L(s) = 1 | − 2.63·2-s + 4.96·4-s + 3.29·7-s − 7.82·8-s − 5.06·11-s − 1.39·13-s − 8.68·14-s + 10.7·16-s + 6.93·17-s − 3.60·19-s + 13.3·22-s + 23-s + 3.67·26-s + 16.3·28-s − 2.05·29-s − 3.78·31-s − 12.6·32-s − 18.3·34-s + 11.2·37-s + 9.51·38-s − 1.42·41-s − 7.57·43-s − 25.1·44-s − 2.63·46-s − 0.937·47-s + 3.83·49-s − 6.90·52-s + ⋯ |
L(s) = 1 | − 1.86·2-s + 2.48·4-s + 1.24·7-s − 2.76·8-s − 1.52·11-s − 0.385·13-s − 2.32·14-s + 2.68·16-s + 1.68·17-s − 0.826·19-s + 2.84·22-s + 0.208·23-s + 0.719·26-s + 3.08·28-s − 0.382·29-s − 0.680·31-s − 2.23·32-s − 3.14·34-s + 1.84·37-s + 1.54·38-s − 0.222·41-s − 1.15·43-s − 3.78·44-s − 0.389·46-s − 0.136·47-s + 0.547·49-s − 0.957·52-s + ⋯ |
Λ(s)=(=(5175s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5175s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7538557873 |
L(21) |
≈ |
0.7538557873 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 23 | 1−T |
good | 2 | 1+2.63T+2T2 |
| 7 | 1−3.29T+7T2 |
| 11 | 1+5.06T+11T2 |
| 13 | 1+1.39T+13T2 |
| 17 | 1−6.93T+17T2 |
| 19 | 1+3.60T+19T2 |
| 29 | 1+2.05T+29T2 |
| 31 | 1+3.78T+31T2 |
| 37 | 1−11.2T+37T2 |
| 41 | 1+1.42T+41T2 |
| 43 | 1+7.57T+43T2 |
| 47 | 1+0.937T+47T2 |
| 53 | 1+0.143T+53T2 |
| 59 | 1−3.20T+59T2 |
| 61 | 1−5.22T+61T2 |
| 67 | 1+14.7T+67T2 |
| 71 | 1+3.57T+71T2 |
| 73 | 1+0.0659T+73T2 |
| 79 | 1−16.3T+79T2 |
| 83 | 1+0.439T+83T2 |
| 89 | 1−8.21T+89T2 |
| 97 | 1−9.42T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.112076770398107905898928161091, −7.72884973260377371141164882884, −7.35820406567662238869430474819, −6.24487722548974570215745593970, −5.47104534662245550967511810542, −4.74185588073650037970721180861, −3.28995321715952124922929882832, −2.38344957877817988169252468426, −1.69201810164252663486875508493, −0.62605450261852490887545447240,
0.62605450261852490887545447240, 1.69201810164252663486875508493, 2.38344957877817988169252468426, 3.28995321715952124922929882832, 4.74185588073650037970721180861, 5.47104534662245550967511810542, 6.24487722548974570215745593970, 7.35820406567662238869430474819, 7.72884973260377371141164882884, 8.112076770398107905898928161091