L(s) = 1 | − 2.64i·2-s + (3.53 − 8.27i)3-s + 9.00·4-s + 41.0·5-s + (−21.8 − 9.35i)6-s + 79.2i·7-s − 66.1i·8-s + (−56.0 − 58.5i)9-s − 108. i·10-s + 10.0·11-s + (31.8 − 74.4i)12-s − 126.·13-s + 209.·14-s + (145. − 339. i)15-s − 30.9·16-s + (−230. + 173. i)17-s + ⋯ |
L(s) = 1 | − 0.661i·2-s + (0.392 − 0.919i)3-s + 0.562·4-s + 1.64·5-s + (−0.608 − 0.259i)6-s + 1.61i·7-s − 1.03i·8-s + (−0.691 − 0.722i)9-s − 1.08i·10-s + 0.0832·11-s + (0.220 − 0.517i)12-s − 0.749·13-s + 1.06·14-s + (0.645 − 1.51i)15-s − 0.120·16-s + (−0.798 + 0.601i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.239 + 0.970i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.239 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.83724 - 1.43955i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.83724 - 1.43955i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-3.53 + 8.27i)T \) |
| 17 | \( 1 + (230. - 173. i)T \) |
good | 2 | \( 1 + 2.64iT - 16T^{2} \) |
| 5 | \( 1 - 41.0T + 625T^{2} \) |
| 7 | \( 1 - 79.2iT - 2.40e3T^{2} \) |
| 11 | \( 1 - 10.0T + 1.46e4T^{2} \) |
| 13 | \( 1 + 126.T + 2.85e4T^{2} \) |
| 19 | \( 1 + 553.T + 1.30e5T^{2} \) |
| 23 | \( 1 - 152.T + 2.79e5T^{2} \) |
| 29 | \( 1 + 301.T + 7.07e5T^{2} \) |
| 31 | \( 1 - 342. iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 133. iT - 1.87e6T^{2} \) |
| 41 | \( 1 - 2.02e3T + 2.82e6T^{2} \) |
| 43 | \( 1 - 1.49e3T + 3.41e6T^{2} \) |
| 47 | \( 1 + 451. iT - 4.87e6T^{2} \) |
| 53 | \( 1 + 2.82e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 + 1.24e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 2.18e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 5.08e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + 4.12e3T + 2.54e7T^{2} \) |
| 73 | \( 1 - 1.69e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 1.10e4iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 1.19e4iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 1.36e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 - 5.21e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.40831519672928346535141532210, −12.86350690131023732282585178148, −12.57163689960264672400935761819, −11.13211610687893879744554239814, −9.661474356904405924635177727605, −8.685289823547330837189231405165, −6.66089636375318072086582613905, −5.81313337775177441295664839260, −2.48824260897433841201703117149, −1.96970331255723460844894091607,
2.34912742108660024606512917824, 4.61651158061171551897404842301, 6.13324319266543052193340941743, 7.39833333542932859676937581632, 9.093512674854452392456070355574, 10.27612323151716740038598608350, 10.94598372704315470414556061132, 13.23567750958922079497556036025, 14.13768610914980252748609122143, 14.84737043858097954447627036469