L(s) = 1 | + (−2.04 + 1.17i)2-s + (0.5 + 0.866i)3-s + (1.77 − 3.07i)4-s − 3.69i·5-s + (−2.04 − 1.17i)6-s + (0.694 + 0.400i)7-s + 3.66i·8-s + (−0.499 + 0.866i)9-s + (4.35 + 7.53i)10-s + (−2.46 + 1.42i)11-s + 3.55·12-s − 1.89·14-s + (3.19 − 1.84i)15-s + (−0.763 − 1.32i)16-s + (1.46 − 2.54i)17-s − 2.35i·18-s + ⋯ |
L(s) = 1 | + (−1.44 + 0.833i)2-s + (0.288 + 0.499i)3-s + (0.888 − 1.53i)4-s − 1.65i·5-s + (−0.833 − 0.481i)6-s + (0.262 + 0.151i)7-s + 1.29i·8-s + (−0.166 + 0.288i)9-s + (1.37 + 2.38i)10-s + (−0.744 + 0.429i)11-s + 1.02·12-s − 0.505·14-s + (0.825 − 0.476i)15-s + (−0.190 − 0.330i)16-s + (0.356 − 0.617i)17-s − 0.555i·18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.455+0.890i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.455+0.890i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.455+0.890i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.455+0.890i)
|
Particular Values
L(1) |
≈ |
0.435108−0.266019i |
L(21) |
≈ |
0.435108−0.266019i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5−0.866i)T |
| 13 | 1 |
good | 2 | 1+(2.04−1.17i)T+(1−1.73i)T2 |
| 5 | 1+3.69iT−5T2 |
| 7 | 1+(−0.694−0.400i)T+(3.5+6.06i)T2 |
| 11 | 1+(2.46−1.42i)T+(5.5−9.52i)T2 |
| 17 | 1+(−1.46+2.54i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.11+1.22i)T+(9.5+16.4i)T2 |
| 23 | 1+(3.89+6.74i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.92+3.33i)T+(−14.5+25.1i)T2 |
| 31 | 1+2.34iT−31T2 |
| 37 | 1+(−6.44+3.72i)T+(18.5−32.0i)T2 |
| 41 | 1+(−0.736+0.425i)T+(20.5−35.5i)T2 |
| 43 | 1+(0.807−1.39i)T+(−21.5−37.2i)T2 |
| 47 | 1−2.44iT−47T2 |
| 53 | 1+9.96T+53T2 |
| 59 | 1+(−4.66−2.69i)T+(29.5+51.0i)T2 |
| 61 | 1+(−6.62+11.4i)T+(−30.5−52.8i)T2 |
| 67 | 1+(12.4−7.19i)T+(33.5−58.0i)T2 |
| 71 | 1+(−7.03−4.06i)T+(35.5+61.4i)T2 |
| 73 | 1+11.8iT−73T2 |
| 79 | 1−5.40T+79T2 |
| 83 | 1+7.04iT−83T2 |
| 89 | 1+(−0.980+0.565i)T+(44.5−77.0i)T2 |
| 97 | 1+(5.14+2.97i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.24094942665387753025999034451, −9.572714573931590088901959036782, −8.915225298531381763939975227426, −8.154225159643601055499899246553, −7.69304719048801530127815822352, −6.23184189177478403338543008267, −5.19758395826911196279200305482, −4.34838774373899056277673870030, −2.10227553599713640332473178323, −0.45991190979684038426009964869,
1.67828296770557678097827034928, 2.75828251641600142317344336650, 3.56560902640320203036525017865, 5.83934673171575046384065996799, 6.94970474369351385533375332311, 7.77804505485784488894905978475, 8.242648406883936580186942292406, 9.523729804909872185004053238413, 10.24979141157167443584342030334, 10.92675639530558140026838741364