(78\) 0 0
\(79\) −11.1376 −1.25308 −0.626540 0.779389i \(-0.715530\pi\)
−0.626540 + 0.779389i \(0.715530\pi\)
\(80\) 7.16454 + 7.16454i 0.801020 + 0.801020i
\(81\) −7.82261 4.45048i −0.869179 0.494498i
\(82\) 5.00192i 0.552370i
\(83\) −1.84014 1.84014i −0.201981 0.201981i 0.598867 0.800848i \(-0.295618\pi\)
−0.800848 + 0.598867i \(0.795618\pi\)
\(84\) −0.180268 + 1.38625i −0.0196689 + 0.151252i
\(85\) 0.422590 + 0.422590i 0.0458364 + 0.0458364i
\(86\) −10.8207 + 10.8207i −1.16682 + 1.16682i
\(87\) −3.94386 5.12290i −0.422826 0.549233i
\(88\) 7.96245i 0.848800i
\(89\) −0.776855 + 0.776855i −0.0823464 + 0.0823464i −0.747080 0.664734i \(-0.768545\pi\)
0.664734 + 0.747080i \(0.268545\pi\)
\(90\) 11.4447 + 3.02775i 1.20638 + 0.319153i
\(91\) 0 0
\(92\) 0.912102i 0.0950932i
\(93\) −0.173903 + 1.33731i −0.0180329 + 0.138672i
\(94\) 7.97613 0.822675
\(95\) −15.9492 −1.63635
\(96\) 2.66469 + 0.346516i 0.271964 + 0.0353661i
\(97\) 8.60129 8.60129i 0.873329 0.873329i −0.119505 0.992834i \(-0.538131\pi\)
0.992834 + 0.119505i \(0.0381306\pi\)
\(98\) −1.42109 + 1.42109i −0.143552 + 0.143552i
\(99\) −4.01839 6.90936i −0.403863 0.694417i
\(100\) 1.11480 0.111480
\(101\) 12.3938 1.23323 0.616616 0.787264i \(-0.288503\pi\)
0.616616 + 0.787264i \(0.288503\pi\)
\(102\) −0.448367 0.0583056i −0.0443949 0.00577312i
\(103\) 5.68798i 0.560453i 0.959934 + 0.280226i \(0.0904096\pi\)
−0.959934 + 0.280226i \(0.909590\pi\)
\(104\) 0 0
\(105\) −9.27566 12.0487i −0.905212 1.17583i
\(106\) 12.6512 12.6512i 1.22879 1.22879i
\(107\) 7.76865i 0.751024i −0.926818 0.375512i \(-0.877467\pi\)
0.926818 0.375512i \(-0.122533\pi\)
\(108\) 1.32393 0.555781i 0.127395 0.0534801i
\(109\) −7.18355 + 7.18355i −0.688060 + 0.688060i −0.961803 0.273743i \(-0.911738\pi\)
0.273743 + 0.961803i \(0.411738\pi\)
\(110\) 7.43436 + 7.43436i 0.708838 + 0.708838i
\(111\) 8.76426 + 1.13970i 0.831867 + 0.108176i
\(112\) 6.96202 + 6.96202i 0.657849 + 0.657849i
\(113\) 17.0878i 1.60749i −0.594977 0.803743i \(-0.702839\pi\)
0.594977 0.803743i \(-0.297161\pi\)
\(114\) 9.56127 7.36073i 0.895495 0.689396i
\(115\) −7.01531 7.01531i −0.654181 0.654181i
\(116\) 1.03145 0.0957674
\(117\) 0 0
\(118\) −4.38317 −0.403504
\(119\) 0.410645 + 0.410645i 0.0376438 + 0.0376438i
\(120\) −12.3284 + 9.49103i −1.12543 + 0.866408i
\(121\) 3.90147i 0.354679i
\(122\) −2.50742 2.50742i −0.227011 0.227011i
\(123\) 6.54378 + 0.850953i 0.590033 + 0.0767279i
\(124\) −0.152134 0.152134i −0.0136620 0.0136620i
\(125\) 2.05245 2.05245i 0.183577 0.183577i
\(126\) 11.1212 + 2.94216i 0.990758 + 0.262109i
\(127\) 9.62527i 0.854104i 0.904227 + 0.427052i \(0.140448\pi\)
−0.904227 + 0.427052i \(0.859552\pi\)
\(128\) 5.95577 5.95577i 0.526420 0.526420i
\(129\) −12.3153 15.9971i −1.08430 1.40846i
\(130\) 0 0
\(131\) 11.9013i 1.03982i 0.854221 + 0.519910i \(0.174035\pi\)
−0.854221 + 0.519910i \(0.825965\pi\)
\(132\) 1.26454 + 0.164441i 0.110064 + 0.0143127i
\(133\) −15.4983 −1.34387
\(134\) 9.90780 0.855904
\(135\) −5.90811 + 14.4575i −0.508489 + 1.24431i
\(136\) 0.420179 0.420179i 0.0360301 0.0360301i
\(137\) 12.3006 12.3006i 1.05091 1.05091i 0.0522743 0.998633i \(-0.483353\pi\)
0.998633 0.0522743i \(-0.0166470\pi\)
\(138\) 7.44322 + 0.967917i 0.633609 + 0.0823945i
\(139\) 2.32905 0.197547 0.0987737 0.995110i \(-0.468508\pi\)
0.0987737 + 0.995110i \(0.468508\pi\)
\(140\) 2.42588 0.205025
\(141\) −1.35694 + 10.4348i −0.114275 + 0.878770i
\(142\) 7.02076i 0.589169i
\(143\) 0 0
\(144\) 2.58644 9.77660i 0.215536 0.814717i
\(145\) −7.93324 + 7.93324i −0.658819 + 0.658819i
\(146\) 6.42818i 0.532000i
\(147\) −1.61738 2.10091i −0.133400 0.173280i
\(148\) −0.997033 + 0.997033i −0.0819556 + 0.0819556i
\(149\) 11.1552 + 11.1552i 0.913867 + 0.913867i 0.996574 0.0827065i \(-0.0263564\pi\)
−0.0827065 + 0.996574i \(0.526356\pi\)
\(150\) 1.18302 9.09735i 0.0965931 0.742795i
\(151\) 8.56897 + 8.56897i 0.697333 + 0.697333i 0.963834 0.266502i \(-0.0858678\pi\)
−0.266502 + 0.963834i \(0.585868\pi\)
\(152\) 15.8582i 1.28627i
\(153\) 0.152557 0.576659i 0.0123335 0.0466201i
\(154\) 7.22421 + 7.22421i 0.582143 + 0.582143i
\(155\) 2.34023 0.187972
\(156\) 0 0
\(157\) −3.26731 −0.260759 −0.130380 0.991464i \(-0.541620\pi\)
−0.130380 + 0.991464i \(0.541620\pi\)
\(158\) −10.3396 10.3396i −0.822576 0.822576i
\(159\) 14.3987 + 18.7033i 1.14189 + 1.48326i
\(160\) 4.66310i 0.368650i
\(161\) −6.81701 6.81701i −0.537256 0.537256i
\(162\) −3.13052 11.3937i −0.245956 0.895176i
\(163\) −4.12124 4.12124i −0.322800 0.322800i 0.527040 0.849840i \(-0.323302\pi\)
−0.849840 + 0.527040i \(0.823302\pi\)
\(164\) −0.744429 + 0.744429i −0.0581302 + 0.0581302i
\(165\) −10.9908 + 8.46126i −0.855633 + 0.658708i
\(166\) 3.41659i 0.265179i
\(167\) 1.11810 1.11810i 0.0865215 0.0865215i −0.662521 0.749043i \(-0.730514\pi\)
0.749043 + 0.662521i \(0.230514\pi\)
\(168\) −11.9799 + 9.22274i −0.924272 + 0.711550i
\(169\) 0 0
\(170\) 0.784624i 0.0601779i
\(171\) 8.00310 + 13.7608i 0.612012 + 1.05232i
\(172\) 3.22085 0.245588
\(173\) −12.4232 −0.944518 −0.472259 0.881460i \(-0.656561\pi\)
−0.472259 + 0.881460i \(0.656561\pi\)
\(174\) 1.09456 8.41714i 0.0829787 0.638101i
\(175\) −8.33197 + 8.33197i −0.629838 + 0.629838i
\(176\) 6.35076 6.35076i 0.478706 0.478706i
\(177\) 0.745689 5.73431i 0.0560494 0.431017i
\(178\) −1.44239 −0.108111
\(179\) −16.3028 −1.21853 −0.609265 0.792966i \(-0.708536\pi\)
−0.609265 + 0.792966i \(0.708536\pi\)
\(180\) −1.25269 2.15392i −0.0933700 0.160544i
\(181\) 9.29621i 0.690982i 0.938422 + 0.345491i \(0.112288\pi\)
−0.938422 + 0.345491i \(0.887712\pi\)
\(182\) 0 0
\(183\) 3.70692 2.85377i 0.274024 0.210957i
\(184\) −6.97529 + 6.97529i −0.514225 + 0.514225i
\(185\) 15.3371i 1.12761i
\(186\) −1.40293 + 1.08005i −0.102868 + 0.0791928i
\(187\) 0.374590 0.374590i 0.0273928 0.0273928i
\(188\) −1.18708 1.18708i −0.0865765 0.0865765i
\(189\) −5.74110 + 14.0489i −0.417604 + 1.02190i
\(190\) −14.8064 14.8064i −1.07417 1.07417i
\(191\) 2.02830i 0.146763i −0.997304 0.0733813i \(-0.976621\pi\)
0.997304 0.0733813i \(-0.0233790\pi\)
