Properties

Label 1734.2.b.l.577.1
Level 17341734
Weight 22
Character 1734.577
Analytic conductor 13.84613.846
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(577,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1734=23172 1734 = 2 \cdot 3 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1734.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.846059710513.8460597105
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ16)\Q(\zeta_{16})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+1 x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 577.1
Root 0.9238800.382683i-0.923880 - 0.382683i of defining polynomial
Character χ\chi == 1734.577
Dual form 1734.2.b.l.577.8

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q21.00000iq3+1.00000q41.26197iq51.00000iq62.94495iq7+1.00000q81.00000q91.26197iq103.29769iq111.00000iq123.36370q132.94495iq141.26197q15+1.00000q161.00000q187.44155q191.26197iq202.94495q213.29769iq22+1.41421iq231.00000iq24+3.40743q253.36370q26+1.00000iq272.94495iq28+0.522726iq291.26197q30+7.10973iq31+1.00000q323.29769q333.71644q351.00000q360.792706iq377.44155q38+3.36370iq391.26197iq404.06306iq412.94495q420.867091q433.29769iq44+1.26197iq45+1.41421iq4610.3086q471.00000iq481.67271q49+3.40743q503.36370q52+9.98868q53+1.00000iq544.16160q552.94495iq56+7.44155iq57+0.522726iq58+7.31543q591.26197q6010.7035iq61+7.10973iq62+2.94495iq63+1.00000q64+4.24489iq653.29769q66+13.5349q67+1.41421q693.71644q70+7.38144iq711.00000q725.23880iq730.792706iq743.40743iq757.44155q769.71153q77+3.36370iq7810.9449iq791.26197iq80+1.00000q814.06306iq8212.3633q832.94495q840.867091q86+0.522726q873.29769iq8817.3975q89+1.26197iq90+9.90591iq91+1.41421iq92+7.10973q9310.3086q94+9.39104iq951.00000iq966.22466iq971.67271q98+3.29769iq99+O(q100)q+1.00000 q^{2} -1.00000i q^{3} +1.00000 q^{4} -1.26197i q^{5} -1.00000i q^{6} -2.94495i q^{7} +1.00000 q^{8} -1.00000 q^{9} -1.26197i q^{10} -3.29769i q^{11} -1.00000i q^{12} -3.36370 q^{13} -2.94495i q^{14} -1.26197 q^{15} +1.00000 q^{16} -1.00000 q^{18} -7.44155 q^{19} -1.26197i q^{20} -2.94495 q^{21} -3.29769i q^{22} +1.41421i q^{23} -1.00000i q^{24} +3.40743 q^{25} -3.36370 q^{26} +1.00000i q^{27} -2.94495i q^{28} +0.522726i q^{29} -1.26197 q^{30} +7.10973i q^{31} +1.00000 q^{32} -3.29769 q^{33} -3.71644 q^{35} -1.00000 q^{36} -0.792706i q^{37} -7.44155 q^{38} +3.36370i q^{39} -1.26197i q^{40} -4.06306i q^{41} -2.94495 q^{42} -0.867091 q^{43} -3.29769i q^{44} +1.26197i q^{45} +1.41421i q^{46} -10.3086 q^{47} -1.00000i q^{48} -1.67271 q^{49} +3.40743 q^{50} -3.36370 q^{52} +9.98868 q^{53} +1.00000i q^{54} -4.16160 q^{55} -2.94495i q^{56} +7.44155i q^{57} +0.522726i q^{58} +7.31543 q^{59} -1.26197 q^{60} -10.7035i q^{61} +7.10973i q^{62} +2.94495i q^{63} +1.00000 q^{64} +4.24489i q^{65} -3.29769 q^{66} +13.5349 q^{67} +1.41421 q^{69} -3.71644 q^{70} +7.38144i q^{71} -1.00000 q^{72} -5.23880i q^{73} -0.792706i q^{74} -3.40743i q^{75} -7.44155 q^{76} -9.71153 q^{77} +3.36370i q^{78} -10.9449i q^{79} -1.26197i q^{80} +1.00000 q^{81} -4.06306i q^{82} -12.3633 q^{83} -2.94495 q^{84} -0.867091 q^{86} +0.522726 q^{87} -3.29769i q^{88} -17.3975 q^{89} +1.26197i q^{90} +9.90591i q^{91} +1.41421i q^{92} +7.10973 q^{93} -10.3086 q^{94} +9.39104i q^{95} -1.00000i q^{96} -6.22466i q^{97} -1.67271 q^{98} +3.29769i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q2+8q4+8q88q9+16q15+8q168q1816q1924q25+16q30+8q3216q3316q358q3616q3832q4724q4924q50+24q98+O(q100) 8 q + 8 q^{2} + 8 q^{4} + 8 q^{8} - 8 q^{9} + 16 q^{15} + 8 q^{16} - 8 q^{18} - 16 q^{19} - 24 q^{25} + 16 q^{30} + 8 q^{32} - 16 q^{33} - 16 q^{35} - 8 q^{36} - 16 q^{38} - 32 q^{47} - 24 q^{49} - 24 q^{50}+ \cdots - 24 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1734Z)×\left(\mathbb{Z}/1734\mathbb{Z}\right)^\times.

nn 11571157 11591159
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 − 1.00000i − 0.577350i
44 1.00000 0.500000
55 − 1.26197i − 0.564371i −0.959360 0.282186i 0.908941π-0.908941\pi
0.959360 0.282186i 0.0910594π-0.0910594\pi
66 − 1.00000i − 0.408248i
77 − 2.94495i − 1.11309i −0.830819 0.556543i 0.812128π-0.812128\pi
0.830819 0.556543i 0.187872π-0.187872\pi
88 1.00000 0.353553
99 −1.00000 −0.333333
1010 − 1.26197i − 0.399071i
1111 − 3.29769i − 0.994292i −0.867667 0.497146i 0.834381π-0.834381\pi
0.867667 0.497146i 0.165619π-0.165619\pi
1212 − 1.00000i − 0.288675i
1313 −3.36370 −0.932922 −0.466461 0.884542i 0.654471π-0.654471\pi
−0.466461 + 0.884542i 0.654471π0.654471\pi
1414 − 2.94495i − 0.787070i
1515 −1.26197 −0.325840
1616 1.00000 0.250000
1717 0 0
1818 −1.00000 −0.235702
1919 −7.44155 −1.70721 −0.853605 0.520921i 0.825588π-0.825588\pi
−0.853605 + 0.520921i 0.825588π0.825588\pi
2020 − 1.26197i − 0.282186i
2121 −2.94495 −0.642640
2222 − 3.29769i − 0.703071i
2323 1.41421i 0.294884i 0.989071 + 0.147442i 0.0471040π0.0471040\pi
−0.989071 + 0.147442i 0.952896π0.952896\pi
2424 − 1.00000i − 0.204124i
2525 3.40743 0.681485
2626 −3.36370 −0.659675
2727 1.00000i 0.192450i
2828 − 2.94495i − 0.556543i
2929 0.522726i 0.0970678i 0.998822 + 0.0485339i 0.0154549π0.0154549\pi
−0.998822 + 0.0485339i 0.984545π0.984545\pi
3030 −1.26197 −0.230404
3131 7.10973i 1.27695i 0.769644 + 0.638473i 0.220434π0.220434\pi
−0.769644 + 0.638473i 0.779566π0.779566\pi
3232 1.00000 0.176777
3333 −3.29769 −0.574055
3434 0 0
3535 −3.71644 −0.628194
