L(s) = 1 | + (0.619 − 2.31i)2-s + (1.64 − 0.529i)3-s + (−3.23 − 1.86i)4-s + (1.69 + 1.69i)5-s + (−0.202 − 4.14i)6-s + (1.36 − 0.366i)7-s + (−2.93 + 2.93i)8-s + (2.43 − 1.74i)9-s + (4.96 − 2.86i)10-s + (−1.69 − 0.453i)11-s + (−6.31 − 1.36i)12-s − 3.38i·14-s + (3.68 + 1.89i)15-s + (1.23 + 2.13i)16-s + (−1.07 + 1.85i)17-s + (−2.52 − 6.72i)18-s + ⋯ |
L(s) = 1 | + (0.438 − 1.63i)2-s + (0.952 − 0.305i)3-s + (−1.61 − 0.933i)4-s + (0.757 + 0.757i)5-s + (−0.0826 − 1.69i)6-s + (0.516 − 0.138i)7-s + (−1.03 + 1.03i)8-s + (0.813 − 0.582i)9-s + (1.56 − 0.906i)10-s + (−0.510 − 0.136i)11-s + (−1.82 − 0.394i)12-s − 0.904i·14-s + (0.952 + 0.489i)15-s + (0.308 + 0.533i)16-s + (−0.260 + 0.450i)17-s + (−0.595 − 1.58i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.08436 - 2.32476i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.08436 - 2.32476i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.64 + 0.529i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.619 + 2.31i)T + (-1.73 - i)T^{2} \) |
| 5 | \( 1 + (-1.69 - 1.69i)T + 5iT^{2} \) |
| 7 | \( 1 + (-1.36 + 0.366i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (1.69 + 0.453i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (1.07 - 1.85i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.267 - i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.79 - 2.76i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.46 - 4.46i)T - 31iT^{2} \) |
| 37 | \( 1 + (-1.76 + 6.59i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (0.166 - 0.619i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-7.09 - 4.09i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.77 - 6.77i)T - 47iT^{2} \) |
| 53 | \( 1 - 4.62iT - 53T^{2} \) |
| 59 | \( 1 + (-1.23 - 4.62i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.46 - 2.26i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-4.62 + 1.23i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-6.09 - 6.09i)T + 73iT^{2} \) |
| 79 | \( 1 - 2T + 79T^{2} \) |
| 83 | \( 1 + (1.23 + 1.23i)T + 83iT^{2} \) |
| 89 | \( 1 + (9.70 + 2.60i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (3.36 + 12.5i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76711712578824688547979554424, −9.868013591030098162484528497900, −9.219086687085310586451207518819, −8.107392332221407185430835025230, −7.00583069313306420897137090786, −5.66836629336547823930856055010, −4.36308546912651289176207392987, −3.31833748058406673864514898220, −2.42736156810364704307919461499, −1.55517106438764427463189720281,
2.11921062660247027095508527948, 3.87090041505874895280465307412, 4.97277409753283044878408069065, 5.42068457535407245861796797120, 6.72883844000573286779618515790, 7.71392367140448139630699517104, 8.329629940188430756196260887069, 9.174409080768675891859802830699, 9.783031085160026904467692600584, 11.17541018111125974572322737523