Properties

Label 5202.2.a.bu.1.4
Level $5202$
Weight $2$
Character 5202.1
Self dual yes
Analytic conductor $41.538$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5202,2,Mod(1,5202)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5202, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5202.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5202.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5381791315\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.765367\) of defining polynomial
Character \(\chi\) \(=\) 5202.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.26197 q^{5} +2.94495 q^{7} +1.00000 q^{8} +1.26197 q^{10} -3.29769 q^{11} -3.36370 q^{13} +2.94495 q^{14} +1.00000 q^{16} +7.44155 q^{19} +1.26197 q^{20} -3.29769 q^{22} +1.41421 q^{23} -3.40743 q^{25} -3.36370 q^{26} +2.94495 q^{28} -0.522726 q^{29} +7.10973 q^{31} +1.00000 q^{32} +3.71644 q^{35} -0.792706 q^{37} +7.44155 q^{38} +1.26197 q^{40} -4.06306 q^{41} +0.867091 q^{43} -3.29769 q^{44} +1.41421 q^{46} +10.3086 q^{47} +1.67271 q^{49} -3.40743 q^{50} -3.36370 q^{52} +9.98868 q^{53} -4.16160 q^{55} +2.94495 q^{56} -0.522726 q^{58} +7.31543 q^{59} +10.7035 q^{61} +7.10973 q^{62} +1.00000 q^{64} -4.24489 q^{65} +13.5349 q^{67} +3.71644 q^{70} -7.38144 q^{71} -5.23880 q^{73} -0.792706 q^{74} +7.44155 q^{76} -9.71153 q^{77} +10.9449 q^{79} +1.26197 q^{80} -4.06306 q^{82} -12.3633 q^{83} +0.867091 q^{86} -3.29769 q^{88} +17.3975 q^{89} -9.90591 q^{91} +1.41421 q^{92} +10.3086 q^{94} +9.39104 q^{95} -6.22466 q^{97} +1.67271 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} - 8 q^{5} + 4 q^{8} - 8 q^{10} - 8 q^{11} + 4 q^{16} + 8 q^{19} - 8 q^{20} - 8 q^{22} + 12 q^{25} - 16 q^{29} + 8 q^{31} + 4 q^{32} + 8 q^{35} + 16 q^{37} + 8 q^{38} - 8 q^{40} - 8 q^{41}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.26197 0.564371 0.282186 0.959360i \(-0.408941\pi\)
0.282186 + 0.959360i \(0.408941\pi\)
\(6\) 0 0
\(7\) 2.94495 1.11309 0.556543 0.830819i \(-0.312128\pi\)
0.556543 + 0.830819i \(0.312128\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.26197 0.399071
\(11\) −3.29769 −0.994292 −0.497146 0.867667i \(-0.665619\pi\)
−0.497146 + 0.867667i \(0.665619\pi\)
\(12\) 0 0
\(13\) −3.36370 −0.932922 −0.466461 0.884542i \(-0.654471\pi\)
−0.466461 + 0.884542i \(0.654471\pi\)
\(14\) 2.94495 0.787070
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) 0 0
\(19\) 7.44155 1.70721 0.853605 0.520921i \(-0.174412\pi\)
0.853605 + 0.520921i \(0.174412\pi\)
\(20\) 1.26197 0.282186
\(21\) 0 0
\(22\) −3.29769 −0.703071
\(23\) 1.41421 0.294884 0.147442 0.989071i \(-0.452896\pi\)
0.147442 + 0.989071i \(0.452896\pi\)
\(24\) 0 0
\(25\) −3.40743 −0.681485
\(26\) −3.36370 −0.659675
\(27\) 0 0
\(28\) 2.94495 0.556543
\(29\) −0.522726 −0.0970678 −0.0485339 0.998822i \(-0.515455\pi\)
−0.0485339 + 0.998822i \(0.515455\pi\)
\(30\) 0 0
\(31\) 7.10973 1.27695 0.638473 0.769644i \(-0.279566\pi\)
0.638473 + 0.769644i \(0.279566\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 3.71644 0.628194
\(36\) 0 0
\(37\) −0.792706 −0.130320 −0.0651601 0.997875i \(-0.520756\pi\)
−0.0651601 + 0.997875i \(0.520756\pi\)
\(38\) 7.44155 1.20718
\(39\) 0 0
\(40\) 1.26197 0.199535
\(41\) −4.06306 −0.634543 −0.317272 0.948335i \(-0.602767\pi\)
−0.317272 + 0.948335i \(0.602767\pi\)
\(42\) 0 0
\(43\) 0.867091 0.132230 0.0661151 0.997812i \(-0.478940\pi\)
0.0661151 + 0.997812i \(0.478940\pi\)
\(44\) −3.29769 −0.497146
\(45\) 0 0
\(46\) 1.41421 0.208514
\(47\) 10.3086 1.50367 0.751835 0.659351i \(-0.229169\pi\)
0.751835 + 0.659351i \(0.229169\pi\)
\(48\) 0 0
\(49\) 1.67271 0.238959
\(50\) −3.40743 −0.481883
\(51\) 0 0
\(52\) −3.36370 −0.466461
\(53\) 9.98868 1.37205 0.686025 0.727578i \(-0.259354\pi\)
0.686025 + 0.727578i \(0.259354\pi\)
\(54\) 0 0
\(55\) −4.16160 −0.561150
\(56\) 2.94495 0.393535
\(57\) 0 0
\(58\) −0.522726 −0.0686373
\(59\) 7.31543 0.952388 0.476194 0.879340i \(-0.342016\pi\)
0.476194 + 0.879340i \(0.342016\pi\)
\(60\) 0 0
\(61\) 10.7035 1.37045 0.685223 0.728333i \(-0.259705\pi\)
0.685223 + 0.728333i \(0.259705\pi\)
\(62\) 7.10973 0.902937
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.24489 −0.526514
\(66\) 0 0
\(67\) 13.5349 1.65355 0.826775 0.562532i \(-0.190173\pi\)
0.826775 + 0.562532i \(0.190173\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 3.71644 0.444200
\(71\) −7.38144 −0.876015 −0.438008 0.898971i \(-0.644316\pi\)
−0.438008 + 0.898971i \(0.644316\pi\)
\(72\) 0 0
\(73\) −5.23880 −0.613155 −0.306577 0.951846i \(-0.599184\pi\)
