L(s) = 1 | + 8.98i·2-s + (−26.9 + 0.177i)3-s − 16.6·4-s − 127. i·5-s + (−1.59 − 242. i)6-s + 363.·7-s + 424. i·8-s + (728. − 9.56i)9-s + 1.14e3·10-s + 522. i·11-s + (450. − 2.95i)12-s − 1.11e3·13-s + 3.26e3i·14-s + (22.5 + 3.43e3i)15-s − 4.88e3·16-s − 1.19e3i·17-s + ⋯ |
L(s) = 1 | + 1.12i·2-s + (−0.999 + 0.00655i)3-s − 0.260·4-s − 1.01i·5-s + (−0.00736 − 1.12i)6-s + 1.05·7-s + 0.830i·8-s + (0.999 − 0.0131i)9-s + 1.14·10-s + 0.392i·11-s + (0.260 − 0.00171i)12-s − 0.507·13-s + 1.18i·14-s + (0.00667 + 1.01i)15-s − 1.19·16-s − 0.242i·17-s + ⋯ |
Λ(s)=(=(51s/2ΓC(s)L(s)(−0.00655−0.999i)Λ(7−s)
Λ(s)=(=(51s/2ΓC(s+3)L(s)(−0.00655−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
51
= 3⋅17
|
Sign: |
−0.00655−0.999i
|
Analytic conductor: |
11.7327 |
Root analytic conductor: |
3.42531 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ51(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 51, ( :3), −0.00655−0.999i)
|
Particular Values
L(27) |
≈ |
1.08581+1.09295i |
L(21) |
≈ |
1.08581+1.09295i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(26.9−0.177i)T |
| 17 | 1+1.19e3iT |
good | 2 | 1−8.98iT−64T2 |
| 5 | 1+127.iT−1.56e4T2 |
| 7 | 1−363.T+1.17e5T2 |
| 11 | 1−522.iT−1.77e6T2 |
| 13 | 1+1.11e3T+4.82e6T2 |
| 19 | 1−1.20e4T+4.70e7T2 |
| 23 | 1−1.94e4iT−1.48e8T2 |
| 29 | 1−3.50e4iT−5.94e8T2 |
| 31 | 1−4.16e4T+8.87e8T2 |
| 37 | 1−6.10e4T+2.56e9T2 |
| 41 | 1−3.51e4iT−4.75e9T2 |
| 43 | 1+7.71e3T+6.32e9T2 |
| 47 | 1+1.54e5iT−1.07e10T2 |
| 53 | 1+1.29e5iT−2.21e10T2 |
| 59 | 1+1.36e5iT−4.21e10T2 |
| 61 | 1−1.01e5T+5.15e10T2 |
| 67 | 1+2.07e5T+9.04e10T2 |
| 71 | 1−2.38e5iT−1.28e11T2 |
| 73 | 1+6.89e4T+1.51e11T2 |
| 79 | 1−5.54e5T+2.43e11T2 |
| 83 | 1−1.27e5iT−3.26e11T2 |
| 89 | 1−4.25e5iT−4.96e11T2 |
| 97 | 1+6.43e5T+8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.85325518150565907101474130827, −13.54144337769919267032850466813, −12.04962628806736170988398953051, −11.34382416764094291720712398056, −9.594206268465959258352493799695, −8.038354516314086845291990985253, −7.06207146630541498631505390481, −5.36583878586900592977379562313, −4.89983020117899784172881582158, −1.30183482423834703134902656737,
0.943762358154642334067200957573, 2.65724525353442648246551884537, 4.50068425430988643042288256191, 6.27028431197967888037590653965, 7.59586033967090571683767791373, 9.848174905164797301336526345995, 10.76874179619108534075231939744, 11.47872674829608514716136370226, 12.24969975190222163315098826971, 13.76614104342984156267245745005