\(192\) 9.27552 + 12.0485i 0.669403 + 0.869525i
\(193\) −2.80915 2.80915i −0.202207 0.202207i 0.598738 0.800945i \(-0.295669\pi\)
−0.800945 + 0.598738i \(0.795669\pi\)
\(194\) 15.9700 1.14658
\(195\) 0 0
\(196\) 0.422998 0.0302142
\(197\) −4.87188 4.87188i −0.347107 0.347107i 0.511924 0.859031i \(-0.328933\pi\)
−0.859031 + 0.511924i \(0.828933\pi\)
\(198\) 2.68384 10.1448i 0.190732 0.720958i
\(199\) 6.34056i 0.449470i 0.974420 + 0.224735i \(0.0721517\pi\)
−0.974420 + 0.224735i \(0.927848\pi\)
\(200\) 8.52542 + 8.52542i 0.602838 + 0.602838i
\(201\) −1.68557 + 12.9619i −0.118891 + 0.914264i
\(202\) 11.5058 + 11.5058i 0.809547 + 0.809547i
\(203\) −7.70898 + 7.70898i −0.541065 + 0.541065i
\(204\) 0.0580523 + 0.0754074i 0.00406448 + 0.00527958i
\(205\) 11.4514i 0.799797i
\(206\) −5.28044 + 5.28044i −0.367905 + 0.367905i
\(207\) −2.53256 + 9.57296i −0.176025 + 0.665367i
\(208\) 0 0
\(209\) 14.1376i 0.977916i
\(210\) 2.57433 19.7965i 0.177646 1.36609i
\(211\) −0.802275 −0.0552309 −0.0276154 0.999619i \(-0.508791\pi\)
−0.0276154 + 0.999619i \(0.508791\pi\)
\(212\) −3.76572 −0.258631
\(213\) 9.18494 + 1.19441i 0.629342 + 0.0818396i
\(214\) 7.21203 7.21203i 0.493005 0.493005i
\(215\) −24.7728 + 24.7728i −1.68949 + 1.68949i
\(216\) 14.3751 + 5.87440i 0.978098 + 0.399702i
\(217\) 2.27408 0.154375
\(218\) −13.3377 −0.903344
\(219\) −8.40969 1.09360i −0.568274 0.0738984i
\(220\) 2.21289i 0.149193i
\(221\) 0 0
\(222\) 7.07826 + 9.19435i 0.475062 + 0.617084i
\(223\) 2.18501 2.18501i 0.146319 0.146319i −0.630152 0.776471i \(-0.717008\pi\)
0.776471 + 0.630152i \(0.217008\pi\)
\(224\) 4.53128i 0.302759i
\(225\) 11.7004 + 3.09538i 0.780026 + 0.206359i
\(226\) 15.8635 15.8635i 1.05522 1.05522i
\(227\) −18.3243 18.3243i −1.21622 1.21622i −0.968944 0.247281i \(-0.920463\pi\)
−0.247281 0.968944i \(-0.579537\pi\)
\(228\) −2.51848 0.327503i −0.166790 0.0216894i
\(229\) −19.6410 19.6410i −1.29791 1.29791i −0.929768 0.368147i \(-0.879992\pi\)
−0.368147 0.929768i \(-0.620008\pi\)
\(230\) 13.0253i 0.858865i
\(231\) −10.6801 + 8.22208i −0.702701 + 0.540973i
\(232\) 7.88797 + 7.88797i 0.517871 + 0.517871i
\(233\) −14.4551 −0.946988 −0.473494 0.880797i \(-0.657007\pi\)
−0.473494 + 0.880797i \(0.657007\pi\)
\(234\) 0 0
\(235\) 18.2605 1.19118
\(236\) 0.652342 + 0.652342i 0.0424638 + 0.0424638i
\(237\) 15.2859 11.7678i 0.992925 0.764402i
\(238\) 0.762445i 0.0494220i
\(239\) −4.24248 4.24248i −0.274423 0.274423i 0.556455 0.830878i \(-0.312161\pi\)
−0.830878 + 0.556455i \(0.812161\pi\)
\(240\) −17.4029 2.26308i −1.12336 0.146081i
\(241\) −17.4503 17.4503i −1.12407 1.12407i −0.991123 0.132947i \(-0.957556\pi\)
−0.132947 0.991123i \(-0.542444\pi\)
\(242\) −3.62193 + 3.62193i −0.232827 + 0.232827i
\(243\) 15.4385 2.15715i 0.990379 0.138381i
\(244\) 0.746353i 0.0477804i
\(245\) −3.25343 + 3.25343i −0.207854 + 0.207854i
\(246\) 5.28494 + 6.86491i 0.336956 + 0.437691i
\(247\) 0 0
\(248\) 2.32688i 0.147757i
\(249\) 4.46977 + 0.581248i 0.283260 + 0.0368351i
\(250\) 3.81079 0.241016
\(251\) 21.7299 1.37158 0.685789 0.727801i \(-0.259457\pi\)
0.685789 + 0.727801i \(0.259457\pi\)
\(252\) −1.21728 2.09304i −0.0766814 0.131849i
\(253\) −6.21847 + 6.21847i −0.390952 + 0.390952i
\(254\) −8.93562 + 8.93562i −0.560671 + 0.560671i
\(255\) −1.02649 0.133484i −0.0642812 0.00835912i
\(256\) −6.49950 −0.406219
\(257\) 16.3112 1.01746 0.508732 0.860925i \(-0.330115\pi\)
0.508732 + 0.860925i \(0.330115\pi\)
\(258\) 3.41795 26.2838i 0.212792 1.63636i
\(259\) 14.9036i 0.926062i
\(260\) 0 0
\(261\) 10.8255 + 2.86394i 0.670084 + 0.177273i
\(262\) −11.0486 + 11.0486i −0.682583 + 0.682583i
\(263\) 11.4962i 0.708887i 0.935077 + 0.354444i \(0.115330\pi\)
−0.935077 + 0.354444i \(0.884670\pi\)
\(264\) 8.41298 + 10.9281i 0.517783 + 0.672578i
\(265\) 28.9635 28.9635i 1.77922 1.77922i
\(266\) −14.3879 14.3879i −0.882177 0.882177i
\(267\) 0.245387 1.88701i 0.0150174 0.115483i
\(268\) −1.47457 1.47457i −0.0900734 0.0900734i
\(269\) 11.1389i 0.679151i 0.940579 + 0.339576i \(0.110283\pi\)
−0.940579 + 0.339576i \(0.889717\pi\)
\(270\) −18.9065 + 7.93687i −1.15061 + 0.483023i
\(271\) −4.29686 4.29686i −0.261016 0.261016i 0.564451 0.825467i \(-0.309088\pi\)
−0.825467 + 0.564451i \(0.809088\pi\)
\(272\) 0.670260 0.0406405
\(273\) 0 0
\(274\) 22.8384 1.37972
\(275\) 7.60042 + 7.60042i 0.458323 + 0.458323i
\(276\) −0.963712 1.25182i −0.0580086 0.0753507i
\(277\) 27.7810i 1.66920i −0.550857 0.834600i \(-0.685699\pi\)
0.550857 0.834600i \(-0.314301\pi\)
\(278\) 2.16218 + 2.16218i 0.129679 + 0.129679i
\(279\) −1.17430 2.01914i −0.0703035 0.120883i
\(280\) 18.5519 + 18.5519i 1.10869 + 1.10869i
\(281\) 11.6187 11.6187i 0.693113 0.693113i −0.269803 0.962916i \(-0.586958\pi\)
0.962916 + 0.269803i \(0.0869585\pi\)
\(282\) −10.9469 + 8.42744i −0.651877 + 0.501847i
\(283\) 26.5871i 1.58044i 0.612824 + 0.790219i \(0.290033\pi\)
−0.612824 + 0.790219i \(0.709967\pi\)
\(284\) −1.04489 + 1.04489i −0.0620028 + 0.0620028i
\(285\) 21.8895 16.8516i 1.29662 0.998203i
\(286\) 0 0
\(287\) 11.1277i 0.656845i
\(288\) −4.02329 + 2.33989i −0.237074 + 0.137879i
\(289\) −16.9605 −0.997674
\(290\) −14.7296 −0.864955
\(291\) −2.71691 + 20.8929i −0.159268 + 1.22476i
\(292\) 0.956698 0.956698i 0.0559865 0.0559865i
\(293\) 2.04702 2.04702i 0.119588 0.119588i −0.644780 0.764368i \(-0.723051\pi\)
0.764368 + 0.644780i \(0.223051\pi\)
\(294\) 0.448883 3.45188i 0.0261794 0.201318i
\(295\) −10.0348 −0.584249
\(296\) −15.2496 −0.886365
\(297\) 12.8154 + 5.23703i 0.743623 + 0.303883i
\(298\) 20.7118i 1.19980i
\(299\) 0 0
\(300\) −1.53001 + 1.17788i −0.0883354 + 0.0680049i
\(301\) −24.0725 + 24.0725i −1.38752 + 1.38752i
\(302\) 15.9100i 0.915519i
\(303\) −17.0100 + 13.0951i −0.977197 + 0.752294i
\(304\) −12.6483 + 12.6483i −0.725429 + 0.725429i
\(305\) −5.74048 5.74048i −0.328699 0.328699i
\(306\) 0.676968 0.393715i 0.0386997 0.0225072i
\(307\) 13.9565 + 13.9565i 0.796541 + 0.796541i 0.982548 0.186007i \(-0.0595549\pi\)
−0.186007 + 0.982548i \(0.559555\pi\)
\(308\) 2.15034i 0.122527i
\(309\) −6.00982 7.80649i −0.341887 0.444096i
