L(s) = 1 | + 1.93i·2-s + (−5.02 + 7.46i)3-s + 12.2·4-s + 4.62·5-s + (−14.4 − 9.71i)6-s + 58.0i·7-s + 54.6i·8-s + (−30.4 − 75.0i)9-s + 8.93i·10-s − 163.·11-s + (−61.7 + 91.5i)12-s − 81.9·13-s − 112.·14-s + (−23.2 + 34.5i)15-s + 90.8·16-s + (−44.7 + 285. i)17-s + ⋯ |
L(s) = 1 | + 0.482i·2-s + (−0.558 + 0.829i)3-s + 0.766·4-s + 0.185·5-s + (−0.400 − 0.269i)6-s + 1.18i·7-s + 0.853i·8-s + (−0.375 − 0.926i)9-s + 0.0893i·10-s − 1.35·11-s + (−0.428 + 0.635i)12-s − 0.484·13-s − 0.571·14-s + (−0.103 + 0.153i)15-s + 0.354·16-s + (−0.154 + 0.987i)17-s + ⋯ |
Λ(s)=(=(51s/2ΓC(s)L(s)(−0.732−0.680i)Λ(5−s)
Λ(s)=(=(51s/2ΓC(s+2)L(s)(−0.732−0.680i)Λ(1−s)
Degree: |
2 |
Conductor: |
51
= 3⋅17
|
Sign: |
−0.732−0.680i
|
Analytic conductor: |
5.27186 |
Root analytic conductor: |
2.29605 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ51(50,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 51, ( :2), −0.732−0.680i)
|
Particular Values
L(25) |
≈ |
0.499808+1.27247i |
L(21) |
≈ |
0.499808+1.27247i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(5.02−7.46i)T |
| 17 | 1+(44.7−285.i)T |
good | 2 | 1−1.93iT−16T2 |
| 5 | 1−4.62T+625T2 |
| 7 | 1−58.0iT−2.40e3T2 |
| 11 | 1+163.T+1.46e4T2 |
| 13 | 1+81.9T+2.85e4T2 |
| 19 | 1−524.T+1.30e5T2 |
| 23 | 1−767.T+2.79e5T2 |
| 29 | 1−462.T+7.07e5T2 |
| 31 | 1+637.iT−9.23e5T2 |
| 37 | 1+1.17e3iT−1.87e6T2 |
| 41 | 1−1.29e3T+2.82e6T2 |
| 43 | 1−1.44e3T+3.41e6T2 |
| 47 | 1−3.32e3iT−4.87e6T2 |
| 53 | 1−257.iT−7.89e6T2 |
| 59 | 1+4.90e3iT−1.21e7T2 |
| 61 | 1−3.60e3iT−1.38e7T2 |
| 67 | 1−1.63e3T+2.01e7T2 |
| 71 | 1+1.21e3T+2.54e7T2 |
| 73 | 1+7.48e3iT−2.83e7T2 |
| 79 | 1−2.59e3iT−3.89e7T2 |
| 83 | 1+4.31e3iT−4.74e7T2 |
| 89 | 1+1.09e3iT−6.27e7T2 |
| 97 | 1+4.25e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.56304062251758991485231141845, −14.55891321056566950244586522955, −12.67048020863077947191220197914, −11.57714319514804609214193493105, −10.57845642988958164908705176355, −9.257384746263001408204375015697, −7.72335579437950986092518873834, −5.99452762165832188935295619099, −5.21576139148960239604632081159, −2.72434524772730665521247204486,
0.884663034484547804391313462900, 2.75352541247958758674217804420, 5.24084859977765054488359051553, 6.99016991779222361878219784313, 7.60975296355792106812219439491, 10.01117252606116301775354552055, 10.92989027636961145212684805454, 11.89397413447151594805949320885, 13.08935598590847846731398439920, 13.87458110328952453471115056992