L(s) = 1 | + (0.619 − 2.31i)2-s + (1.64 − 0.529i)3-s + (−3.23 − 1.86i)4-s + (1.69 + 1.69i)5-s + (−0.202 − 4.14i)6-s + (1.36 − 0.366i)7-s + (−2.93 + 2.93i)8-s + (2.43 − 1.74i)9-s + (4.96 − 2.86i)10-s + (−1.69 − 0.453i)11-s + (−6.31 − 1.36i)12-s − 3.38i·14-s + (3.68 + 1.89i)15-s + (1.23 + 2.13i)16-s + (−1.07 + 1.85i)17-s + (−2.52 − 6.72i)18-s + ⋯ |
L(s) = 1 | + (0.438 − 1.63i)2-s + (0.952 − 0.305i)3-s + (−1.61 − 0.933i)4-s + (0.757 + 0.757i)5-s + (−0.0826 − 1.69i)6-s + (0.516 − 0.138i)7-s + (−1.03 + 1.03i)8-s + (0.813 − 0.582i)9-s + (1.56 − 0.906i)10-s + (−0.510 − 0.136i)11-s + (−1.82 − 0.394i)12-s − 0.904i·14-s + (0.952 + 0.489i)15-s + (0.308 + 0.533i)16-s + (−0.260 + 0.450i)17-s + (−0.595 − 1.58i)18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.642+0.766i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.642+0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.642+0.766i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(80,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.642+0.766i)
|
Particular Values
L(1) |
≈ |
1.08436−2.32476i |
L(21) |
≈ |
1.08436−2.32476i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.64+0.529i)T |
| 13 | 1 |
good | 2 | 1+(−0.619+2.31i)T+(−1.73−i)T2 |
| 5 | 1+(−1.69−1.69i)T+5iT2 |
| 7 | 1+(−1.36+0.366i)T+(6.06−3.5i)T2 |
| 11 | 1+(1.69+0.453i)T+(9.52+5.5i)T2 |
| 17 | 1+(1.07−1.85i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.267−i)T+(−16.4+9.5i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1+(4.79−2.76i)T+(14.5−25.1i)T2 |
| 31 | 1+(4.46−4.46i)T−31iT2 |
| 37 | 1+(−1.76+6.59i)T+(−32.0−18.5i)T2 |
| 41 | 1+(0.166−0.619i)T+(−35.5−20.5i)T2 |
| 43 | 1+(−7.09−4.09i)T+(21.5+37.2i)T2 |
| 47 | 1+(6.77−6.77i)T−47iT2 |
| 53 | 1−4.62iT−53T2 |
| 59 | 1+(−1.23−4.62i)T+(−51.0+29.5i)T2 |
| 61 | 1+(−3.5+6.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−8.46−2.26i)T+(58.0+33.5i)T2 |
| 71 | 1+(−4.62+1.23i)T+(61.4−35.5i)T2 |
| 73 | 1+(−6.09−6.09i)T+73iT2 |
| 79 | 1−2T+79T2 |
| 83 | 1+(1.23+1.23i)T+83iT2 |
| 89 | 1+(9.70+2.60i)T+(77.0+44.5i)T2 |
| 97 | 1+(3.36+12.5i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76711712578824688547979554424, −9.868013591030098162484528497900, −9.219086687085310586451207518819, −8.107392332221407185430835025230, −7.00583069313306420897137090786, −5.66836629336547823930856055010, −4.36308546912651289176207392987, −3.31833748058406673864514898220, −2.42736156810364704307919461499, −1.55517106438764427463189720281,
2.11921062660247027095508527948, 3.87090041505874895280465307412, 4.97277409753283044878408069065, 5.42068457535407245861796797120, 6.72883844000573286779618515790, 7.71392367140448139630699517104, 8.329629940188430756196260887069, 9.174409080768675891859802830699, 9.783031085160026904467692600584, 11.17541018111125974572322737523