3636 −1.00000 −0.166667
3737 − 0.792706i − 0.130320i −0.997875 0.0651601i 0.979244π-0.979244\pi
0.997875 0.0651601i 0.0207558π-0.0207558\pi
3838 −7.44155 −1.20718
3939 3.36370i 0.538623i
4040 − 1.26197i − 0.199535i
4141 − 4.06306i − 0.634543i −0.948335 0.317272i 0.897233π-0.897233\pi
0.948335 0.317272i 0.102767π-0.102767\pi
4242 −2.94495 −0.454415
4343 −0.867091 −0.132230 −0.0661151 0.997812i 0.521060π-0.521060\pi
−0.0661151 + 0.997812i 0.521060π0.521060\pi
4444 − 3.29769i − 0.497146i
4545 1.26197i 0.188124i
4646 1.41421i 0.208514i
4747 −10.3086 −1.50367 −0.751835 0.659351i 0.770831π-0.770831\pi
−0.751835 + 0.659351i 0.770831π0.770831\pi
4848 − 1.00000i − 0.144338i
4949 −1.67271 −0.238959
5050 3.40743 0.481883
5151 0 0
5252 −3.36370 −0.466461
5353 9.98868 1.37205 0.686025 0.727578i 0.259354π-0.259354\pi
0.686025 + 0.727578i 0.259354π0.259354\pi
5454 1.00000i 0.136083i
5555 −4.16160 −0.561150
5656 − 2.94495i − 0.393535i
5757 7.44155i 0.985658i
5858 0.522726i 0.0686373i
5959 7.31543 0.952388 0.476194 0.879340i 0.342016π-0.342016\pi
0.476194 + 0.879340i 0.342016π0.342016\pi
6060 −1.26197 −0.162920
6161 − 10.7035i − 1.37045i −0.728333 0.685223i 0.759705π-0.759705\pi
0.728333 0.685223i 0.240295π-0.240295\pi
6262 7.10973i 0.902937i
6363 2.94495i 0.371028i
6464 1.00000 0.125000
6565 4.24489i 0.526514i
6666 −3.29769 −0.405918
6767 13.5349 1.65355 0.826775 0.562532i 0.190173π-0.190173\pi
0.826775 + 0.562532i 0.190173π0.190173\pi
6868 0 0
6969 1.41421 0.170251
7070 −3.71644 −0.444200
7171 7.38144i 0.876015i 0.898971 + 0.438008i 0.144316π0.144316\pi
−0.898971 + 0.438008i 0.855684π0.855684\pi
7272 −1.00000 −0.117851
7373 − 5.23880i − 0.613155i −0.951846 0.306577i 0.900816π-0.900816\pi
0.951846 0.306577i 0.0991838π-0.0991838\pi
7474 − 0.792706i − 0.0921502i
7575 − 3.40743i − 0.393456i
7676 −7.44155 −0.853605
7777 −9.71153 −1.10673
7878 3.36370i 0.380864i
7979 − 10.9449i − 1.23140i −0.787980 0.615701i 0.788873π-0.788873\pi
0.787980 0.615701i 0.211127π-0.211127\pi
8080 − 1.26197i − 0.141093i
8181 1.00000 0.111111
8282 − 4.06306i − 0.448690i
8383 −12.3633 −1.35705 −0.678526 0.734577i 0.737381π-0.737381\pi
−0.678526 + 0.734577i 0.737381π0.737381\pi
8484 −2.94495 −0.321320
8585 0 0
8686 −0.867091 −0.0935008
8787 0.522726 0.0560421
8888 − 3.29769i − 0.351535i
8989 −17.3975 −1.84413 −0.922063 0.387040i 0.873498π-0.873498\pi
−0.922063 + 0.387040i 0.873498π0.873498\pi
9090 1.26197i 0.133024i
9191 9.90591i 1.03842i
9292 1.41421i 0.147442i
9393 7.10973 0.737245
9494 −10.3086 −1.06326
9595 9.39104i 0.963500i
9696 − 1.00000i − 0.102062i
9797 − 6.22466i − 0.632018i −0.948756 0.316009i 0.897657π-0.897657\pi
0.948756 0.316009i 0.102343π-0.102343\pi
9898 −1.67271 −0.168970
9999 3.29769i 0.331431i
100100 3.40743 0.340743
101101 9.88764 0.983857 0.491929 0.870636i 0.336292π-0.336292\pi
0.491929 + 0.870636i 0.336292π0.336292\pi
102102 0 0
103103 6.54168 0.644571 0.322286 0.946642i 0.395549π-0.395549\pi
0.322286 + 0.946642i 0.395549π0.395549\pi
104104 −3.36370 −0.329838
105105 3.71644i 0.362688i
106106 9.98868 0.970186
107107 − 3.49207i − 0.337591i −0.985651 0.168796i 0.946012π-0.946012\pi
0.985651 0.168796i 0.0539878π-0.0539878\pi
108108 1.00000i 0.0962250i
109109 − 15.8751i − 1.52056i −0.649596 0.760279i 0.725062π-0.725062\pi
0.649596 0.760279i 0.274938π-0.274938\pi
110110 −4.16160 −0.396793
111111 −0.792706 −0.0752404
112112 − 2.94495i − 0.278271i
113113 − 19.3827i − 1.82337i −0.410893 0.911683i 0.634783π-0.634783\pi
0.410893 0.911683i 0.365217π-0.365217\pi
114114 7.44155i 0.696965i
115115 1.78470 0.166424
116116 0.522726i 0.0485339i
117117 3.36370 0.310974
118118 7.31543 0.673440
119119 0 0
120120 −1.26197 −0.115202
121121 0.125218 0.0113835
122122 − 10.7035i − 0.969052i
123123 −4.06306 −0.366354
124124 7.10973i 0.638473i
125125 − 10.6099i − 0.948982i
126126 2.94495i 0.262357i
127127 −17.7830 −1.57798 −0.788992 0.614404i 0.789397π-0.789397\pi
−0.788992 + 0.614404i 0.789397π0.789397\pi
128128 1.00000 0.0883883
129129 0.867091i 0.0763431i
130130 4.24489i 0.372302i
131131 15.2127i 1.32914i 0.747227 + 0.664569i 0.231385π0.231385\pi
−0.747227 + 0.664569i 0.768615π0.768615\pi
132132 −3.29769 −0.287027
133133 21.9150i 1.90027i
134134 13.5349 1.16924
135135 1.26197 0.108613
136136 0 0
137137 3.61766 0.309078 0.154539 0.987987i 0.450611π-0.450611\pi
0.154539 + 0.987987i 0.450611π0.450611\pi
138138 1.41421 0.120386
139139 − 20.2446i − 1.71712i −0.512713 0.858560i 0.671359π-0.671359\pi
0.512713 0.858560i 0.328641π-0.328641\pi
140140 −3.71644 −0.314097
141141 10.3086i 0.868144i
142142 7.38144i 0.619436i
143143 11.0924i 0.927596i
144144 −1.00000 −0.0833333
145145 0.659666 0.0547823
146146 − 5.23880i − 0.433566i
147147 1.67271i 0.137963i
148148 − 0.792706i − 0.0651601i
149149 7.73418 0.633609 0.316804 0.948491i 0.397390π-0.397390\pi
0.316804 + 0.948491i 0.397390π0.397390\pi
150150 − 3.40743i − 0.278215i
151151 −1.02280 −0.0832346 −0.0416173 0.999134i 0.513251π-0.513251\pi
−0.0416173 + 0.999134i 0.513251π0.513251\pi
152152 −7.44155 −0.603590
153153 0 0
154154 −9.71153 −0.782578
155155 8.97229 0.720671
156156 3.36370i 0.269311i
157157 23.7502 1.89547 0.947736 0.319055i 0.103366π-0.103366\pi
0.947736 + 0.319055i 0.103366π0.103366\pi
158158 − 10.9449i − 0.870733i
159159 − 9.98868i − 0.792154i
160160 − 1.26197i − 0.0997677i
161161 4.16478 0.328231
162162 1.00000 0.0785674
