L(s) = 1 | + 2.64i·2-s + (−3.53 − 8.27i)3-s + 9.00·4-s − 41.0·5-s + (21.8 − 9.35i)6-s + 79.2i·7-s + 66.1i·8-s + (−56.0 + 58.5i)9-s − 108. i·10-s − 10.0·11-s + (−31.8 − 74.4i)12-s − 126.·13-s − 209.·14-s + (145. + 339. i)15-s − 30.9·16-s + (230. − 173. i)17-s + ⋯ |
L(s) = 1 | + 0.661i·2-s + (−0.392 − 0.919i)3-s + 0.562·4-s − 1.64·5-s + (0.608 − 0.259i)6-s + 1.61i·7-s + 1.03i·8-s + (−0.691 + 0.722i)9-s − 1.08i·10-s − 0.0832·11-s + (−0.220 − 0.517i)12-s − 0.749·13-s − 1.06·14-s + (0.645 + 1.51i)15-s − 0.120·16-s + (0.798 − 0.601i)17-s + ⋯ |
Λ(s)=(=(51s/2ΓC(s)L(s)(−0.866−0.498i)Λ(5−s)
Λ(s)=(=(51s/2ΓC(s+2)L(s)(−0.866−0.498i)Λ(1−s)
Degree: |
2 |
Conductor: |
51
= 3⋅17
|
Sign: |
−0.866−0.498i
|
Analytic conductor: |
5.27186 |
Root analytic conductor: |
2.29605 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ51(50,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 51, ( :2), −0.866−0.498i)
|
Particular Values
L(25) |
≈ |
0.156724+0.586760i |
L(21) |
≈ |
0.156724+0.586760i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(3.53+8.27i)T |
| 17 | 1+(−230.+173.i)T |
good | 2 | 1−2.64iT−16T2 |
| 5 | 1+41.0T+625T2 |
| 7 | 1−79.2iT−2.40e3T2 |
| 11 | 1+10.0T+1.46e4T2 |
| 13 | 1+126.T+2.85e4T2 |
| 19 | 1+553.T+1.30e5T2 |
| 23 | 1+152.T+2.79e5T2 |
| 29 | 1−301.T+7.07e5T2 |
| 31 | 1−342.iT−9.23e5T2 |
| 37 | 1+133.iT−1.87e6T2 |
| 41 | 1+2.02e3T+2.82e6T2 |
| 43 | 1−1.49e3T+3.41e6T2 |
| 47 | 1−451.iT−4.87e6T2 |
| 53 | 1−2.82e3iT−7.89e6T2 |
| 59 | 1−1.24e3iT−1.21e7T2 |
| 61 | 1+2.18e3iT−1.38e7T2 |
| 67 | 1−5.08e3T+2.01e7T2 |
| 71 | 1−4.12e3T+2.54e7T2 |
| 73 | 1−1.69e3iT−2.83e7T2 |
| 79 | 1−1.10e4iT−3.89e7T2 |
| 83 | 1+1.19e4iT−4.74e7T2 |
| 89 | 1−1.36e4iT−6.27e7T2 |
| 97 | 1−5.21e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.33641545951758291485840457892, −14.52220380380375932430906754779, −12.33604240143802544025256810519, −12.08554185308942553768839968182, −11.05021390470931292814478483066, −8.520208328388900894671052557778, −7.75182080938957812808759525962, −6.59696191991323926186529951135, −5.23631265479648478315000201032, −2.55020241492113276374934490023,
0.36356770968680621380221856203, 3.55301197500954418434980589820, 4.33887995703699860971527737146, 6.81409953814302994250422727874, 8.022718814214034373068750363681, 10.12102344099443243482423828048, 10.76225232810275751013628870324, 11.67468693415480711398732394763, 12.64704439131479912355601625599, 14.61042499382134324011856874651