−0.306577 + 0.951846i \(0.599184\pi\)
\(74\) −0.792706 −0.0921502
\(75\) 0 0
\(76\) 7.44155 0.853605
\(77\) −9.71153 −1.10673
\(78\) 0 0
\(79\) 10.9449 1.23140 0.615701 0.787980i \(-0.288873\pi\)
0.615701 + 0.787980i \(0.288873\pi\)
\(80\) 1.26197 0.141093
\(81\) 0 0
\(82\) −4.06306 −0.448690
\(83\) −12.3633 −1.35705 −0.678526 0.734577i \(-0.737381\pi\)
−0.678526 + 0.734577i \(0.737381\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.867091 0.0935008
\(87\) 0 0
\(88\) −3.29769 −0.351535
\(89\) 17.3975 1.84413 0.922063 0.387040i \(-0.126502\pi\)
0.922063 + 0.387040i \(0.126502\pi\)
\(90\) 0 0
\(91\) −9.90591 −1.03842
\(92\) 1.41421 0.147442
\(93\) 0 0
\(94\) 10.3086 1.06326
\(95\) 9.39104 0.963500
\(96\) 0 0
\(97\) −6.22466 −0.632018 −0.316009 0.948756i \(-0.602343\pi\)
−0.316009 + 0.948756i \(0.602343\pi\)
\(98\) 1.67271 0.168970
\(99\) 0 0
\(100\) −3.40743 −0.340743
\(101\) −9.88764 −0.983857 −0.491929 0.870636i \(-0.663708\pi\)
−0.491929 + 0.870636i \(0.663708\pi\)
\(102\) 0 0
\(103\) 6.54168 0.644571 0.322286 0.946642i \(-0.395549\pi\)
0.322286 + 0.946642i \(0.395549\pi\)
\(104\) −3.36370 −0.329838
\(105\) 0 0
\(106\) 9.98868 0.970186
\(107\) 3.49207 0.337591 0.168796 0.985651i \(-0.446012\pi\)
0.168796 + 0.985651i \(0.446012\pi\)
\(108\) 0 0
\(109\) 15.8751 1.52056 0.760279 0.649596i \(-0.225062\pi\)
0.760279 + 0.649596i \(0.225062\pi\)
\(110\) −4.16160 −0.396793
\(111\) 0 0
\(112\) 2.94495 0.278271
\(113\) −19.3827 −1.82337 −0.911683 0.410893i \(-0.865217\pi\)
−0.911683 + 0.410893i \(0.865217\pi\)
\(114\) 0 0
\(115\) 1.78470 0.166424
\(116\) −0.522726 −0.0485339
\(117\) 0 0
\(118\) 7.31543 0.673440
\(119\) 0 0
\(120\) 0 0
\(121\) −0.125218 −0.0113835
\(122\) 10.7035 0.969052
\(123\) 0 0
\(124\) 7.10973 0.638473
\(125\) −10.6099 −0.948982
\(126\) 0 0
\(127\) 17.7830 1.57798 0.788992 0.614404i \(-0.210603\pi\)
0.788992 + 0.614404i \(0.210603\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −4.24489 −0.372302
\(131\) −15.2127 −1.32914 −0.664569 0.747227i \(-0.731385\pi\)
−0.664569 + 0.747227i \(0.731385\pi\)
\(132\) 0 0
\(133\) 21.9150 1.90027
\(134\) 13.5349 1.16924
\(135\) 0 0
\(136\) 0 0
\(137\) −3.61766 −0.309078 −0.154539 0.987987i \(-0.549389\pi\)
−0.154539 + 0.987987i \(0.549389\pi\)
\(138\) 0 0
\(139\) −20.2446 −1.71712 −0.858560 0.512713i \(-0.828641\pi\)
−0.858560 + 0.512713i \(0.828641\pi\)
\(140\) 3.71644 0.314097
\(141\) 0 0
\(142\) −7.38144 −0.619436
\(143\) 11.0924 0.927596
\(144\) 0 0
\(145\) −0.659666 −0.0547823
\(146\) −5.23880 −0.433566
\(147\) 0 0
\(148\) −0.792706 −0.0651601
\(149\) −7.73418 −0.633609 −0.316804 0.948491i \(-0.602610\pi\)
−0.316804 + 0.948491i \(0.602610\pi\)
\(150\) 0 0
\(151\) 1.02280 0.0832346 0.0416173 0.999134i \(-0.486749\pi\)
0.0416173 + 0.999134i \(0.486749\pi\)
\(152\) 7.44155 0.603590
\(153\) 0 0
\(154\) −9.71153 −0.782578
\(155\) 8.97229 0.720671
\(156\) 0 0
\(157\) 23.7502 1.89547 0.947736 0.319055i \(-0.103366\pi\)
0.947736 + 0.319055i \(0.103366\pi\)
\(158\) 10.9449 0.870733
\(159\) 0 0
\(160\) 1.26197 0.0997677
\(161\) 4.16478 0.328231
\(162\) 0 0
\(163\) −3.22037 −0.252239 −0.126119 0.992015i \(-0.540252\pi\)
−0.126119 + 0.992015i \(0.540252\pi\)
\(164\) −4.06306 −0.317272
\(165\) 0 0
\(166\) −12.3633 −0.959580
\(167\) −4.68231 −0.362328 −0.181164 0.983453i \(-0.557987\pi\)
−0.181164 + 0.983453i \(0.557987\pi\)
\(168\) 0 0
\(169\) −1.68554 −0.129657
\(170\) 0 0
\(171\) 0 0
\(172\) 0.867091 0.0661151
\(173\) −17.4428 −1.32615 −0.663075 0.748553i \(-0.730749\pi\)
−0.663075 + 0.748553i \(0.730749\pi\)
\(174\) 0 0
\(175\) −10.0347 −0.758551
\(176\) −3.29769 −0.248573
\(177\) 0 0
\(178\) 17.3975 1.30399
\(179\) 8.76606 0.655206 0.327603 0.944815i \(-0.393759\pi\)
0.327603 + 0.944815i \(0.393759\pi\)
\(180\) 0 0
\(181\) −3.78273 −0.281168 −0.140584 0.990069i \(-0.544898\pi\)
−0.140584 + 0.990069i \(0.544898\pi\)
\(182\) −9.90591 −0.734275
\(183\) 0 0
\(184\) 1.41421 0.104257
\(185\) −1.00037 −0.0735489
\(186\) 0 0
\(187\) 0 0
\(188\) 10.3086 0.751835
\(189\) 0 0
\(190\) 9.39104 0.681297
\(191\) 0.371014 0.0268456 0.0134228 0.999910i \(-0.495727\pi\)
0.0134228 + 0.999910i \(0.495727\pi\)
\(192\) 0 0
\(193\) 1.04026 0.0748793 0.0374397 0.999299i \(-0.488080\pi\)
0.0374397 + 0.999299i \(0.488080\pi\)
\(194\) −6.22466 −0.446904
\(195\) 0 0
\(196\) 1.67271 0.119480
\(197\) 5.29573 0.377305 0.188652 0.982044i \(-0.439588\pi\)
0.188652 + 0.982044i \(0.439588\pi\)
\(198\) 0 0
\(199\) −21.2738 −1.50806 −0.754029 0.656841i \(-0.771892\pi\)
−0.754029 + 0.656841i \(0.771892\pi\)
