Properties

Label 5175.2.a.ch
Level 51755175
Weight 22
Character orbit 5175.a
Self dual yes
Analytic conductor 41.32341.323
Analytic rank 00
Dimension 77
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5175,2,Mod(1,5175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5175=325223 5175 = 3^{2} \cdot 5^{2} \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 41.322583046041.3225830460
Analytic rank: 00
Dimension: 77
Coefficient field: Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x7x613x5+11x4+33x39x213x1 x^{7} - x^{6} - 13x^{5} + 11x^{4} + 33x^{3} - 9x^{2} - 13x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 345)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β61,\beta_1,\ldots,\beta_{6} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2+(β3+2)q4+(β5+1)q7+(β4+2β2β1+1)q8+(β6+β5+β4+2)q11β4q13+(β6+β4+β2+1)q14++(3β4β11)q98+O(q100) q + \beta_{2} q^{2} + ( - \beta_{3} + 2) q^{4} + (\beta_{5} + 1) q^{7} + (\beta_{4} + 2 \beta_{2} - \beta_1 + 1) q^{8} + (\beta_{6} + \beta_{5} + \beta_{4} + \cdots - 2) q^{11} - \beta_{4} q^{13} + ( - \beta_{6} + \beta_{4} + \beta_{2} + \cdots - 1) q^{14}+ \cdots + ( - 3 \beta_{4} - \beta_1 - 1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 7q+2q2+14q4+5q7+12q812q11+2q136q14+24q16+11q17+16q19+12q22+7q23+14q26+16q28+q29+5q31+6q324q34++2q98+O(q100) 7 q + 2 q^{2} + 14 q^{4} + 5 q^{7} + 12 q^{8} - 12 q^{11} + 2 q^{13} - 6 q^{14} + 24 q^{16} + 11 q^{17} + 16 q^{19} + 12 q^{22} + 7 q^{23} + 14 q^{26} + 16 q^{28} + q^{29} + 5 q^{31} + 6 q^{32} - 4 q^{34}+ \cdots + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x7x613x5+11x4+33x39x213x1 x^{7} - x^{6} - 13x^{5} + 11x^{4} + 33x^{3} - 9x^{2} - 13x - 1 : Copy content Toggle raw display

β1\beta_{1}== (ν6+4ν5+11ν434ν311ν218ν3)/20 ( -\nu^{6} + 4\nu^{5} + 11\nu^{4} - 34\nu^{3} - 11\nu^{2} - 18\nu - 3 ) / 20 Copy content Toggle raw display
β2\beta_{2}== (3ν6+2ν5+43ν422ν3133ν2+16ν+41)/20 ( -3\nu^{6} + 2\nu^{5} + 43\nu^{4} - 22\nu^{3} - 133\nu^{2} + 16\nu + 41 ) / 20 Copy content Toggle raw display
β3\beta_{3}== (4ν66ν549ν4+66ν3+94ν258ν3)/10 ( 4\nu^{6} - 6\nu^{5} - 49\nu^{4} + 66\nu^{3} + 94\nu^{2} - 58\nu - 3 ) / 10 Copy content Toggle raw display
β4\beta_{4}== (9ν66ν5119ν4+66ν3+319ν228ν113)/20 ( 9\nu^{6} - 6\nu^{5} - 119\nu^{4} + 66\nu^{3} + 319\nu^{2} - 28\nu - 113 ) / 20 Copy content Toggle raw display
β5\beta_{5}== (6ν69ν576ν4+104ν3+176ν2147ν62)/10 ( 6\nu^{6} - 9\nu^{5} - 76\nu^{4} + 104\nu^{3} + 176\nu^{2} - 147\nu - 62 ) / 10 Copy content Toggle raw display
β6\beta_{6}== (7ν6+8ν5+87ν488ν3187ν2+84ν+39)/10 ( -7\nu^{6} + 8\nu^{5} + 87\nu^{4} - 88\nu^{3} - 187\nu^{2} + 84\nu + 39 ) / 10 Copy content Toggle raw display
ν\nu== (β6+β4+β3+β2)/2 ( \beta_{6} + \beta_{4} + \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β6+β5+2β4β3+3β2β1+7)/2 ( \beta_{6} + \beta_{5} + 2\beta_{4} - \beta_{3} + 3\beta_{2} - \beta _1 + 7 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (8β6+β5+7β4+8β3+8β2+3β1+1)/2 ( 8\beta_{6} + \beta_{5} + 7\beta_{4} + 8\beta_{3} + 8\beta_{2} + 3\beta _1 + 1 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== 3β6+4β5+9β45β3+17β24β1+27 3\beta_{6} + 4\beta_{5} + 9\beta_{4} - 5\beta_{3} + 17\beta_{2} - 4\beta _1 + 27 Copy content Toggle raw display
ν5\nu^{5}== (67β6+6β5+61β4+71β3+71β2+38β1+2)/2 ( 67\beta_{6} + 6\beta_{5} + 61\beta_{4} + 71\beta_{3} + 71\beta_{2} + 38\beta _1 + 2 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (33β6+67β5+164β4105β3+335β267β1+485)/2 ( 33\beta_{6} + 67\beta_{5} + 164\beta_{4} - 105\beta_{3} + 335\beta_{2} - 67\beta _1 + 485 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.35688
2.21373
0.802220
−0.516375
−0.0831195
3.07982
−3.13940
−2.63914 0 4.96506 0 0 3.29106 −7.82519 0 0
1.2 −1.40464 0 −0.0269736 0 0 1.58054 2.84718 0 0
1.3 −1.27208 0 −0.381820 0 0 −3.58355 3.02986 0 0
1.4 0.161527 0 −1.97391 0 0 5.15575 −0.641892 0 0
1.5 1.93829 0 1.75698 0 0 −3.86288 −0.471035 0 0
1.6 2.43902 0 3.94880 0 0 −0.839790 4.75315 0 0
1.7 2.77702 0 5.71186 0 0 3.25887 10.3079 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
2323 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5175.2.a.ch 7
3.b odd 2 1 1725.2.a.bk 7
5.b even 2 1 5175.2.a.ca 7
5.c odd 4 2 1035.2.b.f 14
15.d odd 2 1 1725.2.a.bl 7
15.e even 4 2 345.2.b.d 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
345.2.b.d 14 15.e even 4 2
1035.2.b.f 14 5.c odd 4 2
1725.2.a.bk 7 3.b odd 2 1
1725.2.a.bl 7 15.d odd 2 1
5175.2.a.ca 7 5.b even 2 1
5175.2.a.ch 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5175))S_{2}^{\mathrm{new}}(\Gamma_0(5175)):

