L(s) = 1 | + 0.461i·2-s + (22.0 + 15.5i)3-s + 63.7·4-s + 70.0i·5-s + (−7.19 + 10.1i)6-s + 296.·7-s + 58.9i·8-s + (242. + 687. i)9-s − 32.3·10-s − 1.24e3i·11-s + (1.40e3 + 994. i)12-s − 2.89e3·13-s + 136. i·14-s + (−1.09e3 + 1.54e3i)15-s + 4.05e3·16-s + 1.19e3i·17-s + ⋯ |
L(s) = 1 | + 0.0576i·2-s + (0.816 + 0.577i)3-s + 0.996·4-s + 0.560i·5-s + (−0.0333 + 0.0470i)6-s + 0.864·7-s + 0.115i·8-s + (0.332 + 0.942i)9-s − 0.0323·10-s − 0.937i·11-s + (0.813 + 0.575i)12-s − 1.31·13-s + 0.0498i·14-s + (−0.323 + 0.457i)15-s + 0.990·16-s + 0.242i·17-s + ⋯ |
Λ(s)=(=(51s/2ΓC(s)L(s)(0.577−0.816i)Λ(7−s)
Λ(s)=(=(51s/2ΓC(s+3)L(s)(0.577−0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
51
= 3⋅17
|
Sign: |
0.577−0.816i
|
Analytic conductor: |
11.7327 |
Root analytic conductor: |
3.42531 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ51(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 51, ( :3), 0.577−0.816i)
|
Particular Values
L(27) |
≈ |
2.64348+1.36795i |
L(21) |
≈ |
2.64348+1.36795i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−22.0−15.5i)T |
| 17 | 1−1.19e3iT |
good | 2 | 1−0.461iT−64T2 |
| 5 | 1−70.0iT−1.56e4T2 |
| 7 | 1−296.T+1.17e5T2 |
| 11 | 1+1.24e3iT−1.77e6T2 |
| 13 | 1+2.89e3T+4.82e6T2 |
| 19 | 1−3.45e3T+4.70e7T2 |
| 23 | 1−2.09e4iT−1.48e8T2 |
| 29 | 1+4.38e4iT−5.94e8T2 |
| 31 | 1+1.56e4T+8.87e8T2 |
| 37 | 1+5.20e4T+2.56e9T2 |
| 41 | 1+1.35e4iT−4.75e9T2 |
| 43 | 1−1.91e4T+6.32e9T2 |
| 47 | 1+1.38e5iT−1.07e10T2 |
| 53 | 1+2.59e5iT−2.21e10T2 |
| 59 | 1+2.61e4iT−4.21e10T2 |
| 61 | 1−1.15e5T+5.15e10T2 |
| 67 | 1+4.47e5T+9.04e10T2 |
| 71 | 1+8.44e4iT−1.28e11T2 |
| 73 | 1−3.29e4T+1.51e11T2 |
| 79 | 1−8.37e5T+2.43e11T2 |
| 83 | 1−4.85e5iT−3.26e11T2 |
| 89 | 1+2.78e5iT−4.96e11T2 |
| 97 | 1−2.31e5T+8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.67782434635763190526512310382, −13.64461224306223173115901814067, −11.79635836172090247396154042713, −10.90120763815226268871719158060, −9.775410742943872250245343119668, −8.148471115990954300941624667835, −7.21384085516388074033186526143, −5.34523826021561221711233637108, −3.38119574331882075064578193994, −2.05726524105390905381281587475,
1.42426031927839091925402624190, 2.65696729437365178757575479409, 4.83830615884208094933173334200, 6.90571620242803621333662865370, 7.73941540891718132872842799240, 9.090043118662467697412508970653, 10.55353553443497918496838900485, 12.16951625913858082315986246723, 12.57348602610952265396605405623, 14.40498488973305892497847252323