163163 3.22037i 0.252239i 0.992015 + 0.126119i 0.0402522π0.0402522\pi
−0.992015 + 0.126119i 0.959748π0.959748\pi
164164 − 4.06306i − 0.317272i
165165 4.16160i 0.323980i
166166 −12.3633 −0.959580
167167 4.68231i 0.362328i 0.983453 + 0.181164i 0.0579865π0.0579865\pi
−0.983453 + 0.181164i 0.942013π0.942013\pi
168168 −2.94495 −0.227208
169169 −1.68554 −0.129657
170170 0 0
171171 7.44155 0.569070
172172 −0.867091 −0.0661151
173173 17.4428i 1.32615i 0.748553 + 0.663075i 0.230749π0.230749\pi
−0.748553 + 0.663075i 0.769251π0.769251\pi
174174 0.522726 0.0396278
175175 − 10.0347i − 0.758551i
176176 − 3.29769i − 0.248573i
177177 − 7.31543i − 0.549862i
178178 −17.3975 −1.30399
179179 8.76606 0.655206 0.327603 0.944815i 0.393759π-0.393759\pi
0.327603 + 0.944815i 0.393759π0.393759\pi
180180 1.26197i 0.0940619i
181181 3.78273i 0.281168i 0.990069 + 0.140584i 0.0448981π0.0448981\pi
−0.990069 + 0.140584i 0.955102π0.955102\pi
182182 9.90591i 0.734275i
183183 −10.7035 −0.791227
184184 1.41421i 0.104257i
185185 −1.00037 −0.0735489
186186 7.10973 0.521311
187187 0 0
188188 −10.3086 −0.751835
189189 2.94495 0.214213
190190 9.39104i 0.681297i
191191 −0.371014 −0.0268456 −0.0134228 0.999910i 0.504273π-0.504273\pi
−0.0134228 + 0.999910i 0.504273π0.504273\pi
192192 − 1.00000i − 0.0721688i
193193 − 1.04026i − 0.0748793i −0.999299 0.0374397i 0.988080π-0.988080\pi
0.999299 0.0374397i 0.0119202π-0.0119202\pi
194194 − 6.22466i − 0.446904i
195195 4.24489 0.303983
196196 −1.67271 −0.119480
197197 5.29573i 0.377305i 0.982044 + 0.188652i 0.0604120π0.0604120\pi
−0.982044 + 0.188652i 0.939588π0.939588\pi
198198 3.29769i 0.234357i
199199 − 21.2738i − 1.50806i −0.656841 0.754029i 0.728108π-0.728108\pi
0.656841 0.754029i 0.271892π-0.271892\pi
200200 3.40743 0.240941
201201 − 13.5349i − 0.954678i
202202 9.88764 0.695692
203203 1.53940 0.108045
204204 0 0
205205 −5.12747 −0.358118
206206 6.54168 0.455781
207207 − 1.41421i − 0.0982946i
208208 −3.36370 −0.233230
209209 24.5400i 1.69746i
210210 3.71644i 0.256459i
211211 − 12.9900i − 0.894270i −0.894466 0.447135i 0.852444π-0.852444\pi
0.894466 0.447135i 0.147556π-0.147556\pi
212212 9.98868 0.686025
213213 7.38144 0.505768
214214 − 3.49207i − 0.238713i
215215 1.09425i 0.0746269i
216216 1.00000i 0.0680414i
217217 20.9378 1.42135
218218 − 15.8751i − 1.07520i
219219 −5.23880 −0.354005
220220 −4.16160 −0.280575
221221 0 0
222222 −0.792706 −0.0532030
223223 3.88573 0.260208 0.130104 0.991500i 0.458469π-0.458469\pi
0.130104 + 0.991500i 0.458469π0.458469\pi
224224 − 2.94495i − 0.196768i
225225 −3.40743 −0.227162
226226 − 19.3827i − 1.28932i
227227 − 4.38875i − 0.291292i −0.989337 0.145646i 0.953474π-0.953474\pi
0.989337 0.145646i 0.0465260π-0.0465260\pi
228228 7.44155i 0.492829i
229229 3.42063 0.226041 0.113021 0.993593i 0.463947π-0.463947\pi
0.113021 + 0.993593i 0.463947π0.463947\pi
230230 1.78470 0.117680
231231 9.71153i 0.638972i
232232 0.522726i 0.0343187i
233233 − 0.893211i − 0.0585162i −0.999572 0.0292581i 0.990686π-0.990686\pi
0.999572 0.0292581i 0.00931448π-0.00931448\pi
234234 3.36370 0.219892
235235 13.0092i 0.848628i
236236 7.31543 0.476194
237237 −10.9449 −0.710951
238238 0 0
239239 0.389157 0.0251725 0.0125863 0.999921i 0.495994π-0.495994\pi
0.0125863 + 0.999921i 0.495994π0.495994\pi
240240 −1.26197 −0.0814600
241241 15.7554i 1.01489i 0.861683 + 0.507447i 0.169411π0.169411\pi
−0.861683 + 0.507447i 0.830589π0.830589\pi
242242 0.125218 0.00804934
243243 − 1.00000i − 0.0641500i
244244 − 10.7035i − 0.685223i
245245 2.11092i 0.134862i
246246 −4.06306 −0.259051
247247 25.0311 1.59269
248248 7.10973i 0.451468i
249249 12.3633i 0.783494i
250250 − 10.6099i − 0.671032i
251251 15.2423 0.962083 0.481042 0.876698i 0.340259π-0.340259\pi
0.481042 + 0.876698i 0.340259π0.340259\pi
252252 2.94495i 0.185514i
253253 4.66364 0.293201
254254 −17.7830 −1.11580
255255 0 0
256256 1.00000 0.0625000
257257 7.05696 0.440201 0.220101 0.975477i 0.429361π-0.429361\pi
0.220101 + 0.975477i 0.429361π0.429361\pi
258258 0.867091i 0.0539827i
259259 −2.33448 −0.145057
260260 4.24489i 0.263257i
261261 − 0.522726i − 0.0323559i
262262 15.2127i 0.939842i
263263 −5.53808 −0.341493 −0.170746 0.985315i 0.554618π-0.554618\pi
−0.170746 + 0.985315i 0.554618π0.554618\pi
264264 −3.29769 −0.202959
265265 − 12.6054i − 0.774346i
266266 21.9150i 1.34369i
267267 17.3975i 1.06471i
268268 13.5349 0.826775
269269 − 4.31477i − 0.263076i −0.991311 0.131538i 0.958008π-0.958008\pi
0.991311 0.131538i 0.0419916π-0.0419916\pi
270270 1.26197 0.0768012
271271 −4.45569 −0.270664 −0.135332 0.990800i 0.543210π-0.543210\pi
−0.135332 + 0.990800i 0.543210π0.543210\pi
272272 0 0
273273 9.90591 0.599533
274274 3.61766 0.218551
275275 − 11.2366i − 0.677595i
276276 1.41421 0.0851257
277277 14.0382i 0.843471i 0.906719 + 0.421736i 0.138579π0.138579\pi
−0.906719 + 0.421736i 0.861421π0.861421\pi
278278 − 20.2446i − 1.21419i
279279 − 7.10973i − 0.425649i
280280 −3.71644 −0.222100
281281 −8.67913 −0.517753 −0.258877 0.965910i 0.583352π-0.583352\pi
−0.258877 + 0.965910i 0.583352π0.583352\pi
282282 10.3086i 0.613871i
283283 14.3623i 0.853753i 0.904310 + 0.426876i 0.140386π0.140386\pi
−0.904310 + 0.426876i 0.859614π0.859614\pi
284284 7.38144i 0.438008i
285285 9.39104 0.556277
286286 11.0924i 0.655910i
287287 −11.9655 −0.706301
288288 −1.00000 −0.0589256
289289 0 0
290290 0.659666 0.0387369
