Properties

Label 5175.2.a.ch
Level $5175$
Weight $2$
Character orbit 5175.a
Self dual yes
Analytic conductor $41.323$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5175,2,Mod(1,5175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5175 = 3^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3225830460\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 13x^{5} + 11x^{4} + 33x^{3} - 9x^{2} - 13x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + ( - \beta_{3} + 2) q^{4} + (\beta_{5} + 1) q^{7} + (\beta_{4} + 2 \beta_{2} - \beta_1 + 1) q^{8} + (\beta_{6} + \beta_{5} + \beta_{4} + \cdots - 2) q^{11} - \beta_{4} q^{13} + ( - \beta_{6} + \beta_{4} + \beta_{2} + \cdots - 1) q^{14}+ \cdots + ( - 3 \beta_{4} - \beta_1 - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 14 q^{4} + 5 q^{7} + 12 q^{8} - 12 q^{11} + 2 q^{13} - 6 q^{14} + 24 q^{16} + 11 q^{17} + 16 q^{19} + 12 q^{22} + 7 q^{23} + 14 q^{26} + 16 q^{28} + q^{29} + 5 q^{31} + 6 q^{32} - 4 q^{34}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 13x^{5} + 11x^{4} + 33x^{3} - 9x^{2} - 13x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{6} + 4\nu^{5} + 11\nu^{4} - 34\nu^{3} - 11\nu^{2} - 18\nu - 3 ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{6} + 2\nu^{5} + 43\nu^{4} - 22\nu^{3} - 133\nu^{2} + 16\nu + 41 ) / 20 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4\nu^{6} - 6\nu^{5} - 49\nu^{4} + 66\nu^{3} + 94\nu^{2} - 58\nu - 3 ) / 10 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 9\nu^{6} - 6\nu^{5} - 119\nu^{4} + 66\nu^{3} + 319\nu^{2} - 28\nu - 113 ) / 20 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 6\nu^{6} - 9\nu^{5} - 76\nu^{4} + 104\nu^{3} + 176\nu^{2} - 147\nu - 62 ) / 10 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -7\nu^{6} + 8\nu^{5} + 87\nu^{4} - 88\nu^{3} - 187\nu^{2} + 84\nu + 39 ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} + \beta_{4} + \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} + \beta_{5} + 2\beta_{4} - \beta_{3} + 3\beta_{2} - \beta _1 + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 8\beta_{6} + \beta_{5} + 7\beta_{4} + 8\beta_{3} + 8\beta_{2} + 3\beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{6} + 4\beta_{5} + 9\beta_{4} - 5\beta_{3} + 17\beta_{2} - 4\beta _1 + 27 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 67\beta_{6} + 6\beta_{5} + 61\beta_{4} + 71\beta_{3} + 71\beta_{2} + 38\beta _1 + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 33\beta_{6} + 67\beta_{5} + 164\beta_{4} - 105\beta_{3} + 335\beta_{2} - 67\beta _1 + 485 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.35688
2.21373
0.802220
−0.516375
−0.0831195
3.07982
−3.13940
−2.63914 0 4.96506 0 0 3.29106 −7.82519 0 0
1.2 −1.40464 0 −0.0269736 0 0 1.58054 2.84718 0 0
1.3 −1.27208 0 −0.381820 0 0 −3.58355 3.02986 0 0
1.4 0.161527 0 −1.97391 0 0 5.15575 −0.641892 0 0
1.5 1.93829 0 1.75698 0 0 −3.86288 −0.471035 0 0
1.6 2.43902 0 3.94880 0 0 −0.839790 4.75315 0 0
1.7 2.77702 0 5.71186 0 0 3.25887 10.3079 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5175.2.a.ch 7
3.b odd 2 1 1725.2.a.bk 7
5.b even 2 1 5175.2.a.ca 7
5.c odd 4 2 1035.2.b.f 14
15.d odd 2 1 1725.2.a.bl 7
15.e even 4 2 345.2.b.d 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
345.2.b.d 14 15.e even 4 2
1035.2.b.f 14 5.c odd 4 2
1725.2.a.bk 7 3.b odd 2 1
1725.2.a.bl 7 15.d odd 2 1
5175.2.a.ca 7 5.b even 2 1
5175.2.a.ch 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5175))\):

\( T_{2}^{7} - 2T_{2}^{6} - 12T_{2}^{5} + 20T_{2}^{4} + 43T_{2}^{3} - 44T_{2}^{2} - 56T_{2} + 10 \) Copy content Toggle raw display
\( T_{7}^{7} - 5T_{7}^{6} - 27T_{7}^{5} + 141T_{7}^{4} + 158T_{7}^{3} - 1068T_{7}^{2} + 296T_{7} + 1016 \) Copy content Toggle raw display
\( T_{11}^{7} + 12T_{11}^{6} + 8T_{11}^{5} - 338T_{11}^{4} - 864T_{11}^{3} + 1728T_{11}^{2} + 3840T_{11} - 5120 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 2 T^{6} + \cdots + 10 \) Copy content Toggle raw display
$3$ \( T^{7} \) Copy content Toggle raw display
$5$ \( T^{7} \) Copy content Toggle raw display
$7$ \( T^{7} - 5 T^{6} + \cdots + 1016 \) Copy content Toggle raw display
$11$ \( T^{7} + 12 T^{6} + \cdots - 5120 \) Copy content Toggle raw display
$13$ \( T^{7} - 2 T^{6} + \cdots + 128 \) Copy content Toggle raw display
$17$ \( T^{7} - 11 T^{6} + \cdots - 440 \) Copy content Toggle raw display
$19$ \( T^{7} - 16 T^{6} + \cdots + 2000 \) Copy content Toggle raw display
$23$ \( (T - 1)^{7} \) Copy content Toggle raw display
$29$ \( T^{7} - T^{6} + \cdots - 10000 \) Copy content Toggle raw display
$31$ \( T^{7} - 5 T^{6} + \cdots + 128 \) Copy content Toggle raw display
$37$ \( T^{7} - 17 T^{6} + \cdots - 16 \) Copy content Toggle raw display
$41$ \( T^{7} + 19 T^{6} + \cdots + 6640 \) Copy content Toggle raw display
$43$ \( T^{7} - 14 T^{6} + \cdots + 44320 \) Copy content Toggle raw display
$47$ \( T^{7} + 6 T^{6} + \cdots - 110720 \) Copy content Toggle raw display
$53$ \( T^{7} + 15 T^{6} + \cdots + 87560 \) Copy content Toggle raw display
$59$ \( T^{7} + 11 T^{6} + \cdots - 18320 \) Copy content Toggle raw display
$61$ \( T^{7} - 8 T^{6} + \cdots + 3215456 \) Copy content Toggle raw display
$67$ \( T^{7} + 3 T^{6} + \cdots - 653960 \) Copy content Toggle raw display
$71$ \( T^{7} - T^{6} + \cdots + 709040 \) Copy content Toggle raw display
$73$ \( T^{7} - 18 T^{6} + \cdots + 2048 \) Copy content Toggle raw display
$79$ \( T^{7} + 2 T^{6} + \cdots + 6400 \) Copy content Toggle raw display
$83$ \( T^{7} + T^{6} + \cdots - 2560 \) Copy content Toggle raw display
$89$ \( T^{7} + 16 T^{6} + \cdots + 272960 \) Copy content Toggle raw display
$97$ \( T^{7} - 26 T^{6} + \cdots + 955456 \) Copy content Toggle raw display
show more
show less