L(s) = 1 | + (−0.258 + 0.965i)2-s + (1.72 + 0.158i)3-s + (0.866 + 0.5i)4-s + (1.41 + 1.41i)5-s + (−0.599 + 1.62i)6-s + (1.36 − 0.366i)7-s + (−2.12 + 2.12i)8-s + (2.94 + 0.548i)9-s + (−1.73 + 1.00i)10-s + (−3.86 − 1.03i)11-s + (1.41 + i)12-s + 1.41i·14-s + (2.21 + 2.66i)15-s + (−0.500 − 0.866i)16-s + (−1.29 + 2.70i)18-s + (−0.366 − 1.36i)19-s + ⋯ |
L(s) = 1 | + (−0.183 + 0.683i)2-s + (0.995 + 0.0917i)3-s + (0.433 + 0.250i)4-s + (0.632 + 0.632i)5-s + (−0.244 + 0.663i)6-s + (0.516 − 0.138i)7-s + (−0.749 + 0.749i)8-s + (0.983 + 0.182i)9-s + (−0.547 + 0.316i)10-s + (−1.16 − 0.312i)11-s + (0.408 + 0.288i)12-s + 0.377i·14-s + (0.571 + 0.687i)15-s + (−0.125 − 0.216i)16-s + (−0.304 + 0.638i)18-s + (−0.0839 − 0.313i)19-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.0532−0.998i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.0532−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.0532−0.998i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(80,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.0532−0.998i)
|
Particular Values
L(1) |
≈ |
1.60989+1.52634i |
L(21) |
≈ |
1.60989+1.52634i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.72−0.158i)T |
| 13 | 1 |
good | 2 | 1+(0.258−0.965i)T+(−1.73−i)T2 |
| 5 | 1+(−1.41−1.41i)T+5iT2 |
| 7 | 1+(−1.36+0.366i)T+(6.06−3.5i)T2 |
| 11 | 1+(3.86+1.03i)T+(9.52+5.5i)T2 |
| 17 | 1+(−8.5−14.7i)T2 |
| 19 | 1+(0.366+1.36i)T+(−16.4+9.5i)T2 |
| 23 | 1+(4.24+7.34i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.44−1.41i)T+(14.5−25.1i)T2 |
| 31 | 1+(−5+5i)T−31iT2 |
| 37 | 1+(0.366−1.36i)T+(−32.0−18.5i)T2 |
| 41 | 1+(−0.517+1.93i)T+(−35.5−20.5i)T2 |
| 43 | 1+(−5.19−3i)T+(21.5+37.2i)T2 |
| 47 | 1+(−2.82+2.82i)T−47iT2 |
| 53 | 1−5.65iT−53T2 |
| 59 | 1+(−1.03−3.86i)T+(−51.0+29.5i)T2 |
| 61 | 1+(4−6.92i)T+(−30.5−52.8i)T2 |
| 67 | 1+(6.83+1.83i)T+(58.0+33.5i)T2 |
| 71 | 1+(−3.86+1.03i)T+(61.4−35.5i)T2 |
| 73 | 1+(1+i)T+73iT2 |
| 79 | 1+10T+79T2 |
| 83 | 1+(−5.65−5.65i)T+83iT2 |
| 89 | 1+(−13.5−3.62i)T+(77.0+44.5i)T2 |
| 97 | 1+(2.56+9.56i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76772938578693892334634498242, −10.31329863521568441326926830896, −9.113566964111884196941314064795, −8.173643020860633354562811727859, −7.70936393567065099160356605023, −6.69922083817348296200127550733, −5.80886917038310738518441044627, −4.43283842837127838060340654687, −2.85600053977117600025027052571, −2.26801293244161470002201143322,
1.50976118927658857287571405903, 2.28911434558136776584825524646, 3.48869608189476946922834410382, 4.95313683619028262218183016276, 5.96578220092807610754031865352, 7.32431470722043487060075339609, 8.102522427456711743024612237124, 9.146290087465620764100946723981, 9.826692906114303899631515904808, 10.47430852111647766675393901135