291291 −6.22466 −0.364896
292292 − 5.23880i − 0.306577i
293293 22.0243 1.28668 0.643338 0.765582i 0.277549π-0.277549\pi
0.643338 + 0.765582i 0.277549π0.277549\pi
294294 1.67271i 0.0975547i
295295 − 9.23188i − 0.537501i
296296 − 0.792706i − 0.0460751i
297297 3.29769 0.191352
298298 7.73418 0.448029
299299 − 4.75699i − 0.275104i
300300 − 3.40743i − 0.196728i
301301 2.55354i 0.147183i
302302 −1.02280 −0.0588557
303303 − 9.88764i − 0.568030i
304304 −7.44155 −0.426802
305305 −13.5076 −0.773440
306306 0 0
307307 −7.13291 −0.407097 −0.203548 0.979065i 0.565247π-0.565247\pi
−0.203548 + 0.979065i 0.565247π0.565247\pi
308308 −9.71153 −0.553366
309309 − 6.54168i − 0.372143i
310310 8.97229 0.509592
311311 19.1212i 1.08427i 0.840293 + 0.542133i 0.182383π0.182383\pi
−0.840293 + 0.542133i 0.817617π0.817617\pi
312312 3.36370i 0.190432i
313313 13.0225i 0.736076i 0.929811 + 0.368038i 0.119970π0.119970\pi
−0.929811 + 0.368038i 0.880030π0.880030\pi
314314 23.7502 1.34030
315315 3.71644 0.209398
316316 − 10.9449i − 0.615701i
317317 − 4.55648i − 0.255917i −0.991779 0.127959i 0.959157π-0.959157\pi
0.991779 0.127959i 0.0408425π-0.0408425\pi
318318 − 9.98868i − 0.560137i
319319 1.72379 0.0965137
320320 − 1.26197i − 0.0705464i
321321 −3.49207 −0.194908
322322 4.16478 0.232094
323323 0 0
324324 1.00000 0.0555556
325325 −11.4615 −0.635772
326326 3.22037i 0.178360i
327327 −15.8751 −0.877895
328328 − 4.06306i − 0.224345i
329329 30.3584i 1.67371i
330330 4.16160i 0.229088i
331331 18.7047 1.02811 0.514053 0.857758i 0.328144π-0.328144\pi
0.514053 + 0.857758i 0.328144π0.328144\pi
332332 −12.3633 −0.678526
333333 0.792706i 0.0434400i
334334 4.68231i 0.256205i
335335 − 17.0807i − 0.933217i
336336 −2.94495 −0.160660
337337 − 23.8756i − 1.30059i −0.759683 0.650294i 0.774646π-0.774646\pi
0.759683 0.650294i 0.225354π-0.225354\pi
338338 −1.68554 −0.0916815
339339 −19.3827 −1.05272
340340 0 0
341341 23.4457 1.26966
342342 7.44155 0.402393
343343 − 15.6886i − 0.847103i
344344 −0.867091 −0.0467504
345345 − 1.78470i − 0.0960850i
346346 17.4428i 0.937729i
347347 24.9127i 1.33738i 0.743540 + 0.668692i 0.233145π0.233145\pi
−0.743540 + 0.668692i 0.766855π0.766855\pi
348348 0.522726 0.0280211
349349 19.5194 1.04485 0.522425 0.852685i 0.325027π-0.325027\pi
0.522425 + 0.852685i 0.325027π0.325027\pi
350350 − 10.0347i − 0.536377i
351351 − 3.36370i − 0.179541i
352352 − 3.29769i − 0.175768i
353353 −25.7115 −1.36849 −0.684243 0.729254i 0.739867π-0.739867\pi
−0.684243 + 0.729254i 0.739867π0.739867\pi
354354 − 7.31543i − 0.388811i
355355 9.31517 0.494398
356356 −17.3975 −0.922063
357357 0 0
358358 8.76606 0.463301
359359 −19.2482 −1.01588 −0.507939 0.861393i 0.669593π-0.669593\pi
−0.507939 + 0.861393i 0.669593π0.669593\pi
360360 1.26197i 0.0665118i
361361 36.3767 1.91456
362362 3.78273i 0.198816i
363363 − 0.125218i − 0.00657225i
364364 9.90591i 0.519211i
365365 −6.61122 −0.346047
366366 −10.7035 −0.559482
367367 − 5.08708i − 0.265544i −0.991147 0.132772i 0.957612π-0.957612\pi
0.991147 0.132772i 0.0423877π-0.0423877\pi
368368 1.41421i 0.0737210i
369369 4.06306i 0.211514i
370370 −1.00037 −0.0520070
371371 − 29.4161i − 1.52721i
372372 7.10973 0.368622
373373 21.9719 1.13766 0.568831 0.822454i 0.307396π-0.307396\pi
0.568831 + 0.822454i 0.307396π0.307396\pi
374374 0 0
375375 −10.6099 −0.547895
376376 −10.3086 −0.531628
377377 − 1.75829i − 0.0905567i
378378 2.94495 0.151472
379379 − 10.0798i − 0.517763i −0.965909 0.258881i 0.916646π-0.916646\pi
0.965909 0.258881i 0.0833539π-0.0833539\pi
380380 9.39104i 0.481750i
381381 17.7830i 0.911049i
382382 −0.371014 −0.0189827
383383 27.9738 1.42940 0.714698 0.699433i 0.246564π-0.246564\pi
0.714698 + 0.699433i 0.246564π0.246564\pi
384384 − 1.00000i − 0.0510310i
385385 12.2557i 0.624608i
386386 − 1.04026i − 0.0529477i
387387 0.867091 0.0440767
388388 − 6.22466i − 0.316009i
389389 12.3355 0.625432 0.312716 0.949847i 0.398761π-0.398761\pi
0.312716 + 0.949847i 0.398761π0.398761\pi
390390 4.24489 0.214949
391391 0 0
392392 −1.67271 −0.0844848
393393 15.2127 0.767378
394394 5.29573i 0.266795i
395395 −13.8122 −0.694968
396396 3.29769i 0.165715i
397397 − 7.10626i − 0.356653i −0.983971 0.178326i 0.942932π-0.942932\pi
0.983971 0.178326i 0.0570683π-0.0570683\pi
398398 − 21.2738i − 1.06636i
399399 21.9150 1.09712
400400 3.40743 0.170371
401401 29.6691i 1.48160i 0.671725 + 0.740801i 0.265554π0.265554\pi
−0.671725 + 0.740801i 0.734446π0.734446\pi
402402 − 13.5349i − 0.675059i
403403 − 23.9150i − 1.19129i
404404 9.88764 0.491929
405405 − 1.26197i − 0.0627079i
406406 1.53940 0.0763992
407407 −2.61410 −0.129576
408408 0 0
409409 14.8922 0.736371 0.368185 0.929752i 0.379979π-0.379979\pi
0.368185 + 0.929752i 0.379979π0.379979\pi
410410 −5.12747 −0.253228
411411 − 3.61766i − 0.178446i
412412 6.54168 0.322286
413413 − 21.5436i − 1.06009i
414414 − 1.41421i − 0.0695048i
415415 15.6022i 0.765881i
416416 −3.36370 −0.164919
417417 −20.2446 −0.991380
418418 24.5400i 1.20029i
419419 26.2549i 1.28264i 0.767274 + 0.641319i 0.221612π0.221612\pi
−0.767274 + 0.641319i 0.778388π0.778388\pi
420420 3.71644i 0.181344i
421421 16.6683 0.812365 0.406182 0.913792i 0.366860π-0.366860\pi
0.406182 + 0.913792i 0.366860π0.366860\pi
422422 − 12.9900i − 0.632345i
423423 10.3086 0.501223
424424 9.98868 0.485093
425425 0 0
426426 7.38144 0.357632
427427 −31.5213 −1.52542
428428 − 3.49207i − 0.168796i
