L(s) = 1 | − 7.50i·2-s + (8.40 − 25.6i)3-s + 7.66·4-s + 24.7i·5-s + (−192. − 63.1i)6-s − 318.·7-s − 537. i·8-s + (−587. − 431. i)9-s + 185.·10-s − 711. i·11-s + (64.4 − 196. i)12-s − 791.·13-s + 2.39e3i·14-s + (633. + 207. i)15-s − 3.54e3·16-s + 1.19e3i·17-s + ⋯ |
L(s) = 1 | − 0.938i·2-s + (0.311 − 0.950i)3-s + 0.119·4-s + 0.197i·5-s + (−0.891 − 0.292i)6-s − 0.928·7-s − 1.05i·8-s + (−0.806 − 0.591i)9-s + 0.185·10-s − 0.534i·11-s + (0.0372 − 0.113i)12-s − 0.360·13-s + 0.871i·14-s + (0.187 + 0.0615i)15-s − 0.865·16-s + 0.242i·17-s + ⋯ |
Λ(s)=(=(51s/2ΓC(s)L(s)(−0.950−0.311i)Λ(7−s)
Λ(s)=(=(51s/2ΓC(s+3)L(s)(−0.950−0.311i)Λ(1−s)
Degree: |
2 |
Conductor: |
51
= 3⋅17
|
Sign: |
−0.950−0.311i
|
Analytic conductor: |
11.7327 |
Root analytic conductor: |
3.42531 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ51(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 51, ( :3), −0.950−0.311i)
|
Particular Values
L(27) |
≈ |
0.234966+1.47135i |
L(21) |
≈ |
0.234966+1.47135i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−8.40+25.6i)T |
| 17 | 1−1.19e3iT |
good | 2 | 1+7.50iT−64T2 |
| 5 | 1−24.7iT−1.56e4T2 |
| 7 | 1+318.T+1.17e5T2 |
| 11 | 1+711.iT−1.77e6T2 |
| 13 | 1+791.T+4.82e6T2 |
| 19 | 1+2.30e3T+4.70e7T2 |
| 23 | 1+1.95e3iT−1.48e8T2 |
| 29 | 1+3.52e3iT−5.94e8T2 |
| 31 | 1+1.30e3T+8.87e8T2 |
| 37 | 1−2.61e4T+2.56e9T2 |
| 41 | 1+6.89e4iT−4.75e9T2 |
| 43 | 1−1.19e5T+6.32e9T2 |
| 47 | 1+1.88e5iT−1.07e10T2 |
| 53 | 1−2.62e4iT−2.21e10T2 |
| 59 | 1+2.19e5iT−4.21e10T2 |
| 61 | 1−2.52e5T+5.15e10T2 |
| 67 | 1+6.48e4T+9.04e10T2 |
| 71 | 1−5.09e4iT−1.28e11T2 |
| 73 | 1+2.37e5T+1.51e11T2 |
| 79 | 1+6.29e5T+2.43e11T2 |
| 83 | 1+2.50e5iT−3.26e11T2 |
| 89 | 1+3.90e5iT−4.96e11T2 |
| 97 | 1−1.40e6T+8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.17142285351488315187385947221, −12.52920540050799482389508589851, −11.43934414208871575750945075324, −10.23415585285898871881825855814, −8.887503433000703601263302208965, −7.22097441794737533444680760204, −6.20043391820760406171616675412, −3.45844878198169989744758538994, −2.31866509873402669062228895573, −0.59869816264911509394768018310,
2.77132483397960888952196964188, 4.64600212318102123403481114487, 6.04957977493515452296330022407, 7.43403179873349448407987139136, 8.826762825915878064173307668382, 9.921384025846937142889544173635, 11.21544547282146075015019235931, 12.74708937717364890337481382037, 14.23593740497449026071408461298, 15.06897531735356295238230503639