L(s) = 1 | + (0.249 − 0.249i)2-s + (0.892 + 1.48i)3-s + 1.87i·4-s + (2.45 − 2.45i)5-s + (0.592 + 0.147i)6-s + (−0.821 + 0.821i)7-s + (0.965 + 0.965i)8-s + (−1.40 + 2.64i)9-s − 1.22i·10-s + (1.32 + 1.32i)11-s + (−2.78 + 1.67i)12-s + 0.409i·14-s + (5.84 + 1.45i)15-s − 3.27·16-s + 5.90·17-s + (0.309 + 1.01i)18-s + ⋯ |
L(s) = 1 | + (0.176 − 0.176i)2-s + (0.515 + 0.857i)3-s + 0.937i·4-s + (1.09 − 1.09i)5-s + (0.241 + 0.0602i)6-s + (−0.310 + 0.310i)7-s + (0.341 + 0.341i)8-s + (−0.469 + 0.882i)9-s − 0.387i·10-s + (0.399 + 0.399i)11-s + (−0.803 + 0.483i)12-s + 0.109i·14-s + (1.50 + 0.375i)15-s − 0.817·16-s + 1.43·17-s + (0.0728 + 0.238i)18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.547−0.836i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.547−0.836i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.547−0.836i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(437,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.547−0.836i)
|
Particular Values
L(1) |
≈ |
1.87702+1.01444i |
L(21) |
≈ |
1.87702+1.01444i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.892−1.48i)T |
| 13 | 1 |
good | 2 | 1+(−0.249+0.249i)T−2iT2 |
| 5 | 1+(−2.45+2.45i)T−5iT2 |
| 7 | 1+(0.821−0.821i)T−7iT2 |
| 11 | 1+(−1.32−1.32i)T+11iT2 |
| 17 | 1−5.90T+17T2 |
| 19 | 1+(3.48+3.48i)T+19iT2 |
| 23 | 1+2.70T+23T2 |
| 29 | 1+2.68iT−29T2 |
| 31 | 1+(−3.22−3.22i)T+31iT2 |
| 37 | 1+(1.52−1.52i)T−37iT2 |
| 41 | 1+(−4.81+4.81i)T−41iT2 |
| 43 | 1−5.55iT−43T2 |
| 47 | 1+(2.23+2.23i)T+47iT2 |
| 53 | 1+2.46iT−53T2 |
| 59 | 1+(7.07+7.07i)T+59iT2 |
| 61 | 1+2.66T+61T2 |
| 67 | 1+(4.81+4.81i)T+67iT2 |
| 71 | 1+(−8.20+8.20i)T−71iT2 |
| 73 | 1+(−9.13+9.13i)T−73iT2 |
| 79 | 1−1.10T+79T2 |
| 83 | 1+(4.58−4.58i)T−83iT2 |
| 89 | 1+(−3.02−3.02i)T+89iT2 |
| 97 | 1+(8.67+8.67i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.97353543168008804390060134517, −9.860809678260128355569149174544, −9.327178524481102551279686353970, −8.575464508827265034998819502364, −7.77600177270344346999788077946, −6.25051739756647723145342221977, −5.11562896806650661813061309334, −4.36596080910722447455713867510, −3.16308401819854397215095698781, −2.00889621195560940082665474617,
1.34102885512164707083425181694, 2.49925535175065792484637888342, 3.73628470368891749018420001968, 5.64783103429771858914482779757, 6.19938814734605184090597124431, 6.85540869795510000449484212612, 7.87168856936455888659207268929, 9.158545783030341858597141094662, 10.00345785789025749761235469228, 10.48545479384778241856424209929