Properties

Label 2-507-39.8-c1-0-26
Degree $2$
Conductor $507$
Sign $0.547 - 0.836i$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.249 − 0.249i)2-s + (0.892 + 1.48i)3-s + 1.87i·4-s + (2.45 − 2.45i)5-s + (0.592 + 0.147i)6-s + (−0.821 + 0.821i)7-s + (0.965 + 0.965i)8-s + (−1.40 + 2.64i)9-s − 1.22i·10-s + (1.32 + 1.32i)11-s + (−2.78 + 1.67i)12-s + 0.409i·14-s + (5.84 + 1.45i)15-s − 3.27·16-s + 5.90·17-s + (0.309 + 1.01i)18-s + ⋯
L(s)  = 1  + (0.176 − 0.176i)2-s + (0.515 + 0.857i)3-s + 0.937i·4-s + (1.09 − 1.09i)5-s + (0.241 + 0.0602i)6-s + (−0.310 + 0.310i)7-s + (0.341 + 0.341i)8-s + (−0.469 + 0.882i)9-s − 0.387i·10-s + (0.399 + 0.399i)11-s + (−0.803 + 0.483i)12-s + 0.109i·14-s + (1.50 + 0.375i)15-s − 0.817·16-s + 1.43·17-s + (0.0728 + 0.238i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.547 - 0.836i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.547 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $0.547 - 0.836i$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{507} (437, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ 0.547 - 0.836i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.87702 + 1.01444i\)
\(L(\frac12)\) \(\approx\) \(1.87702 + 1.01444i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.892 - 1.48i)T \)
13 \( 1 \)
good2 \( 1 + (-0.249 + 0.249i)T - 2iT^{2} \)
5 \( 1 + (-2.45 + 2.45i)T - 5iT^{2} \)
7 \( 1 + (0.821 - 0.821i)T - 7iT^{2} \)
11 \( 1 + (-1.32 - 1.32i)T + 11iT^{2} \)
17 \( 1 - 5.90T + 17T^{2} \)
19 \( 1 + (3.48 + 3.48i)T + 19iT^{2} \)
23 \( 1 + 2.70T + 23T^{2} \)
29 \( 1 + 2.68iT - 29T^{2} \)
31 \( 1 + (-3.22 - 3.22i)T + 31iT^{2} \)
37 \( 1 + (1.52 - 1.52i)T - 37iT^{2} \)
41 \( 1 + (-4.81 + 4.81i)T - 41iT^{2} \)
43 \( 1 - 5.55iT - 43T^{2} \)
47 \( 1 + (2.23 + 2.23i)T + 47iT^{2} \)
53 \( 1 + 2.46iT - 53T^{2} \)
59 \( 1 + (7.07 + 7.07i)T + 59iT^{2} \)
61 \( 1 + 2.66T + 61T^{2} \)
67 \( 1 + (4.81 + 4.81i)T + 67iT^{2} \)
71 \( 1 + (-8.20 + 8.20i)T - 71iT^{2} \)
73 \( 1 + (-9.13 + 9.13i)T - 73iT^{2} \)
79 \( 1 - 1.10T + 79T^{2} \)
83 \( 1 + (4.58 - 4.58i)T - 83iT^{2} \)
89 \( 1 + (-3.02 - 3.02i)T + 89iT^{2} \)
97 \( 1 + (8.67 + 8.67i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.97353543168008804390060134517, −9.860809678260128355569149174544, −9.327178524481102551279686353970, −8.575464508827265034998819502364, −7.77600177270344346999788077946, −6.25051739756647723145342221977, −5.11562896806650661813061309334, −4.36596080910722447455713867510, −3.16308401819854397215095698781, −2.00889621195560940082665474617, 1.34102885512164707083425181694, 2.49925535175065792484637888342, 3.73628470368891749018420001968, 5.64783103429771858914482779757, 6.19938814734605184090597124431, 6.85540869795510000449484212612, 7.87168856936455888659207268929, 9.158545783030341858597141094662, 10.00345785789025749761235469228, 10.48545479384778241856424209929

Graph of the $Z$-function along the critical line