\(200\) −3.40743 −0.240941
\(201\) 0 0
\(202\) −9.88764 −0.695692
\(203\) −1.53940 −0.108045
\(204\) 0 0
\(205\) −5.12747 −0.358118
\(206\) 6.54168 0.455781
\(207\) 0 0
\(208\) −3.36370 −0.233230
\(209\) −24.5400 −1.69746
\(210\) 0 0
\(211\) 12.9900 0.894270 0.447135 0.894466i \(-0.352444\pi\)
0.447135 + 0.894466i \(0.352444\pi\)
\(212\) 9.98868 0.686025
\(213\) 0 0
\(214\) 3.49207 0.238713
\(215\) 1.09425 0.0746269
\(216\) 0 0
\(217\) 20.9378 1.42135
\(218\) 15.8751 1.07520
\(219\) 0 0
\(220\) −4.16160 −0.280575
\(221\) 0 0
\(222\) 0 0
\(223\) −3.88573 −0.260208 −0.130104 0.991500i \(-0.541531\pi\)
−0.130104 + 0.991500i \(0.541531\pi\)
\(224\) 2.94495 0.196768
\(225\) 0 0
\(226\) −19.3827 −1.28932
\(227\) −4.38875 −0.291292 −0.145646 0.989337i \(-0.546526\pi\)
−0.145646 + 0.989337i \(0.546526\pi\)
\(228\) 0 0
\(229\) −3.42063 −0.226041 −0.113021 0.993593i \(-0.536053\pi\)
−0.113021 + 0.993593i \(0.536053\pi\)
\(230\) 1.78470 0.117680
\(231\) 0 0
\(232\) −0.522726 −0.0343187
\(233\) 0.893211 0.0585162 0.0292581 0.999572i \(-0.490686\pi\)
0.0292581 + 0.999572i \(0.490686\pi\)
\(234\) 0 0
\(235\) 13.0092 0.848628
\(236\) 7.31543 0.476194
\(237\) 0 0
\(238\) 0 0
\(239\) −0.389157 −0.0251725 −0.0125863 0.999921i \(-0.504006\pi\)
−0.0125863 + 0.999921i \(0.504006\pi\)
\(240\) 0 0
\(241\) 15.7554 1.01489 0.507447 0.861683i \(-0.330589\pi\)
0.507447 + 0.861683i \(0.330589\pi\)
\(242\) −0.125218 −0.00804934
\(243\) 0 0
\(244\) 10.7035 0.685223
\(245\) 2.11092 0.134862
\(246\) 0 0
\(247\) −25.0311 −1.59269
\(248\) 7.10973 0.451468
\(249\) 0 0
\(250\) −10.6099 −0.671032
\(251\) −15.2423 −0.962083 −0.481042 0.876698i \(-0.659741\pi\)
−0.481042 + 0.876698i \(0.659741\pi\)
\(252\) 0 0
\(253\) −4.66364 −0.293201
\(254\) 17.7830 1.11580
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 7.05696 0.440201 0.220101 0.975477i \(-0.429361\pi\)
0.220101 + 0.975477i \(0.429361\pi\)
\(258\) 0 0
\(259\) −2.33448 −0.145057
\(260\) −4.24489 −0.263257
\(261\) 0 0
\(262\) −15.2127 −0.939842
\(263\) −5.53808 −0.341493 −0.170746 0.985315i \(-0.554618\pi\)
−0.170746 + 0.985315i \(0.554618\pi\)
\(264\) 0 0
\(265\) 12.6054 0.774346
\(266\) 21.9150 1.34369
\(267\) 0 0
\(268\) 13.5349 0.826775
\(269\) 4.31477 0.263076 0.131538 0.991311i \(-0.458008\pi\)
0.131538 + 0.991311i \(0.458008\pi\)
\(270\) 0 0
\(271\) −4.45569 −0.270664 −0.135332 0.990800i \(-0.543210\pi\)
−0.135332 + 0.990800i \(0.543210\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −3.61766 −0.218551
\(275\) 11.2366 0.677595
\(276\) 0 0
\(277\) 14.0382 0.843471 0.421736 0.906719i \(-0.361421\pi\)
0.421736 + 0.906719i \(0.361421\pi\)
\(278\) −20.2446 −1.21419
\(279\) 0 0
\(280\) 3.71644 0.222100
\(281\) −8.67913 −0.517753 −0.258877 0.965910i \(-0.583352\pi\)
−0.258877 + 0.965910i \(0.583352\pi\)
\(282\) 0 0
\(283\) −14.3623 −0.853753 −0.426876 0.904310i \(-0.640386\pi\)
−0.426876 + 0.904310i \(0.640386\pi\)
\(284\) −7.38144 −0.438008
\(285\) 0 0
\(286\) 11.0924 0.655910
\(287\) −11.9655 −0.706301
\(288\) 0 0
\(289\) 0 0
\(290\) −0.659666 −0.0387369
\(291\) 0 0
\(292\) −5.23880 −0.306577
\(293\) −22.0243 −1.28668 −0.643338 0.765582i \(-0.722451\pi\)
−0.643338 + 0.765582i \(0.722451\pi\)
\(294\) 0 0
\(295\) 9.23188 0.537501
\(296\) −0.792706 −0.0460751
\(297\) 0 0
\(298\) −7.73418 −0.448029
\(299\) −4.75699 −0.275104
\(300\) 0 0
\(301\) 2.55354 0.147183
\(302\) 1.02280 0.0588557
\(303\) 0 0
\(304\) 7.44155 0.426802
\(305\) 13.5076 0.773440
\(306\) 0 0
\(307\) −7.13291 −0.407097 −0.203548 0.979065i \(-0.565247\pi\)
−0.203548 + 0.979065i \(0.565247\pi\)
\(308\) −9.71153 −0.553366
\(309\) 0 0
\(310\) 8.97229 0.509592
\(311\) −19.1212 −1.08427 −0.542133 0.840293i \(-0.682383\pi\)
−0.542133 + 0.840293i \(0.682383\pi\)
\(312\) 0 0
\(313\) −13.0225 −0.736076 −0.368038 0.929811i \(-0.619970\pi\)
−0.368038 + 0.929811i \(0.619970\pi\)
\(314\) 23.7502 1.34030
\(315\) 0 0
\(316\) 10.9449 0.615701
\(317\) −4.55648 −0.255917 −0.127959 0.991779i \(-0.540843\pi\)
−0.127959 + 0.991779i \(0.540843\pi\)
\(318\) 0 0
\(319\) 1.72379 0.0965137
\(320\) 1.26197 0.0705464
\(321\) 0 0
\(322\) 4.16478 0.232094
\(323\) 0 0
\(324\) 0 0
\(325\) 11.4615 0.635772
\(326\) −3.22037 −0.178360
\(327\) 0 0
\(328\) −4.06306 −0.224345
\(329\) 30.3584 1.67371
\(330\) 0 0
\(331\) −18.7047 −1.02811 −0.514053 0.857758i \(-0.671856\pi\)
−0.514053 + 0.857758i \(0.671856\pi\)
\(332\) −12.3633 −0.678526
\(333\) 0 0
\(334\) −4.68231 −0.256205
\(335\) 17.0807 0.933217
\(336\) 0 0
