Properties

Label 39.k
Modulus 3939
Conductor 3939
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(2,39))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 3939
Conductor: 3939
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: Q(ζ39)+\Q(\zeta_{39})^+

Characters in Galois orbit

Character 1-1 11 22 44 55 77 88 1010 1111 1414 1616 1717
χ39(2,)\chi_{39}(2,\cdot) 11 11 e(712)e\left(\frac{7}{12}\right) e(16)e\left(\frac{1}{6}\right) ii e(1112)e\left(\frac{11}{12}\right) i-i e(56)e\left(\frac{5}{6}\right) e(112)e\left(\frac{1}{12}\right) 1-1 e(13)e\left(\frac{1}{3}\right) e(23)e\left(\frac{2}{3}\right)
χ39(11,)\chi_{39}(11,\cdot) 11 11 e(112)e\left(\frac{1}{12}\right) e(16)e\left(\frac{1}{6}\right) i-i e(512)e\left(\frac{5}{12}\right) ii e(56)e\left(\frac{5}{6}\right) e(712)e\left(\frac{7}{12}\right) 1-1 e(13)e\left(\frac{1}{3}\right) e(23)e\left(\frac{2}{3}\right)
χ39(20,)\chi_{39}(20,\cdot) 11 11 e(512)e\left(\frac{5}{12}\right) e(56)e\left(\frac{5}{6}\right) i-i e(112)e\left(\frac{1}{12}\right) ii e(16)e\left(\frac{1}{6}\right) e(1112)e\left(\frac{11}{12}\right) 1-1 e(23)e\left(\frac{2}{3}\right) e(13)e\left(\frac{1}{3}\right)
χ39(32,)\chi_{39}(32,\cdot) 11 11 e(1112)e\left(\frac{11}{12}\right) e(56)e\left(\frac{5}{6}\right) ii e(712)e\left(\frac{7}{12}\right) i-i e(16)e\left(\frac{1}{6}\right) e(512)e\left(\frac{5}{12}\right) 1-1 e(23)e\left(\frac{2}{3}\right) e(13)e\left(\frac{1}{3}\right)