429429 11.0924 0.535548
430430 1.09425i 0.0527692i
431431 − 4.86443i − 0.234312i −0.993114 0.117156i 0.962622π-0.962622\pi
0.993114 0.117156i 0.0373777π-0.0373777\pi
432432 1.00000i 0.0481125i
433433 −2.20663 −0.106044 −0.0530220 0.998593i 0.516885π-0.516885\pi
−0.0530220 + 0.998593i 0.516885π0.516885\pi
434434 20.9378 1.00505
435435 − 0.659666i − 0.0316286i
436436 − 15.8751i − 0.760279i
437437 − 10.5239i − 0.503429i
438438 −5.23880 −0.250319
439439 9.89180i 0.472110i 0.971740 + 0.236055i 0.0758546π0.0758546\pi
−0.971740 + 0.236055i 0.924145π0.924145\pi
440440 −4.16160 −0.198396
441441 1.67271 0.0796531
442442 0 0
443443 5.50565 0.261581 0.130791 0.991410i 0.458248π-0.458248\pi
0.130791 + 0.991410i 0.458248π0.458248\pi
444444 −0.792706 −0.0376202
445445 21.9551i 1.04077i
446446 3.88573 0.183995
447447 − 7.73418i − 0.365814i
448448 − 2.94495i − 0.139136i
449449 33.2572i 1.56951i 0.619808 + 0.784753i 0.287210π0.287210\pi
−0.619808 + 0.784753i 0.712790π0.712790\pi
450450 −3.40743 −0.160628
451451 −13.3987 −0.630921
452452 − 19.3827i − 0.911683i
453453 1.02280i 0.0480555i
454454 − 4.38875i − 0.205974i
455455 12.5010 0.586055
456456 7.44155i 0.348483i
457457 17.4812 0.817736 0.408868 0.912594i 0.365924π-0.365924\pi
0.408868 + 0.912594i 0.365924π0.365924\pi
458458 3.42063 0.159835
459459 0 0
460460 1.78470 0.0832120
461461 14.5385 0.677123 0.338562 0.940944i 0.390060π-0.390060\pi
0.338562 + 0.940944i 0.390060π0.390060\pi
462462 9.71153i 0.451821i
463463 −1.47703 −0.0686435 −0.0343217 0.999411i 0.510927π-0.510927\pi
−0.0343217 + 0.999411i 0.510927π0.510927\pi
464464 0.522726i 0.0242670i
465465 − 8.97229i − 0.416080i
466466 − 0.893211i − 0.0413772i
467467 −8.68873 −0.402066 −0.201033 0.979584i 0.564430π-0.564430\pi
−0.201033 + 0.979584i 0.564430π0.564430\pi
468468 3.36370 0.155487
469469 − 39.8596i − 1.84054i
470470 13.0092i 0.600071i
471471 − 23.7502i − 1.09435i
472472 7.31543 0.336720
473473 2.85940i 0.131475i
474474 −10.9449 −0.502718
475475 −25.3565 −1.16344
476476 0 0
477477 −9.98868 −0.457350
478478 0.389157 0.0177996
479479 10.9463i 0.500151i 0.968226 + 0.250075i 0.0804554π0.0804554\pi
−0.968226 + 0.250075i 0.919545π0.919545\pi
480480 −1.26197 −0.0576009
481481 2.66642i 0.121578i
482482 15.7554i 0.717638i
483483 − 4.16478i − 0.189504i
484484 0.125218 0.00569174
485485 −7.85535 −0.356693
486486 − 1.00000i − 0.0453609i
487487 8.75751i 0.396841i 0.980117 + 0.198420i 0.0635811π0.0635811\pi
−0.980117 + 0.198420i 0.936419π0.936419\pi
488488 − 10.7035i − 0.484526i
489489 3.22037 0.145630
490490 2.11092i 0.0953616i
491491 −30.4170 −1.37270 −0.686351 0.727271i 0.740788π-0.740788\pi
−0.686351 + 0.727271i 0.740788π0.740788\pi
492492 −4.06306 −0.183177
493493 0 0
494494 25.0311 1.12620
495495 4.16160 0.187050
496496 7.10973i 0.319236i
497497 21.7379 0.975080
498498 12.3633i 0.554014i
499499 − 22.3333i − 0.999777i −0.866090 0.499889i 0.833374π-0.833374\pi
0.866090 0.499889i 0.166626π-0.166626\pi
500500 − 10.6099i − 0.474491i
501501 4.68231 0.209190
502502 15.2423 0.680296
503503 42.3520i 1.88838i 0.329398 + 0.944191i 0.393154π0.393154\pi
−0.329398 + 0.944191i 0.606846π0.606846\pi
504504 2.94495i 0.131178i
505505 − 12.4779i − 0.555261i
506506 4.66364 0.207324
507507 1.68554i 0.0748576i
508508 −17.7830 −0.788992
509509 −9.03882 −0.400639 −0.200319 0.979731i 0.564198π-0.564198\pi
−0.200319 + 0.979731i 0.564198π0.564198\pi
510510 0 0
511511 −15.4280 −0.682493
512512 1.00000 0.0441942
513513 − 7.44155i − 0.328553i
514514 7.05696 0.311269
515515 − 8.25543i − 0.363778i
516516 0.867091i 0.0381716i
517517 33.9947i 1.49509i
518518 −2.33448 −0.102571
519519 17.4428 0.765653
520520 4.24489i 0.186151i
521521 − 33.4356i − 1.46484i −0.680853 0.732420i 0.738391π-0.738391\pi
0.680853 0.732420i 0.261609π-0.261609\pi
522522 − 0.522726i − 0.0228791i
523523 −23.9751 −1.04836 −0.524180 0.851608i 0.675628π-0.675628\pi
−0.524180 + 0.851608i 0.675628π0.675628\pi
524524 15.2127i 0.664569i
525525 −10.0347 −0.437950
526526 −5.53808 −0.241472
527527 0 0
528528 −3.29769 −0.143514
529529 21.0000 0.913043
530530 − 12.6054i − 0.547545i
531531 −7.31543 −0.317463
532532 21.9150i 0.950135i
533533 13.6669i 0.591979i
534534 17.3975i 0.752861i
535535 −4.40690 −0.190527
536536 13.5349 0.584618
537537 − 8.76606i − 0.378283i
538538 − 4.31477i − 0.186023i
539539 5.51610i 0.237595i
540540 1.26197 0.0543067
541541 − 17.5884i − 0.756182i −0.925768 0.378091i 0.876581π-0.876581\pi
0.925768 0.378091i 0.123419π-0.123419\pi
542542 −4.45569 −0.191388
543543 3.78273 0.162333
544544 0 0
545545 −20.0339 −0.858160
546546 9.90591 0.423934
547547 4.79884i 0.205183i 0.994724 + 0.102592i 0.0327135π0.0327135\pi
−0.994724 + 0.102592i 0.967286π0.967286\pi
548548 3.61766 0.154539
549549 10.7035i 0.456815i
550550 − 11.2366i − 0.479132i
551551 − 3.88989i − 0.165715i
552552 1.41421 0.0601929
553553 −32.2323 −1.37066
554554 14.0382i 0.596424i
555555 1.00037i 0.0424635i
556556 − 20.2446i − 0.858560i
557557 −27.0366 −1.14558 −0.572788 0.819704i 0.694138π-0.694138\pi
−0.572788 + 0.819704i 0.694138π0.694138\pi
558558 − 7.10973i − 0.300979i
559559 2.91663 0.123360
560560 −3.71644 −0.157048
561561 0 0
562562 −8.67913 −0.366107
563563 −38.3143 −1.61475 −0.807377 0.590036i 0.799114π-0.799114\pi
−0.807377 + 0.590036i 0.799114π0.799114\pi
564564 10.3086i 0.434072i
565565 −24.4604 −1.02906
566566 14.3623i 0.603694i
