Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [51,5,Mod(50,51)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(51, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("51.50");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 51.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50.1 |
|
− | 7.45221i | −1.27725 | − | 8.90891i | −39.5354 | 18.0441 | −66.3910 | + | 9.51836i | − | 41.9203i | 175.391i | −77.7372 | + | 22.7579i | − | 134.468i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.2 | − | 7.45221i | 1.27725 | + | 8.90891i | −39.5354 | −18.0441 | 66.3910 | − | 9.51836i | 41.9203i | 175.391i | −77.7372 | + | 22.7579i | 134.468i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.3 | − | 5.60864i | −8.75115 | − | 2.10174i | −15.4569 | −14.8672 | −11.7879 | + | 49.0821i | 42.9260i | − | 3.04611i | 72.1654 | + | 36.7853i | 83.3848i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.4 | − | 5.60864i | 8.75115 | + | 2.10174i | −15.4569 | 14.8672 | 11.7879 | − | 49.0821i | − | 42.9260i | − | 3.04611i | 72.1654 | + | 36.7853i | − | 83.3848i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.5 | − | 4.92716i | −6.04116 | + | 6.67116i | −8.27693 | 40.8754 | 32.8699 | + | 29.7658i | − | 9.63955i | − | 38.0528i | −8.00871 | − | 80.6031i | − | 201.400i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.6 | − | 4.92716i | 6.04116 | − | 6.67116i | −8.27693 | −40.8754 | −32.8699 | − | 29.7658i | 9.63955i | − | 38.0528i | −8.00871 | − | 80.6031i | 201.400i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.7 | − | 2.64556i | −3.53470 | + | 8.27683i | 9.00101 | −41.0631 | 21.8968 | + | 9.35126i | − | 79.2595i | − | 66.1417i | −56.0118 | − | 58.5122i | 108.635i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.8 | − | 2.64556i | 3.53470 | − | 8.27683i | 9.00101 | 41.0631 | −21.8968 | − | 9.35126i | 79.2595i | − | 66.1417i | −56.0118 | − | 58.5122i | − | 108.635i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.9 | − | 1.93178i | −5.02953 | − | 7.46350i | 12.2682 | 4.62649 | −14.4178 | + | 9.71595i | − | 58.0263i | − | 54.6080i | −30.4076 | + | 75.0758i | − | 8.93735i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.10 | − | 1.93178i | 5.02953 | + | 7.46350i | 12.2682 | −4.62649 | 14.4178 | − | 9.71595i | 58.0263i | − | 54.6080i | −30.4076 | + | 75.0758i | 8.93735i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.11 | 1.93178i | −5.02953 | + | 7.46350i | 12.2682 | 4.62649 | −14.4178 | − | 9.71595i | 58.0263i | 54.6080i | −30.4076 | − | 75.0758i | 8.93735i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.12 | 1.93178i | 5.02953 | − | 7.46350i | 12.2682 | −4.62649 | 14.4178 | + | 9.71595i | − | 58.0263i | 54.6080i | −30.4076 | − | 75.0758i | − | 8.93735i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.13 | 2.64556i | −3.53470 | − | 8.27683i | 9.00101 | −41.0631 | 21.8968 | − | 9.35126i | 79.2595i | 66.1417i | −56.0118 | + | 58.5122i | − | 108.635i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.14 | 2.64556i | 3.53470 | + | 8.27683i | 9.00101 | 41.0631 | −21.8968 | + | 9.35126i | − | 79.2595i | 66.1417i | −56.0118 | + | 58.5122i | 108.635i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.15 | 4.92716i | −6.04116 | − | 6.67116i | −8.27693 | 40.8754 | 32.8699 | − | 29.7658i | 9.63955i | 38.0528i | −8.00871 | + | 80.6031i | 201.400i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.16 | 4.92716i | 6.04116 | + | 6.67116i | −8.27693 | −40.8754 | −32.8699 | + | 29.7658i | − | 9.63955i | 38.0528i | −8.00871 | + | 80.6031i | − | 201.400i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.17 | 5.60864i | −8.75115 | + | 2.10174i | −15.4569 | −14.8672 | −11.7879 | − | 49.0821i | − | 42.9260i | 3.04611i | 72.1654 | − | 36.7853i | − | 83.3848i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.18 | 5.60864i | 8.75115 | − | 2.10174i | −15.4569 | 14.8672 | 11.7879 | + | 49.0821i | 42.9260i | 3.04611i | 72.1654 | − | 36.7853i | 83.3848i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.19 | 7.45221i | −1.27725 | + | 8.90891i | −39.5354 | 18.0441 | −66.3910 | − | 9.51836i | 41.9203i | − | 175.391i | −77.7372 | − | 22.7579i | 134.468i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50.20 | 7.45221i | 1.27725 | − | 8.90891i | −39.5354 | −18.0441 | 66.3910 | + | 9.51836i | − | 41.9203i | − | 175.391i | −77.7372 | − | 22.7579i | − | 134.468i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
17.b | even | 2 | 1 | inner |
51.c | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 51.5.c.c | ✓ | 20 |
3.b | odd | 2 | 1 | inner | 51.5.c.c | ✓ | 20 |
17.b | even | 2 | 1 | inner | 51.5.c.c | ✓ | 20 |
51.c | odd | 2 | 1 | inner | 51.5.c.c | ✓ | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
51.5.c.c | ✓ | 20 | 1.a | even | 1 | 1 | trivial |
51.5.c.c | ✓ | 20 | 3.b | odd | 2 | 1 | inner |
51.5.c.c | ✓ | 20 | 17.b | even | 2 | 1 | inner |
51.5.c.c | ✓ | 20 | 51.c | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|