Properties

Label 2-5202-1.1-c1-0-44
Degree $2$
Conductor $5202$
Sign $1$
Analytic cond. $41.5381$
Root an. cond. $6.44501$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 1.26·5-s + 2.94·7-s + 8-s + 1.26·10-s − 3.29·11-s − 3.36·13-s + 2.94·14-s + 16-s + 7.44·19-s + 1.26·20-s − 3.29·22-s + 1.41·23-s − 3.40·25-s − 3.36·26-s + 2.94·28-s − 0.522·29-s + 7.10·31-s + 32-s + 3.71·35-s − 0.792·37-s + 7.44·38-s + 1.26·40-s − 4.06·41-s + 0.867·43-s − 3.29·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.564·5-s + 1.11·7-s + 0.353·8-s + 0.399·10-s − 0.994·11-s − 0.932·13-s + 0.787·14-s + 0.250·16-s + 1.70·19-s + 0.282·20-s − 0.703·22-s + 0.294·23-s − 0.681·25-s − 0.659·26-s + 0.556·28-s − 0.0970·29-s + 1.27·31-s + 0.176·32-s + 0.628·35-s − 0.130·37-s + 1.20·38-s + 0.199·40-s − 0.634·41-s + 0.132·43-s − 0.497·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5202\)    =    \(2 \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(41.5381\)
Root analytic conductor: \(6.44501\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5202,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.966109347\)
\(L(\frac12)\) \(\approx\) \(3.966109347\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 - 1.26T + 5T^{2} \)
7 \( 1 - 2.94T + 7T^{2} \)
11 \( 1 + 3.29T + 11T^{2} \)
13 \( 1 + 3.36T + 13T^{2} \)
19 \( 1 - 7.44T + 19T^{2} \)
23 \( 1 - 1.41T + 23T^{2} \)
29 \( 1 + 0.522T + 29T^{2} \)
31 \( 1 - 7.10T + 31T^{2} \)
37 \( 1 + 0.792T + 37T^{2} \)
41 \( 1 + 4.06T + 41T^{2} \)
43 \( 1 - 0.867T + 43T^{2} \)
47 \( 1 - 10.3T + 47T^{2} \)
53 \( 1 - 9.98T + 53T^{2} \)
59 \( 1 - 7.31T + 59T^{2} \)
61 \( 1 - 10.7T + 61T^{2} \)
67 \( 1 - 13.5T + 67T^{2} \)
71 \( 1 + 7.38T + 71T^{2} \)
73 \( 1 + 5.23T + 73T^{2} \)
79 \( 1 - 10.9T + 79T^{2} \)
83 \( 1 + 12.3T + 83T^{2} \)
89 \( 1 - 17.3T + 89T^{2} \)
97 \( 1 + 6.22T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.974671089101284827295432185112, −7.49673284289050183936472865039, −6.81426948630046584214423587751, −5.67783463355262022614428637183, −5.28401908154250672286948797444, −4.77280600118464391150608249004, −3.78774790761151379129118752916, −2.69767319003587140897800181017, −2.16852879630294157004684214224, −1.00710629815589260071665235009, 1.00710629815589260071665235009, 2.16852879630294157004684214224, 2.69767319003587140897800181017, 3.78774790761151379129118752916, 4.77280600118464391150608249004, 5.28401908154250672286948797444, 5.67783463355262022614428637183, 6.81426948630046584214423587751, 7.49673284289050183936472865039, 7.974671089101284827295432185112

Graph of the $Z$-function along the critical line