T272T2612T25+20T24+43T2344T2256T2+10 T_{2}^{7} - 2T_{2}^{6} - 12T_{2}^{5} + 20T_{2}^{4} + 43T_{2}^{3} - 44T_{2}^{2} - 56T_{2} + 10 Copy content Toggle raw display
T775T7627T75+141T74+158T731068T72+296T7+1016 T_{7}^{7} - 5T_{7}^{6} - 27T_{7}^{5} + 141T_{7}^{4} + 158T_{7}^{3} - 1068T_{7}^{2} + 296T_{7} + 1016 Copy content Toggle raw display
T117+12T116+8T115338T114864T113+1728T112+3840T115120 T_{11}^{7} + 12T_{11}^{6} + 8T_{11}^{5} - 338T_{11}^{4} - 864T_{11}^{3} + 1728T_{11}^{2} + 3840T_{11} - 5120 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T72T6++10 T^{7} - 2 T^{6} + \cdots + 10 Copy content Toggle raw display
33 T7 T^{7} Copy content Toggle raw display
55 T7 T^{7} Copy content Toggle raw display
77 T75T6++1016 T^{7} - 5 T^{6} + \cdots + 1016 Copy content Toggle raw display
1111 T7+12T6+5120 T^{7} + 12 T^{6} + \cdots - 5120 Copy content Toggle raw display
1313 T72T6++128 T^{7} - 2 T^{6} + \cdots + 128 Copy content Toggle raw display
1717 T711T6+440 T^{7} - 11 T^{6} + \cdots - 440 Copy content Toggle raw display
1919 T716T6++2000 T^{7} - 16 T^{6} + \cdots + 2000 Copy content Toggle raw display
2323 (T1)7 (T - 1)^{7} Copy content Toggle raw display
2929 T7T6+10000 T^{7} - T^{6} + \cdots - 10000 Copy content Toggle raw display
3131 T75T6++128 T^{7} - 5 T^{6} + \cdots + 128 Copy content Toggle raw display
3737 T717T6+16 T^{7} - 17 T^{6} + \cdots - 16 Copy content Toggle raw display
4141 T7+19T6++6640 T^{7} + 19 T^{6} + \cdots + 6640 Copy content Toggle raw display
4343 T714T6++44320 T^{7} - 14 T^{6} + \cdots + 44320 Copy content Toggle raw display
4747 T7+6T6+110720 T^{7} + 6 T^{6} + \cdots - 110720 Copy content Toggle raw display
5353 T7+15T6++87560 T^{7} + 15 T^{6} + \cdots + 87560 Copy content Toggle raw display
5959 T7+11T6+18320 T^{7} + 11 T^{6} + \cdots - 18320 Copy content Toggle raw display
6161 T78T6++3215456 T^{7} - 8 T^{6} + \cdots + 3215456 Copy content Toggle raw display
6767 T7+3T6+653960 T^{7} + 3 T^{6} + \cdots - 653960 Copy content Toggle raw display
7171 T7T6++709040 T^{7} - T^{6} + \cdots + 709040 Copy content Toggle raw display
7373 T718T6++2048 T^{7} - 18 T^{6} + \cdots + 2048 Copy content Toggle raw display
7979 T7+2T6++6400 T^{7} + 2 T^{6} + \cdots + 6400 Copy content Toggle raw display
8383 T7+T6+2560 T^{7} + T^{6} + \cdots - 2560 Copy content Toggle raw display
8989 T7+16T6++272960 T^{7} + 16 T^{6} + \cdots + 272960 Copy content Toggle raw display
9797 T726T6++955456 T^{7} - 26 T^{6} + \cdots + 955456 Copy content Toggle raw display
show more
show less