\(310\) 2.17256 + 2.17256i 0.123393 + 0.123393i
\(311\) −26.9755 −1.52964 −0.764821 0.644243i \(-0.777172\pi\)
−0.764821 + 0.644243i \(0.777172\pi\)
\(312\) 0 0
\(313\) −23.9660 −1.35464 −0.677320 0.735689i \(-0.736859\pi\)
−0.677320 + 0.735689i \(0.736859\pi\)
\(314\) −3.03321 3.03321i −0.171174 0.171174i
\(315\) 25.4609 + 6.73576i 1.43456 + 0.379517i
\(316\) 3.07766i 0.173132i
\(317\) 21.6899 + 21.6899i 1.21823 + 1.21823i 0.968253 + 0.249973i \(0.0804218\pi\)
0.249973 + 0.968253i \(0.419578\pi\)
\(318\) −3.99615 + 30.7302i −0.224093 + 1.72326i
\(319\) 7.03214 + 7.03214i 0.393724 + 0.393724i
\(320\) 18.6581 18.6581i 1.04302 1.04302i
\(321\) 8.20823 + 10.6621i 0.458139 + 0.595102i
\(322\) 12.6571i 0.705355i
\(323\) −0.746041 + 0.746041i −0.0415108 + 0.0415108i
\(324\) −1.22980 + 2.16162i −0.0683224 + 0.120090i
\(325\) 0 0
\(326\) 7.65191i 0.423800i
\(327\) 2.26908 17.4491i 0.125481 0.964939i
\(328\) −11.3860 −0.628688
\(329\) 17.7443 0.978276
\(330\) −18.0583 2.34831i −0.994079 0.129270i
\(331\) 0.469219 0.469219i 0.0257906 0.0257906i −0.694094 0.719885i \(-0.744195\pi\)
0.719885 + 0.694094i \(0.244195\pi\)
\(332\) −0.508486 + 0.508486i −0.0279068 + 0.0279068i
\(333\) −13.2327 + 7.69597i −0.725150 + 0.421737i
\(334\) 2.07598 0.113593
\(335\) 22.6828 1.23930
\(336\) −16.9110 2.19911i −0.922571 0.119971i
\(337\) 25.0872i 1.36659i 0.730143 + 0.683294i \(0.239453\pi\)
−0.730143 + 0.683294i \(0.760547\pi\)
\(338\) 0 0
\(339\) 18.0547 + 23.4522i 0.980596 + 1.27375i
\(340\) 0.116775 0.116775i 0.00633299 0.00633299i
\(341\) 2.07442i 0.112336i
\(342\) −5.34519 + 20.2045i −0.289035 + 1.09254i
\(343\) 11.2955 11.2955i 0.609900 0.609900i
\(344\) 24.6314 + 24.6314i 1.32804 + 1.32804i
\(345\) 17.0405 + 2.21594i 0.917428 + 0.119302i
\(346\) −11.5331 11.5331i −0.620023 0.620023i
\(347\) 16.4102i 0.880947i 0.897766 + 0.440474i \(0.145189\pi\)
−0.897766 + 0.440474i \(0.854811\pi\)
\(348\) −1.41561 + 1.08981i −0.0758849 + 0.0584199i
\(349\) 21.1952 + 21.1952i 1.13456 + 1.13456i 0.989410 + 0.145145i \(0.0463649\pi\)
0.145145 + 0.989410i \(0.453635\pi\)
\(350\) −15.4700 −0.826905
\(351\) 0 0
\(352\) −4.13344 −0.220313
\(353\) −4.76452 4.76452i −0.253590 0.253590i 0.568851 0.822441i \(-0.307388\pi\)
−0.822441 + 0.568851i \(0.807388\pi\)
\(354\) 6.01571 4.63118i 0.319731 0.246145i
\(355\) 16.0733i 0.853081i
\(356\) 0.214669 + 0.214669i 0.0113774 + 0.0113774i
\(357\) −0.997472 0.129711i −0.0527918 0.00686505i
\(358\) −15.1347 15.1347i −0.799896 0.799896i
\(359\) −6.76884 + 6.76884i −0.357246 + 0.357246i −0.862797 0.505551i \(-0.831289\pi\)
0.505551 + 0.862797i \(0.331289\pi\)
\(360\) 6.89216 26.0520i 0.363248 1.37306i
\(361\) 9.15665i 0.481929i
\(362\) −8.63014 + 8.63014i −0.453590 + 0.453590i
\(363\) −4.12223 5.35459i −0.216361 0.281043i
\(364\) 0 0
\(365\) 14.7166i 0.770303i
\(366\) 6.09063 + 0.792025i 0.318362 + 0.0413998i
\(367\) −12.0267 −0.627790 −0.313895 0.949458i \(-0.601634\pi\)
−0.313895 + 0.949458i \(0.601634\pi\)
\(368\) −11.1268 −0.580026
\(369\) −9.88015 + 5.74615i −0.514340 + 0.299133i
\(370\) 14.2382 14.2382i 0.740209 0.740209i
\(371\) 28.1448 28.1448i 1.46121 1.46121i
\(372\) 0.369539 + 0.0480548i 0.0191597 + 0.00249152i
\(373\) 13.3586 0.691684 0.345842 0.938293i \(-0.387593\pi\)
0.345842 + 0.938293i \(0.387593\pi\)
\(374\) 0.695502 0.0359636
\(375\) −0.648313 + 4.98549i −0.0334787 + 0.257449i
\(376\) 18.1563i 0.936340i
\(377\) 0 0
\(378\) −18.3720 + 7.71252i −0.944955 + 0.396689i
\(379\) 21.8973 21.8973i 1.12479 1.12479i 0.133777 0.991011i \(-0.457289\pi\)
0.991011 0.133777i \(-0.0427107\pi\)
\(380\) 4.40724i 0.226087i
\(381\) −10.1699 13.2102i −0.521019 0.676781i
\(382\) 1.88297 1.88297i 0.0963413 0.0963413i
\(383\) 7.25053 + 7.25053i 0.370485 + 0.370485i 0.867654 0.497169i \(-0.165627\pi\)
−0.497169 + 0.867654i \(0.665627\pi\)
\(384\) −1.88126 + 14.4668i −0.0960026 + 0.738255i
\(385\) 16.5390 + 16.5390i 0.842908 + 0.842908i
\(386\) 5.21576i 0.265475i
\(387\) 33.8045 + 8.94310i 1.71838 + 0.454603i
\(388\) −2.37680 2.37680i −0.120664 0.120664i
\(389\) 30.1074 1.52650 0.763252 0.646101i \(-0.223602\pi\)
0.763252 + 0.646101i \(0.223602\pi\)
\(390\) 0 0
\(391\) −0.656299 −0.0331905
\(392\) 3.23487 + 3.23487i 0.163386 + 0.163386i
\(393\) −12.5747 16.3340i −0.634310 0.823941i
\(394\) 9.04562i 0.455712i
\(395\) −23.6714 23.6714i −1.19104 1.19104i
\(396\) −1.90927 + 1.11040i −0.0959443 + 0.0557998i
\(397\) 2.42682 + 2.42682i 0.121799 + 0.121799i 0.765379 0.643580i \(-0.222552\pi\)
−0.643580 + 0.765379i \(0.722552\pi\)
\(398\) −5.88626 + 5.88626i −0.295052 + 0.295052i
\(399\) 21.2707 16.3753i 1.06487 0.819788i
\(400\) 13.5996i 0.679978i
\(401\) 14.1084 14.1084i 0.704541 0.704541i −0.260841 0.965382i \(-0.584000\pi\)
0.965382 + 0.260841i \(0.0839998\pi\)
\(402\) −13.5980 + 10.4684i −0.678207 + 0.522117i
\(403\) 0 0
\(404\) 3.42479i 0.170390i
\(405\) −7.16698 26.0847i −0.356130 1.29616i
\(406\) −14.3133 −0.710356
\(407\) −13.5950 −0.673880
\(408\) −0.132723 + 1.02063i −0.00657076 + 0.0505288i
\(409\) 3.91823 3.91823i 0.193744 0.193744i −0.603568 0.797312i \(-0.706255\pi\)
0.797312 + 0.603568i \(0.206255\pi\)
\(410\) 10.6309 10.6309i 0.525021 0.525021i
\(411\) −3.88540 + 29.8785i −0.191653 + 1.47380i
\(412\) 1.57176 0.0774351
\(413\) −9.75114 −0.479822
\(414\) −11.2382 + 6.53596i −0.552326 + 0.321225i
\(415\) 7.82191i 0.383962i
\(416\) 0 0
\(417\) −3.19652 + 2.46083i −0.156534 + 0.120508i
\(418\) −13.1246 + 13.1246i −0.641946 + 0.641946i
\(419\) 34.4340i 1.68221i 0.540871 + 0.841106i \(0.318095\pi\)
−0.540871 + 0.841106i \(0.681905\pi\)
\(420\) −3.32942 + 2.56315i −0.162459 + 0.125069i
\(421\) −18.6143 + 18.6143i −0.907208 + 0.907208i −0.996046 0.0888383i \(-0.971685\pi\)
0.0888383 + 0.996046i \(0.471685\pi\)
\(422\) −0.744792 0.744792i −0.0362559 0.0362559i
\(423\) −9.16290 15.7550i −0.445515 0.766036i
\(424\) −28.7983 28.7983i −1.39857 1.39857i
\(425\) 0.802150i 0.0389100i
\(426\) 7.41801 + 9.63567i 0.359404 + 0.466850i
\(427\) −5.57821 5.57821i −0.269948 0.269948i
\(428\) −2.14672 −0.103765
