Properties

Label 2-507-13.10-c1-0-20
Degree $2$
Conductor $507$
Sign $0.455 + 0.890i$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.04 + 1.17i)2-s + (0.5 + 0.866i)3-s + (1.77 − 3.07i)4-s − 3.69i·5-s + (−2.04 − 1.17i)6-s + (0.694 + 0.400i)7-s + 3.66i·8-s + (−0.499 + 0.866i)9-s + (4.35 + 7.53i)10-s + (−2.46 + 1.42i)11-s + 3.55·12-s − 1.89·14-s + (3.19 − 1.84i)15-s + (−0.763 − 1.32i)16-s + (1.46 − 2.54i)17-s − 2.35i·18-s + ⋯
L(s)  = 1  + (−1.44 + 0.833i)2-s + (0.288 + 0.499i)3-s + (0.888 − 1.53i)4-s − 1.65i·5-s + (−0.833 − 0.481i)6-s + (0.262 + 0.151i)7-s + 1.29i·8-s + (−0.166 + 0.288i)9-s + (1.37 + 2.38i)10-s + (−0.744 + 0.429i)11-s + 1.02·12-s − 0.505·14-s + (0.825 − 0.476i)15-s + (−0.190 − 0.330i)16-s + (0.356 − 0.617i)17-s − 0.555i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.455 + 0.890i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.455 + 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $0.455 + 0.890i$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{507} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ 0.455 + 0.890i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.435108 - 0.266019i\)
\(L(\frac12)\) \(\approx\) \(0.435108 - 0.266019i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.5 - 0.866i)T \)
13 \( 1 \)
good2 \( 1 + (2.04 - 1.17i)T + (1 - 1.73i)T^{2} \)
5 \( 1 + 3.69iT - 5T^{2} \)
7 \( 1 + (-0.694 - 0.400i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (2.46 - 1.42i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (-1.46 + 2.54i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.11 + 1.22i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (3.89 + 6.74i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (1.92 + 3.33i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + 2.34iT - 31T^{2} \)
37 \( 1 + (-6.44 + 3.72i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-0.736 + 0.425i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (0.807 - 1.39i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 - 2.44iT - 47T^{2} \)
53 \( 1 + 9.96T + 53T^{2} \)
59 \( 1 + (-4.66 - 2.69i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (-6.62 + 11.4i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (12.4 - 7.19i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-7.03 - 4.06i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + 11.8iT - 73T^{2} \)
79 \( 1 - 5.40T + 79T^{2} \)
83 \( 1 + 7.04iT - 83T^{2} \)
89 \( 1 + (-0.980 + 0.565i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (5.14 + 2.97i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24094942665387753025999034451, −9.572714573931590088901959036782, −8.915225298531381763939975227426, −8.154225159643601055499899246553, −7.69304719048801530127815822352, −6.23184189177478403338543008267, −5.19758395826911196279200305482, −4.34838774373899056277673870030, −2.10227553599713640332473178323, −0.45991190979684038426009964869, 1.67828296770557678097827034928, 2.75828251641600142317344336650, 3.56560902640320203036525017865, 5.83934673171575046384065996799, 6.94970474369351385533375332311, 7.77804505485784488894905978475, 8.242648406883936580186942292406, 9.523729804909872185004053238413, 10.24979141157167443584342030334, 10.92675639530558140026838741364

Graph of the $Z$-function along the critical line