567567 − 2.94495i − 0.123676i
568568 7.38144i 0.309718i
569569 −18.6210 −0.780633 −0.390317 0.920681i 0.627634π-0.627634\pi
−0.390317 + 0.920681i 0.627634π0.627634\pi
570570 9.39104 0.393347
571571 − 3.86349i − 0.161682i −0.996727 0.0808410i 0.974239π-0.974239\pi
0.996727 0.0808410i 0.0257606π-0.0257606\pi
572572 11.0924i 0.463798i
573573 0.371014i 0.0154993i
574574 −11.9655 −0.499430
575575 4.81883i 0.200959i
576576 −1.00000 −0.0416667
577577 −25.4772 −1.06063 −0.530315 0.847801i 0.677926π-0.677926\pi
−0.530315 + 0.847801i 0.677926π0.677926\pi
578578 0 0
579579 −1.04026 −0.0432316
580580 0.659666 0.0273911
581581 36.4093i 1.51051i
582582 −6.22466 −0.258020
583583 − 32.9396i − 1.36422i
584584 − 5.23880i − 0.216783i
585585 − 4.24489i − 0.175505i
586586 22.0243 0.909817
587587 0.531636 0.0219430 0.0109715 0.999940i 0.496508π-0.496508\pi
0.0109715 + 0.999940i 0.496508π0.496508\pi
588588 1.67271i 0.0689816i
589589 − 52.9074i − 2.18001i
590590 − 9.23188i − 0.380070i
591591 5.29573 0.217837
592592 − 0.792706i − 0.0325800i
593593 12.1266 0.497982 0.248991 0.968506i 0.419901π-0.419901\pi
0.248991 + 0.968506i 0.419901π0.419901\pi
594594 3.29769 0.135306
595595 0 0
596596 7.73418 0.316804
597597 −21.2738 −0.870677
598598 − 4.75699i − 0.194528i
599599 14.6476 0.598486 0.299243 0.954177i 0.403266π-0.403266\pi
0.299243 + 0.954177i 0.403266π0.403266\pi
600600 − 3.40743i − 0.139108i
601601 26.2961i 1.07264i 0.844015 + 0.536320i 0.180186π0.180186\pi
−0.844015 + 0.536320i 0.819814π0.819814\pi
602602 2.55354i 0.104074i
603603 −13.5349 −0.551184
604604 −1.02280 −0.0416173
605605 − 0.158022i − 0.00642451i
606606 − 9.88764i − 0.401658i
607607 24.3315i 0.987584i 0.869580 + 0.493792i 0.164390π0.164390\pi
−0.869580 + 0.493792i 0.835610π0.835610\pi
608608 −7.44155 −0.301795
609609 − 1.53940i − 0.0623797i
610610 −13.5076 −0.546905
611611 34.6752 1.40281
612612 0 0
613613 −8.21114 −0.331645 −0.165822 0.986156i 0.553028π-0.553028\pi
−0.165822 + 0.986156i 0.553028π0.553028\pi
614614 −7.13291 −0.287861
615615 5.12747i 0.206760i
616616 −9.71153 −0.391289
617617 44.5518i 1.79359i 0.442450 + 0.896793i 0.354109π0.354109\pi
−0.442450 + 0.896793i 0.645891π0.645891\pi
618618 − 6.54168i − 0.263145i
619619 − 21.8112i − 0.876668i −0.898812 0.438334i 0.855569π-0.855569\pi
0.898812 0.438334i 0.144431π-0.144431\pi
620620 8.97229 0.360336
621621 −1.41421 −0.0567504
622622 19.1212i 0.766692i
623623 51.2346i 2.05267i
624624 3.36370i 0.134656i
625625 3.64767 0.145907
626626 13.0225i 0.520484i
627627 24.5400 0.980032
628628 23.7502 0.947736
629629 0 0
630630 3.71644 0.148067
631631 41.7021 1.66014 0.830068 0.557663i 0.188302π-0.188302\pi
0.830068 + 0.557663i 0.188302π0.188302\pi
632632 − 10.9449i − 0.435367i
633633 −12.9900 −0.516307
634634 − 4.55648i − 0.180961i
635635 22.4416i 0.890569i
636636 − 9.98868i − 0.396077i
637637 5.62650 0.222930
638638 1.72379 0.0682455
639639 − 7.38144i − 0.292005i
640640 − 1.26197i − 0.0498838i
641641 13.7067i 0.541381i 0.962666 + 0.270691i 0.0872521π0.0872521\pi
−0.962666 + 0.270691i 0.912748π0.912748\pi
642642 −3.49207 −0.137821
643643 − 21.8390i − 0.861247i −0.902532 0.430624i 0.858294π-0.858294\pi
0.902532 0.430624i 0.141706π-0.141706\pi
644644 4.16478 0.164115
645645 1.09425 0.0430859
646646 0 0
647647 −21.2760 −0.836447 −0.418223 0.908344i 0.637347π-0.637347\pi
−0.418223 + 0.908344i 0.637347π0.637347\pi
648648 1.00000 0.0392837
649649 − 24.1241i − 0.946952i
650650 −11.4615 −0.449559
651651 − 20.9378i − 0.820616i
652652 3.22037i 0.126119i
653653 − 33.1843i − 1.29860i −0.760531 0.649301i 0.775062π-0.775062\pi
0.760531 0.649301i 0.224938π-0.224938\pi
654654 −15.8751 −0.620765
655655 19.1980 0.750127
656656 − 4.06306i − 0.158636i
657657 5.23880i 0.204385i
658658 30.3584i 1.18349i
659659 −0.649089 −0.0252849 −0.0126425 0.999920i 0.504024π-0.504024\pi
−0.0126425 + 0.999920i 0.504024π0.504024\pi
660660 4.16160i 0.161990i
661661 30.8996 1.20185 0.600927 0.799304i 0.294798π-0.294798\pi
0.600927 + 0.799304i 0.294798π0.294798\pi
662662 18.7047 0.726981
663663 0 0
664664 −12.3633 −0.479790
665665 27.6561 1.07246
666666 0.792706i 0.0307167i
667667 −0.739246 −0.0286237
668668 4.68231i 0.181164i
669669 − 3.88573i − 0.150231i
670670 − 17.0807i − 0.659884i
671671 −35.2969 −1.36262
672672 −2.94495 −0.113604
673673 30.3508i 1.16994i 0.811056 + 0.584968i 0.198893π0.198893\pi
−0.811056 + 0.584968i 0.801107π0.801107\pi
674674 − 23.8756i − 0.919655i
675675 3.40743i 0.131152i
676676 −1.68554 −0.0648286
677677 − 6.53702i − 0.251238i −0.992079 0.125619i 0.959908π-0.959908\pi
0.992079 0.125619i 0.0400917π-0.0400917\pi
678678 −19.3827 −0.744386
679679 −18.3313 −0.703490
680680 0 0
681681 −4.38875 −0.168177
682682 23.4457 0.897783
683683 10.6469i 0.407392i 0.979034 + 0.203696i 0.0652953π0.0652953\pi
−0.979034 + 0.203696i 0.934705π0.934705\pi
684684 7.44155 0.284535
685685 − 4.56539i − 0.174435i
686686 − 15.6886i − 0.598993i
687687 − 3.42063i − 0.130505i
688688 −0.867091 −0.0330575
689689 −33.5989 −1.28002
690690 − 1.78470i − 0.0679423i
691691 19.7603i 0.751718i 0.926677 + 0.375859i 0.122652π0.122652\pi
−0.926677 + 0.375859i 0.877348π0.877348\pi
692692 17.4428i 0.663075i
693693 9.71153 0.368911
694694 24.9127i 0.945673i
695695 −25.5481 −0.969093
696696 0.522726 0.0198139
697697 0 0
698698 19.5194 0.738821
699699 −0.893211 −0.0337844
700700 − 10.0347i − 0.379276i