\(429\) 0 0
\(430\) −45.9956 −2.21811
\(431\) 7.99634 + 7.99634i 0.385170 + 0.385170i 0.872961 0.487791i \(-0.162197\pi\)
−0.487791 + 0.872961i \(0.662197\pi\)
\(432\) 6.78002 + 16.1507i 0.326204 + 0.777052i
\(433\) 6.20615i 0.298249i −0.988818 0.149124i \(-0.952355\pi\)
0.988818 0.149124i \(-0.0476455\pi\)
\(434\) 2.11114 + 2.11114i 0.101338 + 0.101338i
\(435\) 2.50589 19.2701i 0.120148 0.923932i
\(436\) 1.98503 + 1.98503i 0.0950659 + 0.0950659i
\(437\) 12.3848 12.3848i 0.592447 0.592447i
\(438\) −6.79190 8.82238i −0.324530 0.421550i
\(439\) 38.7828i 1.85100i −0.378745 0.925501i \(-0.623644\pi\)
0.378745 0.925501i \(-0.376356\pi\)
\(440\) 16.9231 16.9231i 0.806775 0.806775i
\(441\) 4.43957 + 1.17451i 0.211408 + 0.0559288i
\(442\) 0 0
\(443\) 18.3132i 0.870087i −0.900409 0.435043i \(-0.856733\pi\)
0.900409 0.435043i \(-0.143267\pi\)
\(444\) 0.314935 2.42183i 0.0149461 0.114935i
\(445\) −3.30219 −0.156539
\(446\) 4.05691 0.192100
\(447\) −27.0963 3.52361i −1.28161 0.166661i
\(448\) 18.1307 18.1307i 0.856593 0.856593i
\(449\) −1.37117 + 1.37117i −0.0647096 + 0.0647096i −0.738721 0.674011i \(-0.764570\pi\)
0.674011 + 0.738721i \(0.264570\pi\)
\(450\) 7.98846 + 13.7357i 0.376580 + 0.647505i
\(451\) −10.1506 −0.477975
\(452\) −4.72188 −0.222099
\(453\) −20.8144 2.70670i −0.977944 0.127172i
\(454\) 34.0227i 1.59676i
\(455\) 0 0
\(456\) −16.7555 21.7646i −0.784646 1.01922i
\(457\) −4.12048 + 4.12048i −0.192748 + 0.192748i −0.796882 0.604134i \(-0.793519\pi\)
0.604134 + 0.796882i \(0.293519\pi\)
\(458\) 36.4675i 1.70401i
\(459\) 0.399910 + 0.952628i 0.0186662 + 0.0444649i
\(460\) −1.93854 + 1.93854i −0.0903851 + 0.0903851i
\(461\) 10.1185 + 10.1185i 0.471264 + 0.471264i 0.902323 0.431060i \(-0.141860\pi\)
−0.431060 + 0.902323i \(0.641860\pi\)
\(462\) −17.5479 2.28193i −0.816401 0.106165i
\(463\) 2.99038 + 2.99038i 0.138975 + 0.138975i 0.773172 0.634197i \(-0.218669\pi\)
−0.634197 + 0.773172i \(0.718669\pi\)
\(464\) 12.5827i 0.584138i
\(465\) −3.21186 + 2.47265i −0.148947 + 0.114666i
\(466\) −13.4194 13.4194i −0.621643 0.621643i
\(467\) 37.5105 1.73578 0.867888 0.496759i \(-0.165477\pi\)
0.867888 + 0.496759i \(0.165477\pi\)
\(468\) 0 0
\(469\) 22.0417 1.01779
\(470\) 16.9521 + 16.9521i 0.781944 + 0.781944i
\(471\) 4.48423 3.45218i 0.206622 0.159068i
\(472\) 9.97755i 0.459254i
\(473\) 21.9589 + 21.9589i 1.00967 + 1.00967i
\(474\) 25.1153 + 3.26600i 1.15358 + 0.150012i
\(475\) −15.1371 15.1371i −0.694540 0.694540i
\(476\) 0.113474 0.113474i 0.00520106 0.00520106i
\(477\) −39.5231 10.4560i −1.80964 0.478746i
\(478\) 7.87701i 0.360286i
\(479\) 1.44413 1.44413i 0.0659840 0.0659840i −0.673345 0.739329i \(-0.735143\pi\)
0.739329 + 0.673345i \(0.235143\pi\)
\(480\) 4.92695 + 6.39989i 0.224883 + 0.292114i
\(481\) 0 0
\(482\) 32.3999i 1.47578i
\(483\) 16.5588 + 2.15330i 0.753450 + 0.0979786i
\(484\) 1.07810 0.0490043
\(485\) 36.5617 1.66018
\(486\) 16.3349 + 12.3297i 0.740967 + 0.559288i
\(487\) −17.7349 + 17.7349i −0.803647 + 0.803647i −0.983664 0.180017i \(-0.942385\pi\)
0.180017 + 0.983664i \(0.442385\pi\)
\(488\) −5.70772 + 5.70772i −0.258377 + 0.258377i
\(489\) 10.0106 + 1.30178i 0.452697 + 0.0588687i
\(490\) −6.04065 −0.272889
\(491\) −7.53217 −0.339922 −0.169961 0.985451i \(-0.554364\pi\)
−0.169961 + 0.985451i \(0.554364\pi\)
\(492\) 0.235144 1.80825i 0.0106011 0.0815221i
\(493\) 0.742173i 0.0334258i
\(494\) 0 0
\(495\) 6.14436 23.2254i 0.276169 1.04390i
\(496\) 1.85589 1.85589i 0.0833321 0.0833321i
\(497\) 15.6189i 0.700604i
\(498\) 3.60991 + 4.68911i 0.161764 + 0.210124i
\(499\) −8.71539 + 8.71539i −0.390154 + 0.390154i −0.874742 0.484588i \(-0.838970\pi\)
0.484588 + 0.874742i \(0.338970\pi\)
\(500\) −0.567155 0.567155i −0.0253640 0.0253640i
\(501\) −0.353178 + 2.71592i −0.0157788 + 0.121338i
\(502\) 20.1729 + 20.1729i 0.900362 + 0.900362i
\(503\) 2.34970i 0.104768i 0.998627 + 0.0523839i \(0.0166819\pi\)
−0.998627 + 0.0523839i \(0.983318\pi\)
\(504\) 6.69733 25.3156i 0.298323 1.12765i
\(505\) 26.3413 + 26.3413i 1.17217 + 1.17217i
\(506\) −11.5458 −0.513276
\(507\) 0 0
\(508\) 2.65975 0.118008
\(509\) 21.1961 + 21.1961i 0.939499 + 0.939499i 0.998271 0.0587720i \(-0.0187185\pi\)
−0.0587720 + 0.998271i \(0.518718\pi\)
\(510\) −0.829020 1.07686i −0.0367096 0.0476842i
\(511\) 14.3006i 0.632622i
\(512\) −17.9453 17.9453i −0.793080 0.793080i
\(513\) −25.5233 10.4302i −1.12688 0.460503i
\(514\) 15.1425 + 15.1425i 0.667907 + 0.667907i
\(515\) −12.0890 + 12.0890i −0.532705 + 0.532705i
\(516\) −4.42048 + 3.40310i −0.194601 + 0.149813i
\(517\) 16.1864i 0.711876i
\(518\) 13.8357 13.8357i 0.607907 0.607907i
\(519\) 17.0503 13.1261i 0.748424 0.576174i
\(520\) 0 0
\(521\) 5.94611i 0.260504i −0.991481 0.130252i \(-0.958421\pi\)
0.991481 0.130252i \(-0.0415786\pi\)
\(522\) 7.39116 + 12.7086i 0.323502 + 0.556242i
\(523\) −0.859946 −0.0376028 −0.0188014 0.999823i \(-0.505985\pi\)
−0.0188014 + 0.999823i \(0.505985\pi\)
\(524\) 3.28869 0.143667
\(525\) 2.63184 20.2387i 0.114863 0.883288i
\(526\) −10.6725 + 10.6725i −0.465344 + 0.465344i
\(527\) 0.109467 0.109467i 0.00476847 0.00476847i
\(528\) −2.00603 + 15.4262i −0.0873011 + 0.671340i
\(529\) −12.1049 −0.526302
\(530\) 53.7766 2.33591
\(531\) 5.03534 + 8.65796i 0.218515 + 0.375723i
\(532\) 4.28266i 0.185677i
\(533\) 0 0
\(534\) 1.97961 1.52400i 0.0856662 0.0659500i
\(535\) 16.5112 16.5112i 0.713841 0.713841i
\(536\) 22.5534i 0.974160i
\(537\) 22.3749 17.2253i 0.965548 0.743326i
\(538\) −10.3408 + 10.3408i −0.445824 + 0.445824i
\(539\) 2.88389 + 2.88389i 0.124218 + 0.124218i
\(540\) 3.99506 + 1.63259i 0.171920 + 0.0702555i
\(541\) 5.67009 + 5.67009i 0.243776 + 0.243776i 0.818410 0.574634i \(-0.194856\pi\)
−0.574634 + 0.818410i \(0.694856\pi\)
\(542\) 7.97798i 0.342684i
\(543\) −9.82221 12.7586i −0.421512 0.547525i
\(544\) −0.218122 0.218122i −0.00935190 0.00935190i
\(545\) −30.5353 −1.30799
\(546\) 0 0
\(547\) −29.3587 −1.25529 −0.627643 0.778501i \(-0.715980\pi\)
−0.627643 + 0.778501i \(0.715980\pi\)
\(548\) −3.39902 3.39902i −0.145199 0.145199i