\(337\) −23.8756 −1.30059 −0.650294 0.759683i \(-0.725354\pi\)
−0.650294 + 0.759683i \(0.725354\pi\)
\(338\) −1.68554 −0.0916815
\(339\) 0 0
\(340\) 0 0
\(341\) −23.4457 −1.26966
\(342\) 0 0
\(343\) −15.6886 −0.847103
\(344\) 0.867091 0.0467504
\(345\) 0 0
\(346\) −17.4428 −0.937729
\(347\) 24.9127 1.33738 0.668692 0.743540i \(-0.266855\pi\)
0.668692 + 0.743540i \(0.266855\pi\)
\(348\) 0 0
\(349\) −19.5194 −1.04485 −0.522425 0.852685i \(-0.674973\pi\)
−0.522425 + 0.852685i \(0.674973\pi\)
\(350\) −10.0347 −0.536377
\(351\) 0 0
\(352\) −3.29769 −0.175768
\(353\) 25.7115 1.36849 0.684243 0.729254i \(-0.260133\pi\)
0.684243 + 0.729254i \(0.260133\pi\)
\(354\) 0 0
\(355\) −9.31517 −0.494398
\(356\) 17.3975 0.922063
\(357\) 0 0
\(358\) 8.76606 0.463301
\(359\) −19.2482 −1.01588 −0.507939 0.861393i \(-0.669593\pi\)
−0.507939 + 0.861393i \(0.669593\pi\)
\(360\) 0 0
\(361\) 36.3767 1.91456
\(362\) −3.78273 −0.198816
\(363\) 0 0
\(364\) −9.90591 −0.519211
\(365\) −6.61122 −0.346047
\(366\) 0 0
\(367\) 5.08708 0.265544 0.132772 0.991147i \(-0.457612\pi\)
0.132772 + 0.991147i \(0.457612\pi\)
\(368\) 1.41421 0.0737210
\(369\) 0 0
\(370\) −1.00037 −0.0520070
\(371\) 29.4161 1.52721
\(372\) 0 0
\(373\) 21.9719 1.13766 0.568831 0.822454i \(-0.307396\pi\)
0.568831 + 0.822454i \(0.307396\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 10.3086 0.531628
\(377\) 1.75829 0.0905567
\(378\) 0 0
\(379\) −10.0798 −0.517763 −0.258881 0.965909i \(-0.583354\pi\)
−0.258881 + 0.965909i \(0.583354\pi\)
\(380\) 9.39104 0.481750
\(381\) 0 0
\(382\) 0.371014 0.0189827
\(383\) 27.9738 1.42940 0.714698 0.699433i \(-0.246564\pi\)
0.714698 + 0.699433i \(0.246564\pi\)
\(384\) 0 0
\(385\) −12.2557 −0.624608
\(386\) 1.04026 0.0529477
\(387\) 0 0
\(388\) −6.22466 −0.316009
\(389\) 12.3355 0.625432 0.312716 0.949847i \(-0.398761\pi\)
0.312716 + 0.949847i \(0.398761\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.67271 0.0844848
\(393\) 0 0
\(394\) 5.29573 0.266795
\(395\) 13.8122 0.694968
\(396\) 0 0
\(397\) 7.10626 0.356653 0.178326 0.983971i \(-0.442932\pi\)
0.178326 + 0.983971i \(0.442932\pi\)
\(398\) −21.2738 −1.06636
\(399\) 0 0
\(400\) −3.40743 −0.170371
\(401\) 29.6691 1.48160 0.740801 0.671725i \(-0.234446\pi\)
0.740801 + 0.671725i \(0.234446\pi\)
\(402\) 0 0
\(403\) −23.9150 −1.19129
\(404\) −9.88764 −0.491929
\(405\) 0 0
\(406\) −1.53940 −0.0763992
\(407\) 2.61410 0.129576
\(408\) 0 0
\(409\) 14.8922 0.736371 0.368185 0.929752i \(-0.379979\pi\)
0.368185 + 0.929752i \(0.379979\pi\)
\(410\) −5.12747 −0.253228
\(411\) 0 0
\(412\) 6.54168 0.322286
\(413\) 21.5436 1.06009
\(414\) 0 0
\(415\) −15.6022 −0.765881
\(416\) −3.36370 −0.164919
\(417\) 0 0
\(418\) −24.5400 −1.20029
\(419\) 26.2549 1.28264 0.641319 0.767274i \(-0.278388\pi\)
0.641319 + 0.767274i \(0.278388\pi\)
\(420\) 0 0
\(421\) 16.6683 0.812365 0.406182 0.913792i \(-0.366860\pi\)
0.406182 + 0.913792i \(0.366860\pi\)
\(422\) 12.9900 0.632345
\(423\) 0 0
\(424\) 9.98868 0.485093
\(425\) 0 0
\(426\) 0 0
\(427\) 31.5213 1.52542
\(428\) 3.49207 0.168796
\(429\) 0 0
\(430\) 1.09425 0.0527692
\(431\) −4.86443 −0.234312 −0.117156 0.993114i \(-0.537378\pi\)
−0.117156 + 0.993114i \(0.537378\pi\)
\(432\) 0 0
\(433\) 2.20663 0.106044 0.0530220 0.998593i \(-0.483115\pi\)
0.0530220 + 0.998593i \(0.483115\pi\)
\(434\) 20.9378 1.00505
\(435\) 0 0
\(436\) 15.8751 0.760279
\(437\) 10.5239 0.503429
\(438\) 0 0
\(439\) 9.89180 0.472110 0.236055 0.971740i \(-0.424145\pi\)
0.236055 + 0.971740i \(0.424145\pi\)
\(440\) −4.16160 −0.198396
\(441\) 0 0
\(442\) 0 0
\(443\) −5.50565 −0.261581 −0.130791 0.991410i \(-0.541752\pi\)
−0.130791 + 0.991410i \(0.541752\pi\)
\(444\) 0 0
\(445\) 21.9551 1.04077
\(446\) −3.88573 −0.183995
\(447\) 0 0
\(448\) 2.94495 0.139136
\(449\) 33.2572 1.56951 0.784753 0.619808i \(-0.212790\pi\)
0.784753 + 0.619808i \(0.212790\pi\)
\(450\) 0 0
\(451\) 13.3987 0.630921
\(452\) −19.3827 −0.911683
\(453\) 0 0
\(454\) −4.38875 −0.205974
\(455\) −12.5010 −0.586055
\(456\) 0 0
\(457\) −17.4812 −0.817736 −0.408868 0.912594i \(-0.634076\pi\)
−0.408868 + 0.912594i \(0.634076\pi\)
\(458\) −3.42063 −0.159835
\(459\) 0 0
\(460\) 1.78470 0.0832120
\(461\) 14.5385 0.677123 0.338562 0.940944i \(-0.390060\pi\)
0.338562 + 0.940944i \(0.390060\pi\)
\(462\) 0 0
\(463\) −1.47703 −0.0686435 −0.0343217 0.999411i \(-0.510927\pi\)
−0.0343217 + 0.999411i \(0.510927\pi\)
\(464\) −0.522726 −0.0242670
\(465\) 0 0
\(466\) 0.893211 0.0413772
\(467\) −8.68873 −0.402066 −0.201033 0.979584i \(-0.564430\pi\)
−0.201033 + 0.979584i \(0.564430\pi\)