701701 39.7169 1.50009 0.750043 0.661390i 0.230033π-0.230033\pi
0.750043 + 0.661390i 0.230033π0.230033\pi
702702 − 3.36370i − 0.126955i
703703 5.89897i 0.222484i
704704 − 3.29769i − 0.124286i
705705 13.0092 0.489956
706706 −25.7115 −0.967666
707707 − 29.1186i − 1.09512i
708708 − 7.31543i − 0.274931i
709709 44.9863i 1.68950i 0.535163 + 0.844749i 0.320250π0.320250\pi
−0.535163 + 0.844749i 0.679750π0.679750\pi
710710 9.31517 0.349592
711711 10.9449i 0.410468i
712712 −17.3975 −0.651997
713713 −10.0547 −0.376551
714714 0 0
715715 13.9984 0.523509
716716 8.76606 0.327603
717717 − 0.389157i − 0.0145334i
718718 −19.2482 −0.718335
719719 − 34.9648i − 1.30397i −0.758233 0.651983i 0.773937π-0.773937\pi
0.758233 0.651983i 0.226063π-0.226063\pi
720720 1.26197i 0.0470309i
721721 − 19.2649i − 0.717463i
722722 36.3767 1.35380
723723 15.7554 0.585949
724724 3.78273i 0.140584i
725725 1.78115i 0.0661503i
726726 − 0.125218i − 0.00464729i
727727 −9.34543 −0.346603 −0.173301 0.984869i 0.555443π-0.555443\pi
−0.173301 + 0.984869i 0.555443π0.555443\pi
728728 9.90591i 0.367137i
729729 −1.00000 −0.0370370
730730 −6.61122 −0.244692
731731 0 0
732732 −10.7035 −0.395614
733733 −35.0025 −1.29285 −0.646423 0.762979i 0.723736π-0.723736\pi
−0.646423 + 0.762979i 0.723736π0.723736\pi
734734 − 5.08708i − 0.187768i
735735 2.11092 0.0778625
736736 1.41421i 0.0521286i
737737 − 44.6339i − 1.64411i
738738 4.06306i 0.149563i
739739 −20.3466 −0.748460 −0.374230 0.927336i 0.622093π-0.622093\pi
−0.374230 + 0.927336i 0.622093π0.622093\pi
740740 −1.00037 −0.0367745
741741 − 25.0311i − 0.919541i
742742 − 29.4161i − 1.07990i
743743 19.1359i 0.702027i 0.936370 + 0.351014i 0.114163π0.114163\pi
−0.936370 + 0.351014i 0.885837π0.885837\pi
744744 7.10973 0.260655
745745 − 9.76033i − 0.357591i
746746 21.9719 0.804449
747747 12.3633 0.452350
748748 0 0
749749 −10.2840 −0.375768
750750 −10.6099 −0.387420
751751 − 42.2934i − 1.54331i −0.636043 0.771654i 0.719430π-0.719430\pi
0.636043 0.771654i 0.280570π-0.280570\pi
752752 −10.3086 −0.375918
753753 − 15.2423i − 0.555459i
754754 − 1.75829i − 0.0640332i
755755 1.29075i 0.0469752i
756756 2.94495 0.107107
757757 −46.3076 −1.68308 −0.841538 0.540197i 0.818350π-0.818350\pi
−0.841538 + 0.540197i 0.818350π0.818350\pi
758758 − 10.0798i − 0.366114i
759759 − 4.66364i − 0.169280i
760760 9.39104i 0.340649i
761761 −2.15386 −0.0780775 −0.0390388 0.999238i 0.512430π-0.512430\pi
−0.0390388 + 0.999238i 0.512430π0.512430\pi
762762 17.7830i 0.644209i
763763 −46.7513 −1.69251
764764 −0.371014 −0.0134228
765765 0 0
766766 27.9738 1.01074
767767 −24.6069 −0.888504
768768 − 1.00000i − 0.0360844i
769769 −22.8143 −0.822705 −0.411353 0.911476i 0.634944π-0.634944\pi
−0.411353 + 0.911476i 0.634944π0.634944\pi
770770 12.2557i 0.441664i
771771 − 7.05696i − 0.254150i
772772 − 1.04026i − 0.0374397i
773773 −14.4131 −0.518403 −0.259201 0.965823i 0.583459π-0.583459\pi
−0.259201 + 0.965823i 0.583459π0.583459\pi
774774 0.867091 0.0311669
775775 24.2259i 0.870219i
776776 − 6.22466i − 0.223452i
777777 2.33448i 0.0837489i
778778 12.3355 0.442247
779779 30.2355i 1.08330i
780780 4.24489 0.151992
781781 24.3417 0.871015
782782 0 0
783783 −0.522726 −0.0186807
784784 −1.67271 −0.0597398
785785 − 29.9721i − 1.06975i
786786 15.2127 0.542618
787787 − 1.65367i − 0.0589469i −0.999566 0.0294735i 0.990617π-0.990617\pi
0.999566 0.0294735i 0.00938305π-0.00938305\pi
788788 5.29573i 0.188652i
789789 5.53808i 0.197161i
790790 −13.8122 −0.491417
791791 −57.0809 −2.02956
792792 3.29769i 0.117178i
793793 36.0034i 1.27852i
794794 − 7.10626i − 0.252192i
795795 −12.6054 −0.447069
796796 − 21.2738i − 0.754029i
797797 37.4699 1.32725 0.663625 0.748065i 0.269017π-0.269017\pi
0.663625 + 0.748065i 0.269017π0.269017\pi
798798 21.9150 0.775782
799799 0 0
800800 3.40743 0.120471
801801 17.3975 0.614709
802802 29.6691i 1.04765i
803803 −17.2759 −0.609655
804804 − 13.5349i − 0.477339i
805805 − 5.25584i − 0.185244i
806806 − 23.9150i − 0.842369i
807807 −4.31477 −0.151887
808808 9.88764 0.347846
809809 − 51.2959i − 1.80347i −0.432291 0.901734i 0.642295π-0.642295\pi
0.432291 0.901734i 0.357705π-0.357705\pi
810810 − 1.26197i − 0.0443412i
811811 1.19528i 0.0419719i 0.999780 + 0.0209860i 0.00668053π0.00668053\pi
−0.999780 + 0.0209860i 0.993319π0.993319\pi
812812 1.53940 0.0540224
813813 4.45569i 0.156268i
814814 −2.61410 −0.0916242
815815 4.06401 0.142356
816816 0 0
817817 6.45250 0.225745
818818 14.8922 0.520693
819819 − 9.90591i − 0.346140i
820820 −5.12747 −0.179059
821821 − 14.3412i − 0.500511i −0.968180 0.250255i 0.919485π-0.919485\pi
0.968180 0.250255i 0.0805146π-0.0805146\pi
822822 − 3.61766i − 0.126180i
823823 − 45.4114i − 1.58294i −0.611207 0.791471i 0.709316π-0.709316\pi
0.611207 0.791471i 0.290684π-0.290684\pi
824824 6.54168 0.227890
825825 −11.2366 −0.391210
826826 − 21.5436i − 0.749596i
827827 − 23.4799i − 0.816475i −0.912876 0.408238i 0.866143π-0.866143\pi
0.912876 0.408238i 0.133857π-0.133857\pi
828828 − 1.41421i − 0.0491473i
829829 −4.28183 −0.148714 −0.0743571 0.997232i 0.523690π-0.523690\pi
−0.0743571 + 0.997232i 0.523690π0.523690\pi
830830 15.6022i 0.541559i
831831 14.0382 0.486978
832832 −3.36370 −0.116615
833833 0 0
834834 −20.2446 −0.701011
835835 5.90895 0.204488
836836 24.5400i 0.848732i
837837 −7.10973 −0.245748
838838 26.2549i 0.906962i
839839 29.6465i 1.02351i 0.859131 + 0.511756i 0.171005π0.171005\pi