\(549\) −2.07234 + 7.83335i −0.0884453 + 0.334319i
\(550\) 14.1117i 0.601725i
\(551\) −14.0053 14.0053i −0.596647 0.596647i
\(552\) 2.20330 16.9432i 0.0937786 0.721152i
\(553\) −23.0023 23.0023i −0.978158 0.978158i
\(554\) 25.7905 25.7905i 1.09573 1.09573i
\(555\) 16.2049 + 21.0495i 0.687860 + 0.893501i
\(556\) 0.643588i 0.0272942i
\(557\) −26.4446 + 26.4446i −1.12050 + 1.12050i −0.128828 + 0.991667i \(0.541122\pi\)
−0.991667 + 0.128828i \(0.958878\pi\)
\(558\) 0.784303 2.96463i 0.0332022 0.125503i
\(559\) 0 0
\(560\) 29.5936i 1.25056i
\(561\) −0.118323 + 0.909894i −0.00499558 + 0.0384157i
\(562\) 21.5724 0.909978
\(563\) 13.4052 0.564963 0.282481 0.959273i \(-0.408842\pi\)
0.282481 + 0.959273i \(0.408842\pi\)
\(564\) 2.88346 + 0.374965i 0.121415 + 0.0157889i
\(565\) 36.3177 36.3177i 1.52790 1.52790i
\(566\) −24.6821 + 24.6821i −1.03747 + 1.03747i
\(567\) −6.96439 25.3474i −0.292477 1.06449i
\(568\) −15.9816 −0.670572
\(569\) −22.6791 −0.950759 −0.475380 0.879781i \(-0.657689\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(570\) 35.9653 + 4.67693i 1.50642 + 0.195895i
\(571\) 21.9369i 0.918032i 0.888428 + 0.459016i \(0.151798\pi\)
−0.888428 + 0.459016i \(0.848202\pi\)
\(572\) 0 0
\(573\) 2.14307 + 2.78375i 0.0895279 + 0.116293i
\(574\) 10.3304 10.3304i 0.431181 0.431181i
\(575\) 13.3163i 0.555328i
\(576\) −25.4605 6.73566i −1.06085 0.280652i
\(577\) 18.7633 18.7633i 0.781126 0.781126i −0.198895 0.980021i \(-0.563735\pi\)
0.980021 + 0.198895i \(0.0637354\pi\)
\(578\) −15.7453 15.7453i −0.654916 0.654916i
\(579\) 6.82354 + 0.887333i 0.283577 + 0.0368763i
\(580\) 2.19219 + 2.19219i 0.0910259 + 0.0910259i
\(581\) 7.60081i 0.315335i
\(582\) −21.9181 + 16.8737i −0.908537 + 0.699436i
\(583\) −25.6737 25.6737i −1.06330 1.06330i
\(584\) 14.6327 0.605504
\(585\) 0 0
\(586\) 3.80070 0.157005
\(587\) −8.65842 8.65842i −0.357371 0.357371i 0.505472 0.862843i \(-0.331318\pi\)
−0.862843 + 0.505472i \(0.831318\pi\)
\(588\) −0.580546 + 0.446933i −0.0239413 + 0.0184312i
\(589\) 4.13145i 0.170233i
\(590\) −9.31581 9.31581i −0.383526 0.383526i
\(591\) 11.8340 + 1.53889i 0.486785 + 0.0633015i
\(592\) −12.1629 12.1629i −0.499892 0.499892i
\(593\) −32.4467 + 32.4467i −1.33243 + 1.33243i −0.429232 + 0.903194i \(0.641216\pi\)
−0.903194 + 0.429232i \(0.858784\pi\)
\(594\) 7.03536 + 16.7590i 0.288664 + 0.687628i
\(595\) 1.74554i 0.0715600i
\(596\) 3.08251 3.08251i 0.126265 0.126265i
\(597\) −6.69933 8.70213i −0.274185 0.356155i
\(598\) 0 0
\(599\) 11.5870i 0.473430i −0.971579 0.236715i \(-0.923929\pi\)
0.971579 0.236715i \(-0.0760708\pi\)
\(600\) −20.7086 2.69294i −0.845424 0.109939i
\(601\) −4.53417 −0.184953 −0.0924764 0.995715i \(-0.529478\pi\)
−0.0924764 + 0.995715i \(0.529478\pi\)
\(602\) −44.6955 −1.82165
\(603\) −11.3820 19.5706i −0.463510 0.796977i
\(604\) 2.36787 2.36787i 0.0963472 0.0963472i
\(605\) −8.29203 + 8.29203i −0.337119 + 0.337119i
\(606\) −27.9481 3.63437i −1.13531 0.147636i
\(607\) 13.0328 0.528986 0.264493 0.964388i \(-0.414795\pi\)
0.264493 + 0.964388i \(0.414795\pi\)
\(608\) 8.23223 0.333861
\(609\) 2.43505 18.7254i 0.0986733 0.758792i
\(610\) 10.6583i 0.431544i
\(611\) 0 0
\(612\) −0.159348 0.0421562i −0.00644128 0.00170406i
\(613\) −2.54348 + 2.54348i −0.102730 + 0.102730i −0.756604 0.653874i \(-0.773143\pi\)
0.653874 + 0.756604i \(0.273143\pi\)
\(614\) 25.9131i 1.04577i
\(615\) 12.0993 + 15.7165i 0.487891 + 0.633749i
\(616\) 16.4447 16.4447i 0.662575 0.662575i
\(617\) 4.69608 + 4.69608i 0.189057 + 0.189057i 0.795288 0.606231i \(-0.207319\pi\)
−0.606231 + 0.795288i \(0.707319\pi\)
\(618\) 1.66794 12.8264i 0.0670945 0.515953i
\(619\) −13.3334 13.3334i −0.535916 0.535916i 0.386411 0.922327i \(-0.373715\pi\)
−0.922327 + 0.386411i \(0.873715\pi\)
\(620\) 0.646677i 0.0259712i
\(621\) −6.63880 15.8143i −0.266406 0.634607i
\(622\) −25.0427 25.0427i −1.00412 1.00412i
\(623\) −3.20885 −0.128560
\(624\) 0 0
\(625\) 28.8959 1.15584
\(626\) −22.2489 22.2489i −0.889243 0.889243i
\(627\) −14.9375 19.4032i −0.596547 0.774888i
\(628\) 0.902856i 0.0360279i
\(629\) −0.717411 0.717411i −0.0286051 0.0286051i
\(630\) 17.3835 + 29.8898i 0.692573 + 1.19084i
\(631\) −1.04182 1.04182i −0.0414743 0.0414743i 0.686065 0.727540i \(-0.259336\pi\)
−0.727540 + 0.686065i \(0.759336\pi\)
\(632\) −23.5364 + 23.5364i −0.936227 + 0.936227i
\(633\) 1.10109 0.847670i 0.0437642 0.0336918i
\(634\) 40.2717i 1.59939i
\(635\) −20.4571 + 20.4571i −0.811817 + 0.811817i
\(636\) 5.16828 3.97879i 0.204936 0.157769i
\(637\) 0 0
\(638\) 13.0566i 0.516915i
\(639\) −13.8679 + 8.06538i −0.548606 + 0.319061i
\(640\) 25.3163 1.00071
\(641\) −14.8607 −0.586961 −0.293481 0.955965i \(-0.594814\pi\)
−0.293481 + 0.955965i \(0.594814\pi\)
\(642\) −2.27808 + 17.5183i −0.0899086 + 0.691392i
\(643\) −34.3565 + 34.3565i −1.35489 + 1.35489i −0.474791 + 0.880099i \(0.657476\pi\)
−0.880099 + 0.474791i \(0.842524\pi\)
\(644\) −1.88375 + 1.88375i −0.0742300 + 0.0742300i
\(645\) 7.82503 60.1740i 0.308110 2.36935i
\(646\) −1.38518 −0.0544990
\(647\) −37.6742 −1.48112 −0.740562 0.671988i \(-0.765441\pi\)
−0.740562 + 0.671988i \(0.765441\pi\)
\(648\) −25.9359 + 7.12609i −1.01886 + 0.279939i
\(649\) 8.89499i 0.349159i
\(650\) 0 0
\(651\) −3.12107 + 2.40275i −0.122324 + 0.0941714i
\(652\) −1.13882 + 1.13882i −0.0445998 + 0.0445998i
\(653\) 22.2714i 0.871548i 0.900056 + 0.435774i \(0.143525\pi\)
−0.900056 + 0.435774i \(0.856475\pi\)
\(654\) 18.3054 14.0924i 0.715798 0.551056i
\(655\) −25.2945 + 25.2945i −0.988339 + 0.988339i
\(656\) −9.08136 9.08136i −0.354568 0.354568i
\(657\) 12.6974 7.38463i 0.495373 0.288102i
\(658\) 16.4729 + 16.4729i 0.642182 + 0.642182i
\(659\) 26.8010i 1.04402i −0.852939 0.522010i \(-0.825182\pi\)
0.852939 0.522010i \(-0.174818\pi\)
\(660\) 2.33810 + 3.03709i 0.0910106 + 0.118219i
\(661\) 12.3552 + 12.3552i 0.480561 + 0.480561i 0.905311 0.424750i \(-0.139638\pi\)
−0.424750 + 0.905311i \(0.639638\pi\)
\(662\) 0.871200 0.0338602
\(663\) 0 0
\(664\) −7.77728 −0.301817
\(665\) −32.9395 32.9395i −1.27734 1.27734i
\(666\) −19.4292 5.14006i −0.752866 0.199173i
