Properties

Label 2-5175-1.1-c1-0-31
Degree $2$
Conductor $5175$
Sign $1$
Analytic cond. $41.3225$
Root an. cond. $6.42826$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.63·2-s + 4.96·4-s + 3.29·7-s − 7.82·8-s − 5.06·11-s − 1.39·13-s − 8.68·14-s + 10.7·16-s + 6.93·17-s − 3.60·19-s + 13.3·22-s + 23-s + 3.67·26-s + 16.3·28-s − 2.05·29-s − 3.78·31-s − 12.6·32-s − 18.3·34-s + 11.2·37-s + 9.51·38-s − 1.42·41-s − 7.57·43-s − 25.1·44-s − 2.63·46-s − 0.937·47-s + 3.83·49-s − 6.90·52-s + ⋯
L(s)  = 1  − 1.86·2-s + 2.48·4-s + 1.24·7-s − 2.76·8-s − 1.52·11-s − 0.385·13-s − 2.32·14-s + 2.68·16-s + 1.68·17-s − 0.826·19-s + 2.84·22-s + 0.208·23-s + 0.719·26-s + 3.08·28-s − 0.382·29-s − 0.680·31-s − 2.23·32-s − 3.14·34-s + 1.84·37-s + 1.54·38-s − 0.222·41-s − 1.15·43-s − 3.78·44-s − 0.389·46-s − 0.136·47-s + 0.547·49-s − 0.957·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5175\)    =    \(3^{2} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(41.3225\)
Root analytic conductor: \(6.42826\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7538557873\)
\(L(\frac12)\) \(\approx\) \(0.7538557873\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good2 \( 1 + 2.63T + 2T^{2} \)
7 \( 1 - 3.29T + 7T^{2} \)
11 \( 1 + 5.06T + 11T^{2} \)
13 \( 1 + 1.39T + 13T^{2} \)
17 \( 1 - 6.93T + 17T^{2} \)
19 \( 1 + 3.60T + 19T^{2} \)
29 \( 1 + 2.05T + 29T^{2} \)
31 \( 1 + 3.78T + 31T^{2} \)
37 \( 1 - 11.2T + 37T^{2} \)
41 \( 1 + 1.42T + 41T^{2} \)
43 \( 1 + 7.57T + 43T^{2} \)
47 \( 1 + 0.937T + 47T^{2} \)
53 \( 1 + 0.143T + 53T^{2} \)
59 \( 1 - 3.20T + 59T^{2} \)
61 \( 1 - 5.22T + 61T^{2} \)
67 \( 1 + 14.7T + 67T^{2} \)
71 \( 1 + 3.57T + 71T^{2} \)
73 \( 1 + 0.0659T + 73T^{2} \)
79 \( 1 - 16.3T + 79T^{2} \)
83 \( 1 + 0.439T + 83T^{2} \)
89 \( 1 - 8.21T + 89T^{2} \)
97 \( 1 - 9.42T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.112076770398107905898928161091, −7.72884973260377371141164882884, −7.35820406567662238869430474819, −6.24487722548974570215745593970, −5.47104534662245550967511810542, −4.74185588073650037970721180861, −3.28995321715952124922929882832, −2.38344957877817988169252468426, −1.69201810164252663486875508493, −0.62605450261852490887545447240, 0.62605450261852490887545447240, 1.69201810164252663486875508493, 2.38344957877817988169252468426, 3.28995321715952124922929882832, 4.74185588073650037970721180861, 5.47104534662245550967511810542, 6.24487722548974570215745593970, 7.35820406567662238869430474819, 7.72884973260377371141164882884, 8.112076770398107905898928161091

Graph of the $Z$-function along the critical line