L(s) = 1 | − 7.45i·2-s + (1.27 + 8.90i)3-s − 39.5·4-s − 18.0·5-s + (66.3 − 9.51i)6-s + 41.9i·7-s + 175. i·8-s + (−77.7 + 22.7i)9-s + 134. i·10-s − 94.6·11-s + (−50.4 − 352. i)12-s + 128.·13-s + 312.·14-s + (−23.0 − 160. i)15-s + 674.·16-s + (−262. − 120. i)17-s + ⋯ |
L(s) = 1 | − 1.86i·2-s + (0.141 + 0.989i)3-s − 2.47·4-s − 0.721·5-s + (1.84 − 0.264i)6-s + 0.855i·7-s + 2.74i·8-s + (−0.959 + 0.280i)9-s + 1.34i·10-s − 0.782·11-s + (−0.350 − 2.44i)12-s + 0.761·13-s + 1.59·14-s + (−0.102 − 0.714i)15-s + 2.63·16-s + (−0.908 − 0.417i)17-s + ⋯ |
Λ(s)=(=(51s/2ΓC(s)L(s)(0.284−0.958i)Λ(5−s)
Λ(s)=(=(51s/2ΓC(s+2)L(s)(0.284−0.958i)Λ(1−s)
Degree: |
2 |
Conductor: |
51
= 3⋅17
|
Sign: |
0.284−0.958i
|
Analytic conductor: |
5.27186 |
Root analytic conductor: |
2.29605 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ51(50,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 51, ( :2), 0.284−0.958i)
|
Particular Values
L(25) |
≈ |
0.278552+0.207862i |
L(21) |
≈ |
0.278552+0.207862i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.27−8.90i)T |
| 17 | 1+(262.+120.i)T |
good | 2 | 1+7.45iT−16T2 |
| 5 | 1+18.0T+625T2 |
| 7 | 1−41.9iT−2.40e3T2 |
| 11 | 1+94.6T+1.46e4T2 |
| 13 | 1−128.T+2.85e4T2 |
| 19 | 1+489.T+1.30e5T2 |
| 23 | 1−827.T+2.79e5T2 |
| 29 | 1+955.T+7.07e5T2 |
| 31 | 1−1.63e3iT−9.23e5T2 |
| 37 | 1+657.iT−1.87e6T2 |
| 41 | 1+846.T+2.82e6T2 |
| 43 | 1−2.59e3T+3.41e6T2 |
| 47 | 1+1.07e3iT−4.87e6T2 |
| 53 | 1−1.46e3iT−7.89e6T2 |
| 59 | 1+3.91e3iT−1.21e7T2 |
| 61 | 1−1.06e3iT−1.38e7T2 |
| 67 | 1−531.T+2.01e7T2 |
| 71 | 1+3.80e3T+2.54e7T2 |
| 73 | 1−2.28e3iT−2.83e7T2 |
| 79 | 1+391.iT−3.89e7T2 |
| 83 | 1−1.02e4iT−4.74e7T2 |
| 89 | 1−2.94e3iT−6.27e7T2 |
| 97 | 1−1.19e4iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.92432560630545923402554602016, −13.45525418404069997461623416333, −12.39184634868798593880263228059, −11.15355793328455591739512043061, −10.72152750966606881748784931234, −9.186169939543145805759498359836, −8.523695046929503960857237312506, −5.15330970614554316404847802849, −3.88102743906127183741357547166, −2.56003560911344764538986072968,
0.20334938037297921677733269397, 4.17378667876476599411877365563, 5.98321647559786410143521429429, 7.12306092888502342353915379338, 7.917635515889894772996041177359, 8.885237429770323361510952320661, 11.00519649606674667462758869377, 13.07463193499122802834729723077, 13.36893807093085422350608890398, 14.79378290394242007732172863583