\(667\) 12.3206i 0.477057i
\(668\) −0.308966 0.308966i −0.0119543 0.0119543i
\(669\) −0.690183 + 5.30747i −0.0266840 + 0.205199i
\(670\) 21.0576 + 21.0576i 0.813527 + 0.813527i
\(671\) −5.08844 + 5.08844i −0.196437 + 0.196437i
\(672\) 4.78768 + 6.21898i 0.184689 + 0.239902i
\(673\) 35.6073i 1.37256i 0.727336 + 0.686281i \(0.240758\pi\)
−0.727336 + 0.686281i \(0.759242\pi\)
\(674\) −23.2897 + 23.2897i −0.897087 + 0.897087i
\(675\) −19.3288 + 8.11416i −0.743965 + 0.312314i
\(676\) 0 0
\(677\) 16.3795i 0.629517i 0.949172 + 0.314758i \(0.101924\pi\)
−0.949172 + 0.314758i \(0.898076\pi\)
\(678\) −5.01083 + 38.5330i −0.192440 + 1.47985i
\(679\) 35.5282 1.36345
\(680\) 1.78606 0.0684924
\(681\) 44.5104 + 5.78813i 1.70564 + 0.221801i
\(682\) 1.92579 1.92579i 0.0737421 0.0737421i
\(683\) 27.1629 27.1629i 1.03936 1.03936i 0.0401670 0.999193i \(-0.487211\pi\)
0.999193 0.0401670i \(-0.0127890\pi\)
\(684\) 3.80253 2.21150i 0.145394 0.0845588i
\(685\) 52.2862 1.99775
\(686\) 20.9724 0.800729
\(687\) 47.7088 + 6.20404i 1.82020 + 0.236699i
\(688\) 39.2915i 1.49797i
\(689\) 0 0
\(690\) 13.7624 + 17.8767i 0.523924 + 0.680554i
\(691\) 13.6599 13.6599i 0.519648 0.519648i −0.397817 0.917465i \(-0.630232\pi\)
0.917465 + 0.397817i \(0.130232\pi\)
\(692\) 3.43291i 0.130500i
\(693\) 5.97068 22.5689i 0.226807 0.857321i
\(694\) −15.2344 + 15.2344i −0.578292 + 0.578292i
\(695\) 4.95007 + 4.95007i 0.187767 + 0.187767i
\(696\) −19.1602 2.49159i −0.726265 0.0944435i
\(697\) −0.535651 0.535651i −0.0202892 0.0202892i
\(698\) 39.3532i 1.48954i
\(699\) 19.8390 15.2731i 0.750381 0.577680i
\(700\) 2.30238 + 2.30238i 0.0870216 + 0.0870216i
\(701\) −12.7471 −0.481453 −0.240726 0.970593i \(-0.577386\pi\)
−0.240726 + 0.970593i \(0.577386\pi\)
\(702\) 0 0
\(703\) 27.0761 1.02120
\(704\) −16.5388 16.5388i −0.623329 0.623329i
\(705\) −25.0617 + 19.2937i −0.943879 + 0.726644i
\(706\) 8.84629i 0.332935i
\(707\) 25.5967 + 25.5967i 0.962664 + 0.962664i
\(708\) −1.58456 0.206057i −0.0595515 0.00774408i
\(709\) 30.8214 + 30.8214i 1.15752 + 1.15752i 0.985007 + 0.172517i \(0.0551899\pi\)
0.172517 + 0.985007i \(0.444810\pi\)
\(710\) 14.9216 14.9216i 0.559999 0.559999i
\(711\) −8.54551 + 32.3016i −0.320482 + 1.21140i
\(712\) 3.28335i 0.123049i
\(713\) −1.81724 + 1.81724i −0.0680560 + 0.0680560i
\(714\) −0.805586 1.04642i −0.0301483 0.0391613i
\(715\) 0 0
\(716\) 4.50497i 0.168359i
\(717\) 10.3051 + 1.34008i 0.384852 + 0.0500462i
\(718\) −12.5677 −0.469023
\(719\) −35.5618 −1.32623 −0.663116 0.748517i \(-0.730766\pi\)
−0.663116 + 0.748517i \(0.730766\pi\)
\(720\) 26.2759 15.2817i 0.979245 0.569515i
\(721\) −11.7473 + 11.7473i −0.437491 + 0.437491i
\(722\) 8.50058 8.50058i 0.316359 0.316359i
\(723\) 42.3873 + 5.51205i 1.57640 + 0.204995i
\(724\) 2.56883 0.0954696
\(725\) −15.0587 −0.559265
\(726\) 1.14407 8.79781i 0.0424603 0.326518i
\(727\) 26.2936i 0.975176i −0.873074 0.487588i \(-0.837877\pi\)
0.873074 0.487588i \(-0.162123\pi\)
\(728\) 0 0
\(729\) −18.9094 + 19.2726i −0.700349 + 0.713801i
\(730\) −13.6622 + 13.6622i −0.505660 + 0.505660i
\(731\) 2.31755i 0.0857178i
\(732\) −0.788584 1.02434i −0.0291469 0.0378606i
\(733\) 5.72217 5.72217i 0.211353 0.211353i −0.593489 0.804842i \(-0.702250\pi\)
0.804842 + 0.593489i \(0.202250\pi\)
\(734\) −11.1650 11.1650i −0.412109 0.412109i
\(735\) 1.02767 7.90271i 0.0379061 0.291496i
\(736\) 3.62099 + 3.62099i 0.133471 + 0.133471i
\(737\) 20.1064i 0.740629i
\(738\) −14.5067 3.83780i −0.533999 0.141271i
\(739\) 14.5261 + 14.5261i 0.534352 + 0.534352i 0.921865 0.387512i \(-0.126665\pi\)
−0.387512 + 0.921865i \(0.626665\pi\)
\(740\) −4.23811 −0.155796
\(741\) 0 0
\(742\) 52.2565 1.91840
\(743\) 24.3184 + 24.3184i 0.892156 + 0.892156i 0.994726 0.102570i \(-0.0327065\pi\)
−0.102570 + 0.994726i \(0.532706\pi\)
\(744\) 2.45854 + 3.19354i 0.0901345 + 0.117081i
\(745\) 47.4175i 1.73724i
\(746\) 12.4015 + 12.4015i 0.454051 + 0.454051i
\(747\) −6.74869 + 3.92494i −0.246922 + 0.143606i
\(748\) −0.103511 0.103511i −0.00378473 0.00378473i
\(749\) 16.0445 16.0445i 0.586252 0.586252i
\(750\) −5.23014 + 4.02642i −0.190978 + 0.147024i
\(751\) 29.8891i 1.09067i 0.838219 + 0.545334i \(0.183597\pi\)
−0.838219 + 0.545334i \(0.816403\pi\)
\(752\) 14.4813 14.4813i 0.528077 0.528077i
\(753\) −29.8233 + 22.9594i −1.08682 + 0.836687i
\(754\) 0 0
\(755\) 36.4243i 1.32562i
\(756\) 3.88213 + 1.58644i 0.141192 + 0.0576983i
\(757\) 22.3067 0.810752 0.405376 0.914150i \(-0.367141\pi\)
0.405376 + 0.914150i \(0.367141\pi\)
\(758\) 40.6567 1.47672
\(759\) 1.96424 15.1049i 0.0712975 0.548274i
\(760\) −33.7043 + 33.7043i −1.22258 + 1.22258i
\(761\) −18.7246 + 18.7246i −0.678767 + 0.678767i −0.959721 0.280954i \(-0.909349\pi\)
0.280954 + 0.959721i \(0.409349\pi\)
\(762\) 2.82251 21.7050i 0.102249 0.786288i
\(763\) −29.6721 −1.07420
\(764\) −0.560481 −0.0202775
\(765\) 1.54985 0.901368i 0.0560348 0.0325890i
\(766\) 13.4621i 0.486404i
\(767\) 0 0
\(768\) 8.92027 6.86726i 0.321882 0.247801i
\(769\) −8.68256 + 8.68256i −0.313101 + 0.313101i −0.846110 0.533009i \(-0.821061\pi\)
0.533009 + 0.846110i \(0.321061\pi\)
\(770\) 30.7081i 1.10664i
\(771\) −22.3864 + 17.2341i −0.806225 + 0.620671i
\(772\) −0.776254 + 0.776254i −0.0279380 + 0.0279380i
\(773\) −16.3016 16.3016i −0.586326 0.586326i 0.350308 0.936634i \(-0.386077\pi\)
−0.936634 + 0.350308i \(0.886077\pi\)
\(774\) 23.0801 + 39.6847i 0.829596 + 1.42644i
\(775\) 2.22108 + 2.22108i 0.0797837 + 0.0797837i
\(776\) 36.3531i 1.30500i
\(777\) 15.7468 + 20.4545i 0.564915 + 0.733800i
\(778\) 27.9502 + 27.9502i 1.00206 + 1.00206i
\(779\) 20.2162 0.724321
\(780\) 0 0
\(781\) −14.2476 −0.509818
\(782\) −0.609276 0.609276i −0.0217877 0.0217877i
\(783\) −17.8836 + 7.50746i −0.639106 + 0.268295i
\(784\) 5.16019i 0.184293i
\(785\) −6.94420 6.94420i −0.247849 0.247849i
\(786\) 3.48993 26.8374i 0.124482 0.957258i
\(787\) 35.0163 + 35.0163i 1.24819 + 1.24819i 0.956516 + 0.291678i \(0.0942137\pi\)
0.291678 + 0.956516i \(0.405786\pi\)
\(788\) −1.34625 + 1.34625i −0.0479581 + 0.0479581i
