L(s) = 1 | − 7.50i·2-s + (8.40 − 25.6i)3-s + 7.66·4-s + 24.7i·5-s + (−192. − 63.1i)6-s − 318.·7-s − 537. i·8-s + (−587. − 431. i)9-s + 185.·10-s − 711. i·11-s + (64.4 − 196. i)12-s − 791.·13-s + 2.39e3i·14-s + (633. + 207. i)15-s − 3.54e3·16-s + 1.19e3i·17-s + ⋯ |
L(s) = 1 | − 0.938i·2-s + (0.311 − 0.950i)3-s + 0.119·4-s + 0.197i·5-s + (−0.891 − 0.292i)6-s − 0.928·7-s − 1.05i·8-s + (−0.806 − 0.591i)9-s + 0.185·10-s − 0.534i·11-s + (0.0372 − 0.113i)12-s − 0.360·13-s + 0.871i·14-s + (0.187 + 0.0615i)15-s − 0.865·16-s + 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.950 - 0.311i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.950 - 0.311i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(0.234966 + 1.47135i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.234966 + 1.47135i\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-8.40 + 25.6i)T \) |
| 17 | \( 1 - 1.19e3iT \) |
good | 2 | \( 1 + 7.50iT - 64T^{2} \) |
| 5 | \( 1 - 24.7iT - 1.56e4T^{2} \) |
| 7 | \( 1 + 318.T + 1.17e5T^{2} \) |
| 11 | \( 1 + 711. iT - 1.77e6T^{2} \) |
| 13 | \( 1 + 791.T + 4.82e6T^{2} \) |
| 19 | \( 1 + 2.30e3T + 4.70e7T^{2} \) |
| 23 | \( 1 + 1.95e3iT - 1.48e8T^{2} \) |
| 29 | \( 1 + 3.52e3iT - 5.94e8T^{2} \) |
| 31 | \( 1 + 1.30e3T + 8.87e8T^{2} \) |
| 37 | \( 1 - 2.61e4T + 2.56e9T^{2} \) |
| 41 | \( 1 + 6.89e4iT - 4.75e9T^{2} \) |
| 43 | \( 1 - 1.19e5T + 6.32e9T^{2} \) |
| 47 | \( 1 + 1.88e5iT - 1.07e10T^{2} \) |
| 53 | \( 1 - 2.62e4iT - 2.21e10T^{2} \) |
| 59 | \( 1 + 2.19e5iT - 4.21e10T^{2} \) |
| 61 | \( 1 - 2.52e5T + 5.15e10T^{2} \) |
| 67 | \( 1 + 6.48e4T + 9.04e10T^{2} \) |
| 71 | \( 1 - 5.09e4iT - 1.28e11T^{2} \) |
| 73 | \( 1 + 2.37e5T + 1.51e11T^{2} \) |
| 79 | \( 1 + 6.29e5T + 2.43e11T^{2} \) |
| 83 | \( 1 + 2.50e5iT - 3.26e11T^{2} \) |
| 89 | \( 1 + 3.90e5iT - 4.96e11T^{2} \) |
| 97 | \( 1 - 1.40e6T + 8.32e11T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.17142285351488315187385947221, −12.52920540050799482389508589851, −11.43934414208871575750945075324, −10.23415585285898871881825855814, −8.887503433000703601263302208965, −7.22097441794737533444680760204, −6.20043391820760406171616675412, −3.45844878198169989744758538994, −2.31866509873402669062228895573, −0.59869816264911509394768018310,
2.77132483397960888952196964188, 4.64600212318102123403481114487, 6.04957977493515452296330022407, 7.43403179873349448407987139136, 8.826762825915878064173307668382, 9.921384025846937142889544173635, 11.21544547282146075015019235931, 12.74708937717364890337481382037, 14.23593740497449026071408461298, 15.06897531735356295238230503639