L(s) = 1 | + (0.249 − 0.249i)2-s + (0.892 + 1.48i)3-s + 1.87i·4-s + (2.45 − 2.45i)5-s + (0.592 + 0.147i)6-s + (−0.821 + 0.821i)7-s + (0.965 + 0.965i)8-s + (−1.40 + 2.64i)9-s − 1.22i·10-s + (1.32 + 1.32i)11-s + (−2.78 + 1.67i)12-s + 0.409i·14-s + (5.84 + 1.45i)15-s − 3.27·16-s + 5.90·17-s + (0.309 + 1.01i)18-s + ⋯ |
L(s) = 1 | + (0.176 − 0.176i)2-s + (0.515 + 0.857i)3-s + 0.937i·4-s + (1.09 − 1.09i)5-s + (0.241 + 0.0602i)6-s + (−0.310 + 0.310i)7-s + (0.341 + 0.341i)8-s + (−0.469 + 0.882i)9-s − 0.387i·10-s + (0.399 + 0.399i)11-s + (−0.803 + 0.483i)12-s + 0.109i·14-s + (1.50 + 0.375i)15-s − 0.817·16-s + 1.43·17-s + (0.0728 + 0.238i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.547 - 0.836i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.547 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.87702 + 1.01444i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.87702 + 1.01444i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.892 - 1.48i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.249 + 0.249i)T - 2iT^{2} \) |
| 5 | \( 1 + (-2.45 + 2.45i)T - 5iT^{2} \) |
| 7 | \( 1 + (0.821 - 0.821i)T - 7iT^{2} \) |
| 11 | \( 1 + (-1.32 - 1.32i)T + 11iT^{2} \) |
| 17 | \( 1 - 5.90T + 17T^{2} \) |
| 19 | \( 1 + (3.48 + 3.48i)T + 19iT^{2} \) |
| 23 | \( 1 + 2.70T + 23T^{2} \) |
| 29 | \( 1 + 2.68iT - 29T^{2} \) |
| 31 | \( 1 + (-3.22 - 3.22i)T + 31iT^{2} \) |
| 37 | \( 1 + (1.52 - 1.52i)T - 37iT^{2} \) |
| 41 | \( 1 + (-4.81 + 4.81i)T - 41iT^{2} \) |
| 43 | \( 1 - 5.55iT - 43T^{2} \) |
| 47 | \( 1 + (2.23 + 2.23i)T + 47iT^{2} \) |
| 53 | \( 1 + 2.46iT - 53T^{2} \) |
| 59 | \( 1 + (7.07 + 7.07i)T + 59iT^{2} \) |
| 61 | \( 1 + 2.66T + 61T^{2} \) |
| 67 | \( 1 + (4.81 + 4.81i)T + 67iT^{2} \) |
| 71 | \( 1 + (-8.20 + 8.20i)T - 71iT^{2} \) |
| 73 | \( 1 + (-9.13 + 9.13i)T - 73iT^{2} \) |
| 79 | \( 1 - 1.10T + 79T^{2} \) |
| 83 | \( 1 + (4.58 - 4.58i)T - 83iT^{2} \) |
| 89 | \( 1 + (-3.02 - 3.02i)T + 89iT^{2} \) |
| 97 | \( 1 + (8.67 + 8.67i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97353543168008804390060134517, −9.860809678260128355569149174544, −9.327178524481102551279686353970, −8.575464508827265034998819502364, −7.77600177270344346999788077946, −6.25051739756647723145342221977, −5.11562896806650661813061309334, −4.36596080910722447455713867510, −3.16308401819854397215095698781, −2.00889621195560940082665474617,
1.34102885512164707083425181694, 2.49925535175065792484637888342, 3.73628470368891749018420001968, 5.64783103429771858914482779757, 6.19938814734605184090597124431, 6.85540869795510000449484212612, 7.87168856936455888659207268929, 9.158545783030341858597141094662, 10.00345785789025749761235469228, 10.48545479384778241856424209929