\(789\) −12.1467 15.7780i −0.432434 0.561713i
\(790\) 43.9508i 1.56370i
\(791\) 35.2911 35.2911i 1.25481 1.25481i
\(792\) −23.0929 6.10931i −0.820570 0.217085i
\(793\) 0 0
\(794\) 4.50589i 0.159908i
\(795\) −9.14877 + 70.3535i −0.324473 + 2.49518i
\(796\) 1.75209 0.0621012
\(797\) −5.10731 −0.180910 −0.0904550 0.995901i \(-0.528832\pi\)
−0.0904550 + 0.995901i \(0.528832\pi\)
\(798\) 34.9487 + 4.54473i 1.23717 + 0.160882i
\(799\) 0.854157 0.854157i 0.0302179 0.0302179i
\(800\) 4.42568 4.42568i 0.156472 0.156472i
\(801\) 1.65700 + 2.84911i 0.0585472 + 0.100668i
\(802\) 26.1951 0.924982
\(803\) 13.0450 0.460349
\(804\) 3.58178 + 0.465774i 0.126319 + 0.0164266i
\(805\) 28.9772i 1.02131i
\(806\) 0 0
\(807\) −11.7692 15.2877i −0.414295 0.538151i
\(808\) 26.1910 26.1910i 0.921398 0.921398i
\(809\) 0.250395i 0.00880341i −0.999990 0.00440171i \(-0.998599\pi\)
0.999990 0.00440171i \(-0.00140111\pi\)
\(810\) 17.5623 30.8692i 0.617076 1.08463i
\(811\) 0.345058 0.345058i 0.0121166 0.0121166i −0.701023 0.713139i \(-0.747273\pi\)
0.713139 + 0.701023i \(0.247273\pi\)
\(812\) 2.13023 + 2.13023i 0.0747563 + 0.0747563i
\(813\) 10.4372 + 1.35726i 0.366050 + 0.0476011i
\(814\) −12.6210 12.6210i −0.442364 0.442364i
\(815\) 17.5182i 0.613637i
\(816\) −0.919902 + 0.708186i −0.0322030 + 0.0247915i
\(817\) −43.7339 43.7339i −1.53005 1.53005i
\(818\) 7.27498 0.254364
\(819\) 0 0
\(820\) −3.16436 −0.110504
\(821\) −20.3341 20.3341i −0.709665 0.709665i 0.256799 0.966465i \(-0.417332\pi\)
−0.966465 + 0.256799i \(0.917332\pi\)
\(822\) −31.3447 + 24.1307i −1.09327 + 0.841655i
\(823\) 2.01893i 0.0703754i 0.999381 + 0.0351877i \(0.0112029\pi\)
−0.999381 + 0.0351877i \(0.988797\pi\)
\(824\) 12.0200 + 12.0200i 0.418737 + 0.418737i
\(825\) −18.4617 2.40076i −0.642754 0.0835837i
\(826\) −9.05248 9.05248i −0.314976 0.314976i
\(827\) 0.657151 0.657151i 0.0228514 0.0228514i −0.695589 0.718440i \(-0.744856\pi\)
0.718440 + 0.695589i \(0.244856\pi\)
\(828\) 2.64530 + 0.699824i 0.0919306 + 0.0243206i
\(829\) 46.5124i 1.61544i 0.589564 + 0.807722i \(0.299300\pi\)
−0.589564 + 0.807722i \(0.700700\pi\)
\(830\) 7.26148 7.26148i 0.252049 0.252049i
\(831\) 29.3530 + 38.1282i 1.01824 + 1.32265i
\(832\) 0 0
\(833\) 0.304367i 0.0105457i
\(834\) −5.25201 0.682971i −0.181862 0.0236493i
\(835\) 4.75274 0.164475
\(836\) 3.90664 0.135114
\(837\) 3.74506 + 1.53043i 0.129448 + 0.0528993i
\(838\) −31.9668 + 31.9668i −1.10428 + 1.10428i
\(839\) −30.7448 + 30.7448i −1.06143 + 1.06143i −0.0634447 + 0.997985i \(0.520209\pi\)
−0.997985 + 0.0634447i \(0.979791\pi\)
\(840\) −45.0633 5.86003i −1.55483 0.202190i
\(841\) 15.0673 0.519561
\(842\) −34.5613 −1.19106
\(843\) −3.67002 + 28.2222i −0.126402 + 0.972026i
\(844\) 0.221693i 0.00763098i
\(845\) 0 0
\(846\) 6.11981 23.1326i 0.210403 0.795314i
\(847\) −8.05764 + 8.05764i −0.276864 + 0.276864i
\(848\) 45.9383i 1.57753i
\(849\) −28.0915 36.4896i −0.964097 1.25232i
\(850\) −0.744677 + 0.744677i −0.0255422 + 0.0255422i
\(851\) 11.9096 + 11.9096i 0.408254 + 0.408254i
\(852\) 0.330052 2.53808i 0.0113074 0.0869531i
\(853\) 0.0191114 + 0.0191114i 0.000654362 + 0.000654362i 0.707434 0.706780i \(-0.249853\pi\)
−0.706780 + 0.707434i \(0.749853\pi\)
\(854\) 10.3571i 0.354411i
\(855\) −12.2372 + 46.2561i −0.418505 + 1.58193i
\(856\) −16.4170 16.4170i −0.561121 0.561121i
\(857\) 5.89068 0.201222 0.100611 0.994926i \(-0.467920\pi\)
0.100611 + 0.994926i \(0.467920\pi\)
\(858\) 0 0
\(859\) 11.6341 0.396949 0.198475 0.980106i \(-0.436401\pi\)
0.198475 + 0.980106i \(0.436401\pi\)
\(860\) 6.84547 + 6.84547i 0.233429 + 0.233429i
\(861\) 11.7573 + 15.2722i 0.400687 + 0.520475i
\(862\) 14.8468i 0.505685i
\(863\) 19.9075 + 19.9075i 0.677660 + 0.677660i 0.959470 0.281811i \(-0.0909350\pi\)
−0.281811 + 0.959470i \(0.590935\pi\)
\(864\) 3.04950 7.46232i 0.103746 0.253873i
\(865\) −26.4038 26.4038i −0.897755 0.897755i
\(866\) 5.76148 5.76148i 0.195783 0.195783i
\(867\) 23.2775 17.9201i 0.790544 0.608600i
\(868\) 0.628398i 0.0213292i
\(869\) −20.9827 + 20.9827i −0.711790 + 0.711790i
\(870\) 20.2158 15.5631i 0.685379 0.527638i
\(871\) 0 0
\(872\) 30.3610i 1.02815i
\(873\) −18.3462 31.5452i −0.620925 1.06764i
\(874\) 22.9949 0.777815
\(875\) 8.47779 0.286601
\(876\) −0.302194 + 2.32385i −0.0102102 + 0.0785158i
\(877\) 9.85124 9.85124i 0.332653 0.332653i −0.520940 0.853593i \(-0.674419\pi\)
0.853593 + 0.520940i \(0.174419\pi\)
\(878\) 36.0040 36.0040i 1.21508 1.21508i
\(879\) −0.646595 + 4.97228i −0.0218091 + 0.167711i
\(880\) 26.9953 0.910010
\(881\) 7.66652 0.258292 0.129146 0.991626i \(-0.458776\pi\)
0.129146 + 0.991626i \(0.458776\pi\)
\(882\) 3.03113 + 5.21183i 0.102063 + 0.175492i
\(883\) 7.52156i 0.253121i −0.991959 0.126560i \(-0.959606\pi\)
0.991959 0.126560i \(-0.0403937\pi\)
\(884\) 0 0
\(885\) 13.7723 10.6026i 0.462951 0.356403i
\(886\) 17.0011 17.0011i 0.571162 0.571162i
\(887\) 42.1524i 1.41534i −0.706543 0.707670i \(-0.749746\pi\)
0.706543 0.707670i \(-0.250254\pi\)
\(888\) 20.9294 16.1125i 0.702344 0.540699i
\(889\) −19.8789 + 19.8789i −0.666716 + 0.666716i
\(890\) −3.06559 3.06559i −0.102759 0.102759i
\(891\) −23.1219 + 6.35291i −0.774612 + 0.212831i
\(892\) −0.603784 0.603784i −0.0202162 0.0202162i
\(893\) 32.2371i 1.07877i
\(894\) −21.8838 28.4260i −0.731902 0.950709i
\(895\) −34.6494 34.6494i −1.15820 1.15820i
\(896\) 24.6007 0.821850
\(897\) 0 0
\(898\) −2.54586 −0.0849564
\(899\) 2.05501 + 2.05501i 0.0685385 + 0.0685385i
\(900\) 0.855348 3.23317i 0.0285116 0.107772i
\(901\) 2.70961i 0.0902701i
\(902\) −9.42336 9.42336i −0.313764 0.313764i
\(903\) 7.60383 58.4731i 0.253040 1.94586i
\(904\) −36.1105 36.1105i −1.20102 1.20102i
\(905\) −19.7578 + 19.7578i −0.656771 + 0.656771i
\(906\) −16.8103 21.8358i −0.558483 0.725445i
\(907\) 37.3530i 1.24029i −0.784489 0.620143i \(-0.787075\pi\)
0.784489 0.620143i \(-0.212925\pi\)
\(908\) −5.06355 + 5.06355i −0.168040 + 0.168040i
\(909\) 9.50935 35.9449i 0.315405 1.19222i
\(910\) 0 0
\(911\) 20.5977i 0.682434i 0.939985 + 0.341217i \(0.110839\pi\)
−0.939985 + 0.341217i \(0.889161\pi\)