\(468\) 0 0
\(469\) 39.8596 1.84054
\(470\) 13.0092 0.600071
\(471\) 0 0
\(472\) 7.31543 0.336720
\(473\) −2.85940 −0.131475
\(474\) 0 0
\(475\) −25.3565 −1.16344
\(476\) 0 0
\(477\) 0 0
\(478\) −0.389157 −0.0177996
\(479\) −10.9463 −0.500151 −0.250075 0.968226i \(-0.580455\pi\)
−0.250075 + 0.968226i \(0.580455\pi\)
\(480\) 0 0
\(481\) 2.66642 0.121578
\(482\) 15.7554 0.717638
\(483\) 0 0
\(484\) −0.125218 −0.00569174
\(485\) −7.85535 −0.356693
\(486\) 0 0
\(487\) −8.75751 −0.396841 −0.198420 0.980117i \(-0.563581\pi\)
−0.198420 + 0.980117i \(0.563581\pi\)
\(488\) 10.7035 0.484526
\(489\) 0 0
\(490\) 2.11092 0.0953616
\(491\) −30.4170 −1.37270 −0.686351 0.727271i \(-0.740788\pi\)
−0.686351 + 0.727271i \(0.740788\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −25.0311 −1.12620
\(495\) 0 0
\(496\) 7.10973 0.319236
\(497\) −21.7379 −0.975080
\(498\) 0 0
\(499\) 22.3333 0.999777 0.499889 0.866090i \(-0.333374\pi\)
0.499889 + 0.866090i \(0.333374\pi\)
\(500\) −10.6099 −0.474491
\(501\) 0 0
\(502\) −15.2423 −0.680296
\(503\) 42.3520 1.88838 0.944191 0.329398i \(-0.106846\pi\)
0.944191 + 0.329398i \(0.106846\pi\)
\(504\) 0 0
\(505\) −12.4779 −0.555261
\(506\) −4.66364 −0.207324
\(507\) 0 0
\(508\) 17.7830 0.788992
\(509\) 9.03882 0.400639 0.200319 0.979731i \(-0.435802\pi\)
0.200319 + 0.979731i \(0.435802\pi\)
\(510\) 0 0
\(511\) −15.4280 −0.682493
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 7.05696 0.311269
\(515\) 8.25543 0.363778
\(516\) 0 0
\(517\) −33.9947 −1.49509
\(518\) −2.33448 −0.102571
\(519\) 0 0
\(520\) −4.24489 −0.186151
\(521\) −33.4356 −1.46484 −0.732420 0.680853i \(-0.761609\pi\)
−0.732420 + 0.680853i \(0.761609\pi\)
\(522\) 0 0
\(523\) −23.9751 −1.04836 −0.524180 0.851608i \(-0.675628\pi\)
−0.524180 + 0.851608i \(0.675628\pi\)
\(524\) −15.2127 −0.664569
\(525\) 0 0
\(526\) −5.53808 −0.241472
\(527\) 0 0
\(528\) 0 0
\(529\) −21.0000 −0.913043
\(530\) 12.6054 0.547545
\(531\) 0 0
\(532\) 21.9150 0.950135
\(533\) 13.6669 0.591979
\(534\) 0 0
\(535\) 4.40690 0.190527
\(536\) 13.5349 0.584618
\(537\) 0 0
\(538\) 4.31477 0.186023
\(539\) −5.51610 −0.237595
\(540\) 0 0
\(541\) −17.5884 −0.756182 −0.378091 0.925768i \(-0.623419\pi\)
−0.378091 + 0.925768i \(0.623419\pi\)
\(542\) −4.45569 −0.191388
\(543\) 0 0
\(544\) 0 0
\(545\) 20.0339 0.858160
\(546\) 0 0
\(547\) 4.79884 0.205183 0.102592 0.994724i \(-0.467286\pi\)
0.102592 + 0.994724i \(0.467286\pi\)
\(548\) −3.61766 −0.154539
\(549\) 0 0
\(550\) 11.2366 0.479132
\(551\) −3.88989 −0.165715
\(552\) 0 0
\(553\) 32.2323 1.37066
\(554\) 14.0382 0.596424
\(555\) 0 0
\(556\) −20.2446 −0.858560
\(557\) 27.0366 1.14558 0.572788 0.819704i \(-0.305862\pi\)
0.572788 + 0.819704i \(0.305862\pi\)
\(558\) 0 0
\(559\) −2.91663 −0.123360
\(560\) 3.71644 0.157048
\(561\) 0 0
\(562\) −8.67913 −0.366107
\(563\) −38.3143 −1.61475 −0.807377 0.590036i \(-0.799114\pi\)
−0.807377 + 0.590036i \(0.799114\pi\)
\(564\) 0 0
\(565\) −24.4604 −1.02906
\(566\) −14.3623 −0.603694
\(567\) 0 0
\(568\) −7.38144 −0.309718
\(569\) −18.6210 −0.780633 −0.390317 0.920681i \(-0.627634\pi\)
−0.390317 + 0.920681i \(0.627634\pi\)
\(570\) 0 0
\(571\) 3.86349 0.161682 0.0808410 0.996727i \(-0.474239\pi\)
0.0808410 + 0.996727i \(0.474239\pi\)
\(572\) 11.0924 0.463798
\(573\) 0 0
\(574\) −11.9655 −0.499430
\(575\) −4.81883 −0.200959
\(576\) 0 0
\(577\) −25.4772 −1.06063 −0.530315 0.847801i \(-0.677926\pi\)
−0.530315 + 0.847801i \(0.677926\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −0.659666 −0.0273911
\(581\) −36.4093 −1.51051
\(582\) 0 0
\(583\) −32.9396 −1.36422
\(584\) −5.23880 −0.216783
\(585\) 0 0
\(586\) −22.0243 −0.909817
\(587\) 0.531636 0.0219430 0.0109715 0.999940i \(-0.496508\pi\)
0.0109715 + 0.999940i \(0.496508\pi\)
\(588\) 0 0
\(589\) 52.9074 2.18001
\(590\) 9.23188 0.380070
\(591\) 0 0
\(592\) −0.792706 −0.0325800
\(593\) 12.1266 0.497982 0.248991 0.968506i \(-0.419901\pi\)
0.248991 + 0.968506i \(0.419901\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −7.73418 −0.316804
\(597\) 0 0
\(598\) −4.75699 −0.194528
\(599\) −14.6476 −0.598486 −0.299243 0.954177i \(-0.596734\pi\)
−0.299243 + 0.954177i \(0.596734\pi\)
\(600\) 0 0
\(601\) −26.2961 −1.07264 −0.536320 0.844015i \(-0.680186\pi\)
−0.536320 + 0.844015i \(0.680186\pi\)
\(602\) 2.55354 0.104074
\(603\) 0 0
\(604\) 1.02280 0.0416173
\(605\) −0.158022 −0.00642451
\(606\) 0 0
\(607\) 24.3315 0.987584 0.493792 0.869580i \(-0.335610\pi\)
0.493792 + 0.869580i \(0.335610\pi\)
\(608\) 7.44155 0.301795
\(609\) 0 0
