Properties

Label 39.2
Modulus 3939
Conductor 3939
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,1]))
 
pari: [g,chi] = znchar(Mod(2,39))
 

Basic properties

Modulus: 3939
Conductor: 3939
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 39.k

χ39(2,)\chi_{39}(2,\cdot) χ39(11,)\chi_{39}(11,\cdot) χ39(20,)\chi_{39}(20,\cdot) χ39(32,)\chi_{39}(32,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: Q(ζ39)+\Q(\zeta_{39})^+

Values on generators

(14,28)(14,28)(1,e(112))(-1,e\left(\frac{1}{12}\right))

Values

aa 1-111224455778810101111141416161717
χ39(2,a) \chi_{ 39 }(2, a) 1111e(712)e\left(\frac{7}{12}\right)e(16)e\left(\frac{1}{6}\right)iie(1112)e\left(\frac{11}{12}\right)i-ie(56)e\left(\frac{5}{6}\right)e(112)e\left(\frac{1}{12}\right)1-1e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)
sage: chi.jacobi_sum(n)
 
χ39(2,a)   \chi_{ 39 }(2,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ39(2,))   \tau_{ a }( \chi_{ 39 }(2,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ39(2,),χ39(n,))   J(\chi_{ 39 }(2,·),\chi_{ 39 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ39(2,))  K(a,b,\chi_{ 39 }(2,·)) \; at   a,b=\; a,b = e.g. 1,2