L(s) = 1 | − 2.64i·2-s + (3.53 − 8.27i)3-s + 9.00·4-s + 41.0·5-s + (−21.8 − 9.35i)6-s + 79.2i·7-s − 66.1i·8-s + (−56.0 − 58.5i)9-s − 108. i·10-s + 10.0·11-s + (31.8 − 74.4i)12-s − 126.·13-s + 209.·14-s + (145. − 339. i)15-s − 30.9·16-s + (−230. + 173. i)17-s + ⋯ |
L(s) = 1 | − 0.661i·2-s + (0.392 − 0.919i)3-s + 0.562·4-s + 1.64·5-s + (−0.608 − 0.259i)6-s + 1.61i·7-s − 1.03i·8-s + (−0.691 − 0.722i)9-s − 1.08i·10-s + 0.0832·11-s + (0.220 − 0.517i)12-s − 0.749·13-s + 1.06·14-s + (0.645 − 1.51i)15-s − 0.120·16-s + (−0.798 + 0.601i)17-s + ⋯ |
Λ(s)=(=(51s/2ΓC(s)L(s)(0.239+0.970i)Λ(5−s)
Λ(s)=(=(51s/2ΓC(s+2)L(s)(0.239+0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
51
= 3⋅17
|
Sign: |
0.239+0.970i
|
Analytic conductor: |
5.27186 |
Root analytic conductor: |
2.29605 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ51(50,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 51, ( :2), 0.239+0.970i)
|
Particular Values
L(25) |
≈ |
1.83724−1.43955i |
L(21) |
≈ |
1.83724−1.43955i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−3.53+8.27i)T |
| 17 | 1+(230.−173.i)T |
good | 2 | 1+2.64iT−16T2 |
| 5 | 1−41.0T+625T2 |
| 7 | 1−79.2iT−2.40e3T2 |
| 11 | 1−10.0T+1.46e4T2 |
| 13 | 1+126.T+2.85e4T2 |
| 19 | 1+553.T+1.30e5T2 |
| 23 | 1−152.T+2.79e5T2 |
| 29 | 1+301.T+7.07e5T2 |
| 31 | 1−342.iT−9.23e5T2 |
| 37 | 1+133.iT−1.87e6T2 |
| 41 | 1−2.02e3T+2.82e6T2 |
| 43 | 1−1.49e3T+3.41e6T2 |
| 47 | 1+451.iT−4.87e6T2 |
| 53 | 1+2.82e3iT−7.89e6T2 |
| 59 | 1+1.24e3iT−1.21e7T2 |
| 61 | 1+2.18e3iT−1.38e7T2 |
| 67 | 1−5.08e3T+2.01e7T2 |
| 71 | 1+4.12e3T+2.54e7T2 |
| 73 | 1−1.69e3iT−2.83e7T2 |
| 79 | 1−1.10e4iT−3.89e7T2 |
| 83 | 1−1.19e4iT−4.74e7T2 |
| 89 | 1+1.36e4iT−6.27e7T2 |
| 97 | 1−5.21e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.40831519672928346535141532210, −12.86350690131023732282585178148, −12.57163689960264672400935761819, −11.13211610687893879744554239814, −9.661474356904405924635177727605, −8.685289823547330837189231405165, −6.66089636375318072086582613905, −5.81313337775177441295664839260, −2.48824260897433841201703117149, −1.96970331255723460844894091607,
2.34912742108660024606512917824, 4.61651158061171551897404842301, 6.13324319266543052193340941743, 7.39833333542932859676937581632, 9.093512674854452392456070355574, 10.27612323151716740038598608350, 10.94598372704315470414556061132, 13.23567750958922079497556036025, 14.13768610914980252748609122143, 14.84737043858097954447627036469