Properties

Label 507.80
Modulus 507507
Conductor 3939
Order 1212
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,1]))
 
pari: [g,chi] = znchar(Mod(80,507))
 

Basic properties

Modulus: 507507
Conductor: 3939
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ39(2,)\chi_{39}(2,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 507.k

χ507(80,)\chi_{507}(80,\cdot) χ507(89,)\chi_{507}(89,\cdot) χ507(188,)\chi_{507}(188,\cdot) χ507(488,)\chi_{507}(488,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: Q(ζ39)+\Q(\zeta_{39})^+

Values on generators

(170,340)(170,340)(1,e(112))(-1,e\left(\frac{1}{12}\right))

First values

aa 1-111224455778810101111141416161717
χ507(80,a) \chi_{ 507 }(80, a) 1111e(712)e\left(\frac{7}{12}\right)e(16)e\left(\frac{1}{6}\right)iie(1112)e\left(\frac{11}{12}\right)i-ie(56)e\left(\frac{5}{6}\right)e(112)e\left(\frac{1}{12}\right)1-1e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)
sage: chi.jacobi_sum(n)
 
χ507(80,a)   \chi_{ 507 }(80,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ507(80,))   \tau_{ a }( \chi_{ 507 }(80,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ507(80,),χ507(n,))   J(\chi_{ 507 }(80,·),\chi_{ 507 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ507(80,))  K(a,b,\chi_{ 507 }(80,·)) \; at   a,b=\; a,b = e.g. 1,2