\(610\) 13.5076 0.546905
\(611\) −34.6752 −1.40281
\(612\) 0 0
\(613\) −8.21114 −0.331645 −0.165822 0.986156i \(-0.553028\pi\)
−0.165822 + 0.986156i \(0.553028\pi\)
\(614\) −7.13291 −0.287861
\(615\) 0 0
\(616\) −9.71153 −0.391289
\(617\) −44.5518 −1.79359 −0.896793 0.442450i \(-0.854109\pi\)
−0.896793 + 0.442450i \(0.854109\pi\)
\(618\) 0 0
\(619\) 21.8112 0.876668 0.438334 0.898812i \(-0.355569\pi\)
0.438334 + 0.898812i \(0.355569\pi\)
\(620\) 8.97229 0.360336
\(621\) 0 0
\(622\) −19.1212 −0.766692
\(623\) 51.2346 2.05267
\(624\) 0 0
\(625\) 3.64767 0.145907
\(626\) −13.0225 −0.520484
\(627\) 0 0
\(628\) 23.7502 0.947736
\(629\) 0 0
\(630\) 0 0
\(631\) −41.7021 −1.66014 −0.830068 0.557663i \(-0.811698\pi\)
−0.830068 + 0.557663i \(0.811698\pi\)
\(632\) 10.9449 0.435367
\(633\) 0 0
\(634\) −4.55648 −0.180961
\(635\) 22.4416 0.890569
\(636\) 0 0
\(637\) −5.62650 −0.222930
\(638\) 1.72379 0.0682455
\(639\) 0 0
\(640\) 1.26197 0.0498838
\(641\) −13.7067 −0.541381 −0.270691 0.962666i \(-0.587252\pi\)
−0.270691 + 0.962666i \(0.587252\pi\)
\(642\) 0 0
\(643\) −21.8390 −0.861247 −0.430624 0.902532i \(-0.641706\pi\)
−0.430624 + 0.902532i \(0.641706\pi\)
\(644\) 4.16478 0.164115
\(645\) 0 0
\(646\) 0 0
\(647\) 21.2760 0.836447 0.418223 0.908344i \(-0.362653\pi\)
0.418223 + 0.908344i \(0.362653\pi\)
\(648\) 0 0
\(649\) −24.1241 −0.946952
\(650\) 11.4615 0.449559
\(651\) 0 0
\(652\) −3.22037 −0.126119
\(653\) −33.1843 −1.29860 −0.649301 0.760531i \(-0.724938\pi\)
−0.649301 + 0.760531i \(0.724938\pi\)
\(654\) 0 0
\(655\) −19.1980 −0.750127
\(656\) −4.06306 −0.158636
\(657\) 0 0
\(658\) 30.3584 1.18349
\(659\) 0.649089 0.0252849 0.0126425 0.999920i \(-0.495976\pi\)
0.0126425 + 0.999920i \(0.495976\pi\)
\(660\) 0 0
\(661\) −30.8996 −1.20185 −0.600927 0.799304i \(-0.705202\pi\)
−0.600927 + 0.799304i \(0.705202\pi\)
\(662\) −18.7047 −0.726981
\(663\) 0 0
\(664\) −12.3633 −0.479790
\(665\) 27.6561 1.07246
\(666\) 0 0
\(667\) −0.739246 −0.0286237
\(668\) −4.68231 −0.181164
\(669\) 0 0
\(670\) 17.0807 0.659884
\(671\) −35.2969 −1.36262
\(672\) 0 0
\(673\) −30.3508 −1.16994 −0.584968 0.811056i \(-0.698893\pi\)
−0.584968 + 0.811056i \(0.698893\pi\)
\(674\) −23.8756 −0.919655
\(675\) 0 0
\(676\) −1.68554 −0.0648286
\(677\) 6.53702 0.251238 0.125619 0.992079i \(-0.459908\pi\)
0.125619 + 0.992079i \(0.459908\pi\)
\(678\) 0 0
\(679\) −18.3313 −0.703490
\(680\) 0 0
\(681\) 0 0
\(682\) −23.4457 −0.897783
\(683\) −10.6469 −0.407392 −0.203696 0.979034i \(-0.565295\pi\)
−0.203696 + 0.979034i \(0.565295\pi\)
\(684\) 0 0
\(685\) −4.56539 −0.174435
\(686\) −15.6886 −0.598993
\(687\) 0 0
\(688\) 0.867091 0.0330575
\(689\) −33.5989 −1.28002
\(690\) 0 0
\(691\) −19.7603 −0.751718 −0.375859 0.926677i \(-0.622652\pi\)
−0.375859 + 0.926677i \(0.622652\pi\)
\(692\) −17.4428 −0.663075
\(693\) 0 0
\(694\) 24.9127 0.945673
\(695\) −25.5481 −0.969093
\(696\) 0 0
\(697\) 0 0
\(698\) −19.5194 −0.738821
\(699\) 0 0
\(700\) −10.0347 −0.379276
\(701\) −39.7169 −1.50009 −0.750043 0.661390i \(-0.769967\pi\)
−0.750043 + 0.661390i \(0.769967\pi\)
\(702\) 0 0
\(703\) −5.89897 −0.222484
\(704\) −3.29769 −0.124286
\(705\) 0 0
\(706\) 25.7115 0.967666
\(707\) −29.1186 −1.09512
\(708\) 0 0
\(709\) 44.9863 1.68950 0.844749 0.535163i \(-0.179750\pi\)
0.844749 + 0.535163i \(0.179750\pi\)
\(710\) −9.31517 −0.349592
\(711\) 0 0
\(712\) 17.3975 0.651997
\(713\) 10.0547 0.376551
\(714\) 0 0
\(715\) 13.9984 0.523509
\(716\) 8.76606 0.327603
\(717\) 0 0
\(718\) −19.2482 −0.718335
\(719\) 34.9648 1.30397 0.651983 0.758233i \(-0.273937\pi\)
0.651983 + 0.758233i \(0.273937\pi\)
\(720\) 0 0
\(721\) 19.2649 0.717463
\(722\) 36.3767 1.35380
\(723\) 0 0
\(724\) −3.78273 −0.140584
\(725\) 1.78115 0.0661503
\(726\) 0 0
\(727\) −9.34543 −0.346603 −0.173301 0.984869i \(-0.555443\pi\)
−0.173301 + 0.984869i \(0.555443\pi\)
\(728\) −9.90591 −0.367137
\(729\) 0 0
\(730\) −6.61122 −0.244692
\(731\) 0 0
\(732\) 0 0
\(733\) 35.0025 1.29285 0.646423 0.762979i \(-0.276264\pi\)
0.646423 + 0.762979i \(0.276264\pi\)
\(734\) 5.08708 0.187768
\(735\) 0 0
\(736\) 1.41421 0.0521286
\(737\) −44.6339 −1.64411
\(738\) 0 0
\(739\) 20.3466 0.748460 0.374230 0.927336i \(-0.377907\pi\)
0.374230 + 0.927336i \(0.377907\pi\)
\(740\) −1.00037 −0.0367745
\(741\) 0 0
\(742\) 29.4161 1.07990
\(743\) −19.1359 −0.702027 −0.351014 0.936370i \(-0.614163\pi\)
−0.351014 + 0.936370i \(0.614163\pi\)
\(744\) 0 0
\(745\) −9.76033 −0.357591
\(746\) 21.9719 0.804449
\(747\) 0 0
\(748\) 0 0
\(749\) 10.2840 0.375768
\(750\) 0 0
