L(s) = 1 | + 0.161·2-s − 1.97·4-s + 5.15·7-s − 0.641·8-s + 1.28·11-s + 1.53·13-s + 0.832·14-s + 3.84·16-s + 2.43·17-s + 6.13·19-s + 0.207·22-s + 23-s + 0.247·26-s − 10.1·28-s + 6.10·29-s + 0.248·31-s + 1.90·32-s + 0.392·34-s − 1.29·37-s + 0.991·38-s − 5.44·41-s − 5.64·43-s − 2.53·44-s + 0.161·46-s + 7.37·47-s + 19.5·49-s − 3.02·52-s + ⋯ |
L(s) = 1 | + 0.114·2-s − 0.986·4-s + 1.94·7-s − 0.226·8-s + 0.387·11-s + 0.424·13-s + 0.222·14-s + 0.961·16-s + 0.590·17-s + 1.40·19-s + 0.0442·22-s + 0.208·23-s + 0.0485·26-s − 1.92·28-s + 1.13·29-s + 0.0445·31-s + 0.336·32-s + 0.0673·34-s − 0.213·37-s + 0.160·38-s − 0.849·41-s − 0.861·43-s − 0.382·44-s + 0.0238·46-s + 1.07·47-s + 2.79·49-s − 0.419·52-s + ⋯ |
Λ(s)=(=(5175s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5175s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.487458263 |
L(21) |
≈ |
2.487458263 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 23 | 1−T |
good | 2 | 1−0.161T+2T2 |
| 7 | 1−5.15T+7T2 |
| 11 | 1−1.28T+11T2 |
| 13 | 1−1.53T+13T2 |
| 17 | 1−2.43T+17T2 |
| 19 | 1−6.13T+19T2 |
| 29 | 1−6.10T+29T2 |
| 31 | 1−0.248T+31T2 |
| 37 | 1+1.29T+37T2 |
| 41 | 1+5.44T+41T2 |
| 43 | 1+5.64T+43T2 |
| 47 | 1−7.37T+47T2 |
| 53 | 1+7.36T+53T2 |
| 59 | 1+12.9T+59T2 |
| 61 | 1−10.3T+61T2 |
| 67 | 1+5.75T+67T2 |
| 71 | 1−10.2T+71T2 |
| 73 | 1−5.51T+73T2 |
| 79 | 1−0.0974T+79T2 |
| 83 | 1+8.84T+83T2 |
| 89 | 1+16.6T+89T2 |
| 97 | 1−9.68T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.180571160789384477489724100609, −7.78291819230239062596326243141, −6.87256200835602930706097462469, −5.73641157115380474297566311279, −5.16805918221033122960261224255, −4.65984663596363344337023922391, −3.87786113472940641447052278137, −2.99330207757845276578569083605, −1.58807710115916272239700248441, −0.970801217109611142879721505640,
0.970801217109611142879721505640, 1.58807710115916272239700248441, 2.99330207757845276578569083605, 3.87786113472940641447052278137, 4.65984663596363344337023922391, 5.16805918221033122960261224255, 5.73641157115380474297566311279, 6.87256200835602930706097462469, 7.78291819230239062596326243141, 8.180571160789384477489724100609