L(s) = 1 | + 13.9i·2-s + (23.6 − 13.0i)3-s − 131.·4-s − 76.5i·5-s + (182. + 330. i)6-s − 548.·7-s − 939. i·8-s + (388. − 616. i)9-s + 1.06e3·10-s − 1.54e3i·11-s + (−3.10e3 + 1.71e3i)12-s − 3.44e3·13-s − 7.66e3i·14-s + (−998. − 1.80e3i)15-s + 4.72e3·16-s − 1.19e3i·17-s + ⋯ |
L(s) = 1 | + 1.74i·2-s + (0.875 − 0.483i)3-s − 2.05·4-s − 0.612i·5-s + (0.844 + 1.52i)6-s − 1.60·7-s − 1.83i·8-s + (0.532 − 0.846i)9-s + 1.06·10-s − 1.15i·11-s + (−1.79 + 0.990i)12-s − 1.56·13-s − 2.79i·14-s + (−0.295 − 0.535i)15-s + 1.15·16-s − 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.483 + 0.875i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.483 + 0.875i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(0.541156 - 0.319387i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.541156 - 0.319387i\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-23.6 + 13.0i)T \) |
| 17 | \( 1 + 1.19e3iT \) |
good | 2 | \( 1 - 13.9iT - 64T^{2} \) |
| 5 | \( 1 + 76.5iT - 1.56e4T^{2} \) |
| 7 | \( 1 + 548.T + 1.17e5T^{2} \) |
| 11 | \( 1 + 1.54e3iT - 1.77e6T^{2} \) |
| 13 | \( 1 + 3.44e3T + 4.82e6T^{2} \) |
| 19 | \( 1 - 3.75e3T + 4.70e7T^{2} \) |
| 23 | \( 1 - 1.57e4iT - 1.48e8T^{2} \) |
| 29 | \( 1 - 1.37e4iT - 5.94e8T^{2} \) |
| 31 | \( 1 + 4.37e4T + 8.87e8T^{2} \) |
| 37 | \( 1 + 1.10e4T + 2.56e9T^{2} \) |
| 41 | \( 1 + 2.98e4iT - 4.75e9T^{2} \) |
| 43 | \( 1 + 1.18e4T + 6.32e9T^{2} \) |
| 47 | \( 1 + 2.44e4iT - 1.07e10T^{2} \) |
| 53 | \( 1 + 1.64e5iT - 2.21e10T^{2} \) |
| 59 | \( 1 + 8.15e4iT - 4.21e10T^{2} \) |
| 61 | \( 1 + 4.30e5T + 5.15e10T^{2} \) |
| 67 | \( 1 + 6.41e3T + 9.04e10T^{2} \) |
| 71 | \( 1 + 3.74e5iT - 1.28e11T^{2} \) |
| 73 | \( 1 - 4.68e5T + 1.51e11T^{2} \) |
| 79 | \( 1 + 7.27e4T + 2.43e11T^{2} \) |
| 83 | \( 1 - 8.21e5iT - 3.26e11T^{2} \) |
| 89 | \( 1 + 4.67e5iT - 4.96e11T^{2} \) |
| 97 | \( 1 + 9.31e5T + 8.32e11T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.16240123005180851897589353536, −13.32672294921642420727648879438, −12.46110486311187144344843387077, −9.568835586083786566024847951630, −8.991426010886817187937782255016, −7.63182047377603294363303256548, −6.73478733353558357672993758817, −5.37881859144461047292847579639, −3.37659593993529699307039976379, −0.23717864379384447842185035480,
2.33153181746630056007258404911, 3.16319969432323171925103031665, 4.51673372308967820012274098792, 7.18626512688599366024072463254, 9.223596823861684709561195642671, 9.875506242436834135550903275608, 10.56604140470609204525602983437, 12.33663011039175065649277028506, 12.89970473136282319580942455079, 14.20675029626629769123709196755