\(751\) −42.2934 −1.54331 −0.771654 0.636043i \(-0.780570\pi\)
−0.771654 + 0.636043i \(0.780570\pi\)
\(752\) 10.3086 0.375918
\(753\) 0 0
\(754\) 1.75829 0.0640332
\(755\) 1.29075 0.0469752
\(756\) 0 0
\(757\) 46.3076 1.68308 0.841538 0.540197i \(-0.181650\pi\)
0.841538 + 0.540197i \(0.181650\pi\)
\(758\) −10.0798 −0.366114
\(759\) 0 0
\(760\) 9.39104 0.340649
\(761\) 2.15386 0.0780775 0.0390388 0.999238i \(-0.487570\pi\)
0.0390388 + 0.999238i \(0.487570\pi\)
\(762\) 0 0
\(763\) 46.7513 1.69251
\(764\) 0.371014 0.0134228
\(765\) 0 0
\(766\) 27.9738 1.01074
\(767\) −24.6069 −0.888504
\(768\) 0 0
\(769\) −22.8143 −0.822705 −0.411353 0.911476i \(-0.634944\pi\)
−0.411353 + 0.911476i \(0.634944\pi\)
\(770\) −12.2557 −0.441664
\(771\) 0 0
\(772\) 1.04026 0.0374397
\(773\) −14.4131 −0.518403 −0.259201 0.965823i \(-0.583459\pi\)
−0.259201 + 0.965823i \(0.583459\pi\)
\(774\) 0 0
\(775\) −24.2259 −0.870219
\(776\) −6.22466 −0.223452
\(777\) 0 0
\(778\) 12.3355 0.442247
\(779\) −30.2355 −1.08330
\(780\) 0 0
\(781\) 24.3417 0.871015
\(782\) 0 0
\(783\) 0 0
\(784\) 1.67271 0.0597398
\(785\) 29.9721 1.06975
\(786\) 0 0
\(787\) −1.65367 −0.0589469 −0.0294735 0.999566i \(-0.509383\pi\)
−0.0294735 + 0.999566i \(0.509383\pi\)
\(788\) 5.29573 0.188652
\(789\) 0 0
\(790\) 13.8122 0.491417
\(791\) −57.0809 −2.02956
\(792\) 0 0
\(793\) −36.0034 −1.27852
\(794\) 7.10626 0.252192
\(795\) 0 0
\(796\) −21.2738 −0.754029
\(797\) 37.4699 1.32725 0.663625 0.748065i \(-0.269017\pi\)
0.663625 + 0.748065i \(0.269017\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −3.40743 −0.120471
\(801\) 0 0
\(802\) 29.6691 1.04765
\(803\) 17.2759 0.609655
\(804\) 0 0
\(805\) 5.25584 0.185244
\(806\) −23.9150 −0.842369
\(807\) 0 0
\(808\) −9.88764 −0.347846
\(809\) −51.2959 −1.80347 −0.901734 0.432291i \(-0.857705\pi\)
−0.901734 + 0.432291i \(0.857705\pi\)
\(810\) 0 0
\(811\) 1.19528 0.0419719 0.0209860 0.999780i \(-0.493319\pi\)
0.0209860 + 0.999780i \(0.493319\pi\)
\(812\) −1.53940 −0.0540224
\(813\) 0 0
\(814\) 2.61410 0.0916242
\(815\) −4.06401 −0.142356
\(816\) 0 0
\(817\) 6.45250 0.225745
\(818\) 14.8922 0.520693
\(819\) 0 0
\(820\) −5.12747 −0.179059
\(821\) 14.3412 0.500511 0.250255 0.968180i \(-0.419485\pi\)
0.250255 + 0.968180i \(0.419485\pi\)
\(822\) 0 0
\(823\) 45.4114 1.58294 0.791471 0.611207i \(-0.209316\pi\)
0.791471 + 0.611207i \(0.209316\pi\)
\(824\) 6.54168 0.227890
\(825\) 0 0
\(826\) 21.5436 0.749596
\(827\) −23.4799 −0.816475 −0.408238 0.912876i \(-0.633857\pi\)
−0.408238 + 0.912876i \(0.633857\pi\)
\(828\) 0 0
\(829\) −4.28183 −0.148714 −0.0743571 0.997232i \(-0.523690\pi\)
−0.0743571 + 0.997232i \(0.523690\pi\)
\(830\) −15.6022 −0.541559
\(831\) 0 0
\(832\) −3.36370 −0.116615
\(833\) 0 0
\(834\) 0 0
\(835\) −5.90895 −0.204488
\(836\) −24.5400 −0.848732
\(837\) 0 0
\(838\) 26.2549 0.906962
\(839\) 29.6465 1.02351 0.511756 0.859131i \(-0.328995\pi\)
0.511756 + 0.859131i \(0.328995\pi\)
\(840\) 0 0
\(841\) −28.7268 −0.990578
\(842\) 16.6683 0.574429
\(843\) 0 0
\(844\) 12.9900 0.447135
\(845\) −2.12711 −0.0731748
\(846\) 0 0
\(847\) −0.368761 −0.0126708
\(848\) 9.98868 0.343013
\(849\) 0 0
\(850\) 0 0
\(851\) −1.12106 −0.0384293
\(852\) 0 0
\(853\) −1.16274 −0.0398116 −0.0199058 0.999802i \(-0.506337\pi\)
−0.0199058 + 0.999802i \(0.506337\pi\)
\(854\) 31.5213 1.07864
\(855\) 0 0
\(856\) 3.49207 0.119356
\(857\) −38.8166 −1.32595 −0.662975 0.748642i \(-0.730706\pi\)
−0.662975 + 0.748642i \(0.730706\pi\)
\(858\) 0 0
\(859\) 11.0615 0.377412 0.188706 0.982034i \(-0.439571\pi\)
0.188706 + 0.982034i \(0.439571\pi\)
\(860\) 1.09425 0.0373134
\(861\) 0 0
\(862\) −4.86443 −0.165683
\(863\) −8.01331 −0.272776 −0.136388 0.990655i \(-0.543549\pi\)
−0.136388 + 0.990655i \(0.543549\pi\)
\(864\) 0 0
\(865\) −22.0123 −0.748441
\(866\) 2.20663 0.0749845
\(867\) 0 0
\(868\) 20.9378 0.710675
\(869\) −36.0931 −1.22437
\(870\) 0 0
\(871\) −45.5273 −1.54263
\(872\) 15.8751 0.537599
\(873\) 0 0
\(874\) 10.5239 0.355978
\(875\) −31.2457 −1.05630
\(876\) 0 0
\(877\) 14.8632 0.501894 0.250947 0.968001i \(-0.419258\pi\)
0.250947 + 0.968001i \(0.419258\pi\)
\(878\) 9.89180 0.333832
\(879\) 0 0
\(880\) −4.16160 −0.140287
\(881\) −9.72089 −0.327505 −0.163753 0.986501i \(-0.552360\pi\)
−0.163753 + 0.986501i \(0.552360\pi\)
\(882\) 0 0
\(883\) 21.2137 0.713896 0.356948 0.934124i \(-0.383817\pi\)
0.356948 + 0.934124i \(0.383817\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −5.50565 −0.184966
\(887\) 1.24492 0.0418005 0.0209002 0.999782i \(-0.493347\pi\)