\(912\) 3.99524 30.7232i 0.132296 1.01735i
\(913\) −6.93345 −0.229464
\(914\) −7.65050 −0.253056
\(915\) 13.9438 + 1.81326i 0.460969 + 0.0599444i
\(916\) −5.42741 + 5.42741i −0.179327 + 0.179327i
\(917\) −24.5795 + 24.5795i −0.811687 + 0.811687i
\(918\) −0.513116 + 1.25563i −0.0169353 + 0.0414419i
\(919\) −39.3357 −1.29756 −0.648782 0.760974i \(-0.724721\pi\)
−0.648782 + 0.760974i \(0.724721\pi\)
\(920\) −29.6500 −0.977531
\(921\) −33.9009 4.40848i −1.11707 0.145264i
\(922\) 18.7869i 0.618715i
\(923\) 0 0
\(924\) 2.27201 + 2.95124i 0.0747437 + 0.0970888i
\(925\) 14.5562 14.5562i 0.478606 0.478606i
\(926\) 5.55224i 0.182458i
\(927\) 16.4964 + 4.36418i 0.541813 + 0.143339i
\(928\) 4.09478 4.09478i 0.134418 0.134418i
\(929\) −14.8752 14.8752i −0.488041 0.488041i 0.419647 0.907688i \(-0.362154\pi\)
−0.907688 + 0.419647i \(0.862154\pi\)
\(930\) −5.27722 0.686250i −0.173047 0.0225030i
\(931\) −5.74361 5.74361i −0.188239 0.188239i
\(932\) 3.99439i 0.130841i
\(933\) 37.0227 28.5019i 1.21207 0.933110i
\(934\) 34.8228 + 34.8228i 1.13944 + 1.13944i
\(935\) 1.59228 0.0520730
\(936\) 0 0
\(937\) 2.05438 0.0671138 0.0335569 0.999437i \(-0.489317\pi\)
0.0335569 + 0.999437i \(0.489317\pi\)
\(938\) 20.4624 + 20.4624i 0.668121 + 0.668121i
\(939\) 32.8923 25.3221i 1.07340 0.826355i
\(940\) 5.04593i 0.164580i
\(941\) −41.3493 41.3493i −1.34795 1.34795i −0.887888 0.460059i \(-0.847828\pi\)
−0.460059 0.887888i \(-0.652172\pi\)
\(942\) 7.36777 + 0.958105i 0.240055 + 0.0312167i
\(943\) 8.89220 + 8.89220i 0.289570 + 0.289570i
\(944\) −7.95798 + 7.95798i −0.259010 + 0.259010i
\(945\) −42.0608 + 17.6570i −1.36824 + 0.574382i
\(946\) 40.7712i 1.32559i
\(947\) 21.4029 21.4029i 0.695502 0.695502i −0.267935 0.963437i \(-0.586341\pi\)
0.963437 + 0.267935i \(0.0863412\pi\)
\(948\) −3.25181 4.22395i −0.105614 0.137188i
\(949\) 0 0
\(950\) 28.1052i 0.911852i
\(951\) −52.6856 6.85123i −1.70845 0.222166i
\(952\) 1.73558 0.0562504
\(953\) −9.48367 −0.307206 −0.153603 0.988133i \(-0.549088\pi\)
−0.153603 + 0.988133i \(0.549088\pi\)
\(954\) −26.9845 46.3981i −0.873654 1.50219i
\(955\) 4.31087 4.31087i 0.139496 0.139496i
\(956\) −1.17233 + 1.17233i −0.0379157 + 0.0379157i
\(957\) −17.0813 2.22125i −0.552161 0.0718030i
\(958\) 2.68132 0.0866295
\(959\) 50.8082 1.64068
\(960\) −5.89356 + 45.3212i −0.190214 + 1.46273i
\(961\) 30.3938i 0.980445i
\(962\) 0 0
\(963\) −22.5308 5.96062i −0.726046 0.192078i
\(964\) −4.82204 + 4.82204i −0.155307 + 0.155307i
\(965\) 11.9409i 0.384392i
\(966\) 13.3733 + 17.3714i 0.430280 + 0.558914i
\(967\) 17.7922 17.7922i 0.572158 0.572158i −0.360573 0.932731i \(-0.617419\pi\)
0.932731 + 0.360573i \(0.117419\pi\)
\(968\) 8.24472 + 8.24472i 0.264995 + 0.264995i
\(969\) 0.235654 1.81216i 0.00757028 0.0582150i
\(970\) 33.9421 + 33.9421i 1.08981 + 1.08981i
\(971\) 18.5328i 0.594745i 0.954761 + 0.297373i \(0.0961104\pi\)
−0.954761 + 0.297373i \(0.903890\pi\)
\(972\) −0.596086 4.26612i −0.0191195 0.136836i
\(973\) 4.81014 + 4.81014i 0.154206 + 0.154206i
\(974\) −32.9285 −1.05510
\(975\) 0 0
\(976\) −9.10483 −0.291439
\(977\) 21.7724 + 21.7724i 0.696561 + 0.696561i 0.963667 0.267107i \(-0.0860676\pi\)
−0.267107 + 0.963667i \(0.586068\pi\)
\(978\) 8.08488 + 10.5019i 0.258526 + 0.335814i
\(979\) 2.92711i 0.0935508i
\(980\) 0.899023 + 0.899023i 0.0287182 + 0.0287182i
\(981\) 15.3222 + 26.3456i 0.489201 + 0.841151i
\(982\) −6.99249 6.99249i −0.223139 0.223139i
\(983\) 19.1428 19.1428i 0.610561 0.610561i −0.332531 0.943092i \(-0.607903\pi\)
0.943092 + 0.332531i \(0.107903\pi\)
\(984\) 15.6268 12.0303i 0.498164 0.383511i
\(985\) 20.7090i 0.659843i
\(986\) −0.688997 + 0.688997i −0.0219421 + 0.0219421i
\(987\) −24.3533 + 18.7483i −0.775173 + 0.596766i
\(988\) 0 0
\(989\) 38.4731i 1.22337i
\(990\) 27.2654 15.8572i 0.866552 0.503974i
\(991\) 6.24334 0.198326 0.0991631 0.995071i \(-0.468383\pi\)
0.0991631 + 0.995071i \(0.468383\pi\)
\(992\) −1.20792 −0.0383515
\(993\) −0.148213 + 1.13975i −0.00470341 + 0.0361689i
\(994\) 14.4998 14.4998i 0.459907 0.459907i
\(995\) −13.4760 + 13.4760i −0.427217 + 0.427217i
\(996\) 0.160617 1.23513i 0.00508933 0.0391367i
\(997\) −1.83522 −0.0581220 −0.0290610 0.999578i \(-0.509252\pi\)
−0.0290610 + 0.999578i \(0.509252\pi\)
\(998\) −16.1819 −0.512228
\(999\) 10.0299 24.5439i 0.317332 0.776534i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 507.2.f.g.239.18 yes 48
3.2 odd 2 inner 507.2.f.g.239.7 48
13.2 odd 12 507.2.k.k.488.17 96
13.3 even 3 507.2.k.k.188.7 96
13.4 even 6 507.2.k.k.80.8 96
13.5 odd 4 inner 507.2.f.g.437.18 yes 48
13.6 odd 12 507.2.k.k.89.8 96
13.7 odd 12 507.2.k.k.89.18 96
13.8 odd 4 inner 507.2.f.g.437.8 yes 48
13.9 even 3 507.2.k.k.80.18 96
13.10 even 6 507.2.k.k.188.17 96
13.11 odd 12 507.2.k.k.488.7 96
13.12 even 2 inner 507.2.f.g.239.8 yes 48
39.2 even 12 507.2.k.k.488.8 96
39.5 even 4 inner 507.2.f.g.437.7 yes 48
39.8 even 4 inner 507.2.f.g.437.17 yes 48
39.11 even 12 507.2.k.k.488.18 96
39.17 odd 6 507.2.k.k.80.17 96
39.20 even 12 507.2.k.k.89.7 96
39.23 odd 6 507.2.k.k.188.8 96
39.29 odd 6 507.2.k.k.188.18 96
39.32 even 12 507.2.k.k.89.17 96
39.35 odd 6 507.2.k.k.80.7 96
39.38 odd 2 inner 507.2.f.g.239.17 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
507.2.f.g.239.7 48 3.2 odd 2 inner
507.2.f.g.239.8 yes 48 13.12 even 2 inner
507.2.f.g.239.17 yes 48 39.38 odd 2 inner
507.2.f.g.239.18 yes 48 1.1 even 1 trivial
507.2.f.g.437.7 yes 48 39.5 even 4 inner
507.2.f.g.437.8 yes 48 13.8 odd 4 inner
507.2.f.g.437.17 yes 48 39.8 even 4 inner
507.2.f.g.437.18 yes 48 13.5 odd 4 inner
507.2.k.k.80.7 96 39.35 odd 6
507.2.k.k.80.8 96 13.4 even 6
507.2.k.k.80.17 96 39.17 odd 6
507.2.k.k.80.18 96 13.9 even 3
507.2.k.k.89.7 96 39.20 even 12
507.2.k.k.89.8 96 13.6 odd 12
507.2.k.k.89.17 96 39.32 even 12
507.2.k.k.89.18 96 13.7 odd 12
507.2.k.k.188.7 96 13.3 even 3
507.2.k.k.188.8 96 39.23 odd 6
507.2.k.k.188.17 96 13.10 even 6
507.2.k.k.188.18 96 39.29 odd 6
507.2.k.k.488.7 96 13.11 odd 12
507.2.k.k.488.8 96 39.2 even 12
507.2.k.k.488.17 96 13.2 odd 12
507.2.k.k.488.18 96 39.11 even 12