0.0209002 + 0.999782i \(0.493347\pi\)
\(888\) 0 0
\(889\) 52.3699 1.75643
\(890\) 21.9551 0.735937
\(891\) 0 0
\(892\) −3.88573 −0.130104
\(893\) 76.7123 2.56708
\(894\) 0 0
\(895\) 11.0625 0.369779
\(896\) 2.94495 0.0983838
\(897\) 0 0
\(898\) 33.2572 1.10981
\(899\) −3.71644 −0.123950
\(900\) 0 0
\(901\) 0 0
\(902\) 13.3987 0.446129
\(903\) 0 0
\(904\) −19.3827 −0.644658
\(905\) −4.77370 −0.158683
\(906\) 0 0
\(907\) 16.2330 0.539009 0.269505 0.962999i \(-0.413140\pi\)
0.269505 + 0.962999i \(0.413140\pi\)
\(908\) −4.38875 −0.145646
\(909\) 0 0
\(910\) −12.5010 −0.414404
\(911\) −19.2058 −0.636316 −0.318158 0.948038i \(-0.603064\pi\)
−0.318158 + 0.948038i \(0.603064\pi\)
\(912\) 0 0
\(913\) 40.7704 1.34930
\(914\) −17.4812 −0.578226
\(915\) 0 0
\(916\) −3.42063 −0.113021
\(917\) −44.8005 −1.47944
\(918\) 0 0
\(919\) −35.7959 −1.18080 −0.590398 0.807112i \(-0.701029\pi\)
−0.590398 + 0.807112i \(0.701029\pi\)
\(920\) 1.78470 0.0588398
\(921\) 0 0
\(922\) 14.5385 0.478799
\(923\) 24.8289 0.817254
\(924\) 0 0
\(925\) 2.70109 0.0888112
\(926\) −1.47703 −0.0485383
\(927\) 0 0
\(928\) −0.522726 −0.0171593
\(929\) −38.9490 −1.27788 −0.638938 0.769258i \(-0.720626\pi\)
−0.638938 + 0.769258i \(0.720626\pi\)
\(930\) 0 0
\(931\) 12.4476 0.407953
\(932\) 0.893211 0.0292581
\(933\) 0 0
\(934\) −8.68873 −0.284304
\(935\) 0 0
\(936\) 0 0
\(937\) −49.5538 −1.61885 −0.809426 0.587222i \(-0.800222\pi\)
−0.809426 + 0.587222i \(0.800222\pi\)
\(938\) 39.8596 1.30146
\(939\) 0 0
\(940\) 13.0092 0.424314
\(941\) −3.44941 −0.112447 −0.0562237 0.998418i \(-0.517906\pi\)
−0.0562237 + 0.998418i \(0.517906\pi\)
\(942\) 0 0
\(943\) −5.74603 −0.187117
\(944\) 7.31543 0.238097
\(945\) 0 0
\(946\) −2.85940 −0.0929671
\(947\) −21.5300 −0.699631 −0.349815 0.936819i \(-0.613756\pi\)
−0.349815 + 0.936819i \(0.613756\pi\)
\(948\) 0 0
\(949\) 17.6217 0.572025
\(950\) −25.3565 −0.822675
\(951\) 0 0
\(952\) 0 0
\(953\) 40.4171 1.30924 0.654619 0.755959i \(-0.272829\pi\)
0.654619 + 0.755959i \(0.272829\pi\)
\(954\) 0 0
\(955\) 0.468209 0.0151509
\(956\) −0.389157 −0.0125863
\(957\) 0 0
\(958\) −10.9463 −0.353660
\(959\) −10.6538 −0.344030
\(960\) 0 0
\(961\) 19.5483 0.630590
\(962\) 2.66642 0.0859690
\(963\) 0 0
\(964\) 15.7554 0.507447
\(965\) 1.31278 0.0422597
\(966\) 0 0
\(967\) −19.1408 −0.615528 −0.307764 0.951463i \(-0.599581\pi\)
−0.307764 + 0.951463i \(0.599581\pi\)
\(968\) −0.125218 −0.00402467
\(969\) 0 0
\(970\) −7.85535 −0.252220
\(971\) 52.0327 1.66981 0.834905 0.550394i \(-0.185522\pi\)
0.834905 + 0.550394i \(0.185522\pi\)
\(972\) 0 0
\(973\) −59.6191 −1.91130
\(974\) −8.75751 −0.280609
\(975\) 0 0
\(976\) 10.7035 0.342612
\(977\) −50.2515 −1.60769 −0.803845 0.594839i \(-0.797216\pi\)
−0.803845 + 0.594839i \(0.797216\pi\)
\(978\) 0 0
\(979\) −57.3715 −1.83360
\(980\) 2.11092 0.0674309
\(981\) 0 0
\(982\) −30.4170 −0.970646
\(983\) −36.8882 −1.17655 −0.588275 0.808661i \(-0.700193\pi\)
−0.588275 + 0.808661i \(0.700193\pi\)
\(984\) 0 0
\(985\) 6.68306 0.212940
\(986\) 0 0
\(987\) 0 0
\(988\) −25.0311 −0.796346
\(989\) 1.22625 0.0389925
\(990\) 0 0
\(991\) −0.650857 −0.0206751 −0.0103376 0.999947i \(-0.503291\pi\)
−0.0103376 + 0.999947i \(0.503291\pi\)
\(992\) 7.10973 0.225734
\(993\) 0 0
\(994\) −21.7379 −0.689486
\(995\) −26.8469 −0.851104
\(996\) 0 0
\(997\) −49.6033 −1.57095 −0.785476 0.618892i \(-0.787582\pi\)
−0.785476 + 0.618892i \(0.787582\pi\)
\(998\) 22.3333 0.706949
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5202.2.a.bu.1.4 4
3.2 odd 2 1734.2.a.t.1.1 4
17.5 odd 16 306.2.l.e.127.2 8
17.7 odd 16 306.2.l.e.253.2 8
17.16 even 2 5202.2.a.bx.1.1 4
51.2 odd 8 1734.2.f.l.1483.2 8
51.5 even 16 102.2.h.b.25.2 8
51.8 odd 8 1734.2.f.k.829.3 8
51.26 odd 8 1734.2.f.l.829.2 8
51.32 odd 8 1734.2.f.k.1483.3 8
51.38 odd 4 1734.2.b.l.577.8 8
51.41 even 16 102.2.h.b.49.2 yes 8
51.47 odd 4 1734.2.b.l.577.1 8
51.50 odd 2 1734.2.a.u.1.4 4
204.107 odd 16 816.2.bq.c.433.1 8
204.143 odd 16 816.2.bq.c.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.h.b.25.2 8 51.5 even 16
102.2.h.b.49.2 yes 8 51.41 even 16
306.2.l.e.127.2 8 17.5 odd 16
306.2.l.e.253.2 8 17.7 odd 16
816.2.bq.c.49.1 8 204.143 odd 16
816.2.bq.c.433.1 8 204.107 odd 16
1734.2.a.t.1.1 4 3.2 odd 2
1734.2.a.u.1.4 4 51.50 odd 2
1734.2.b.l.577.1 8 51.47 odd 4
1734.2.b.l.577.8 8 51.38 odd 4
1734.2.f.k.829.3 8 51.8 odd 8
1734.2.f.k.1483.3 8 51.32 odd 8
1734.2.f.l.829.2 8 51.26 odd 8
1734.2.f.l.1483.2 8 51.2 odd 8
5202.2.a.bu.1.4 4 1.1 even 1 trivial
5202.2.a.bx.1.1 4 17.16 even 2