−0.859131 + 0.511756i 0.828995π0.828995\pi
840840 3.71644i 0.128229i
841841 28.7268 0.990578
842842 16.6683 0.574429
843843 8.67913i 0.298925i
844844 − 12.9900i − 0.447135i
845845 2.12711i 0.0731748i
846846 10.3086 0.354418
847847 − 0.368761i − 0.0126708i
848848 9.98868 0.343013
849849 14.3623 0.492914
850850 0 0
851851 1.12106 0.0384293
852852 7.38144 0.252884
853853 − 1.16274i − 0.0398116i −0.999802 0.0199058i 0.993663π-0.993663\pi
0.999802 0.0199058i 0.00633663π-0.00633663\pi
854854 −31.5213 −1.07864
855855 − 9.39104i − 0.321167i
856856 − 3.49207i − 0.119356i
857857 − 38.8166i − 1.32595i −0.748642 0.662975i 0.769294π-0.769294\pi
0.748642 0.662975i 0.230706π-0.230706\pi
858858 11.0924 0.378690
859859 −11.0615 −0.377412 −0.188706 0.982034i 0.560429π-0.560429\pi
−0.188706 + 0.982034i 0.560429π0.560429\pi
860860 1.09425i 0.0373134i
861861 11.9655i 0.407783i
862862 − 4.86443i − 0.165683i
863863 8.01331 0.272776 0.136388 0.990655i 0.456451π-0.456451\pi
0.136388 + 0.990655i 0.456451π0.456451\pi
864864 1.00000i 0.0340207i
865865 22.0123 0.748441
866866 −2.20663 −0.0749845
867867 0 0
868868 20.9378 0.710675
869869 −36.0931 −1.22437
870870 − 0.659666i − 0.0223648i
871871 −45.5273 −1.54263
872872 − 15.8751i − 0.537599i
873873 6.22466i 0.210673i
874874 − 10.5239i − 0.355978i
875875 −31.2457 −1.05630
876876 −5.23880 −0.177002
877877 − 14.8632i − 0.501894i −0.968001 0.250947i 0.919258π-0.919258\pi
0.968001 0.250947i 0.0807419π-0.0807419\pi
878878 9.89180i 0.333832i
879879 − 22.0243i − 0.742863i
880880 −4.16160 −0.140287
881881 9.72089i 0.327505i 0.986501 + 0.163753i 0.0523599π0.0523599\pi
−0.986501 + 0.163753i 0.947640π0.947640\pi
882882 1.67271 0.0563232
883883 21.2137 0.713896 0.356948 0.934124i 0.383817π-0.383817\pi
0.356948 + 0.934124i 0.383817π0.383817\pi
884884 0 0
885885 −9.23188 −0.310326
886886 5.50565 0.184966
887887 − 1.24492i − 0.0418005i −0.999782 0.0209002i 0.993347π-0.993347\pi
0.999782 0.0209002i 0.00665323π-0.00665323\pi
888888 −0.792706 −0.0266015
889889 52.3699i 1.75643i
890890 21.9551i 0.735937i
891891 − 3.29769i − 0.110477i
892892 3.88573 0.130104
893893 76.7123 2.56708
894894 − 7.73418i − 0.258670i
895895 − 11.0625i − 0.369779i
896896 − 2.94495i − 0.0983838i
897897 −4.75699 −0.158831
898898 33.2572i 1.10981i
899899 −3.71644 −0.123950
900900 −3.40743 −0.113581
901901 0 0
902902 −13.3987 −0.446129
903903 2.55354 0.0849764
904904 − 19.3827i − 0.644658i
905905 4.77370 0.158683
906906 1.02280i 0.0339804i
907907 − 16.2330i − 0.539009i −0.962999 0.269505i 0.913140π-0.913140\pi
0.962999 0.269505i 0.0868600π-0.0868600\pi
908908 − 4.38875i − 0.145646i
909909 −9.88764 −0.327952
910910 12.5010 0.414404
911911 − 19.2058i − 0.636316i −0.948038 0.318158i 0.896936π-0.896936\pi
0.948038 0.318158i 0.103064π-0.103064\pi
912912 7.44155i 0.246414i
913913 40.7704i 1.34930i
914914 17.4812 0.578226
915915 13.5076i 0.446546i
916916 3.42063 0.113021
917917 44.8005 1.47944
918918 0 0
919919 −35.7959 −1.18080 −0.590398 0.807112i 0.701029π-0.701029\pi
−0.590398 + 0.807112i 0.701029π0.701029\pi
920920 1.78470 0.0588398
921921 7.13291i 0.235037i
922922 14.5385 0.478799
923923 − 24.8289i − 0.817254i
924924 9.71153i 0.319486i
925925 − 2.70109i − 0.0888112i
926926 −1.47703 −0.0485383
927927 −6.54168 −0.214857
928928 0.522726i 0.0171593i
929929 − 38.9490i − 1.27788i −0.769258 0.638938i 0.779374π-0.779374\pi
0.769258 0.638938i 0.220626π-0.220626\pi
930930 − 8.97229i − 0.294213i
931931 12.4476 0.407953
932932 − 0.893211i − 0.0292581i
933933 19.1212 0.626001
934934 −8.68873 −0.284304
935935 0 0
936936 3.36370 0.109946
937937 49.5538 1.61885 0.809426 0.587222i 0.199778π-0.199778\pi
0.809426 + 0.587222i 0.199778π0.199778\pi
938938 − 39.8596i − 1.30146i
939939 13.0225 0.424974
940940 13.0092i 0.424314i
941941 − 3.44941i − 0.112447i −0.998418 0.0562237i 0.982094π-0.982094\pi
0.998418 0.0562237i 0.0179060π-0.0179060\pi
942942 − 23.7502i − 0.773823i
943943 5.74603 0.187117
944944 7.31543 0.238097
945945 − 3.71644i − 0.120896i
946946 2.85940i 0.0929671i
947947 21.5300i 0.699631i 0.936819 + 0.349815i 0.113756π0.113756\pi
−0.936819 + 0.349815i 0.886244π0.886244\pi
948948 −10.9449 −0.355475
949949 17.6217i 0.572025i
950950 −25.3565 −0.822675
951951 −4.55648 −0.147754
952952 0 0
953953 −40.4171 −1.30924 −0.654619 0.755959i 0.727171π-0.727171\pi
−0.654619 + 0.755959i 0.727171π0.727171\pi
954954 −9.98868 −0.323395
955955 0.468209i 0.0151509i
956956 0.389157 0.0125863
957957 − 1.72379i − 0.0557222i
958958 10.9463i 0.353660i
959959 − 10.6538i − 0.344030i
960960 −1.26197 −0.0407300
961961 −19.5483 −0.630590
962962 2.66642i 0.0859690i
963963 3.49207i 0.112530i
964964 15.7554i 0.507447i
965965 −1.31278 −0.0422597
966966 − 4.16478i − 0.134000i
967967 19.1408 0.615528 0.307764 0.951463i 0.400419π-0.400419\pi
0.307764 + 0.951463i 0.400419π0.400419\pi
968968 0.125218 0.00402467
969969 0 0
970970 −7.85535 −0.252220
971971 52.0327 1.66981 0.834905 0.550394i 0.185522π-0.185522\pi
0.834905 + 0.550394i 0.185522π0.185522\pi
972972 − 1.00000i − 0.0320750i
973973 −59.6191 −1.91130
974974 8.75751i 0.280609i
975975 11.4615i 0.367063i
976976 − 10.7035i − 0.342612i
977977 −50.2515 −1.60769 −0.803845 0.594839i 0.797216π-0.797216\pi
−0.803845 + 0.594839i 0.797216π0.797216\pi
978978 3.22037 0.102976
979979 57.3715i 1.83360i
980980 2.11092i 0.0674309i
981981 15.8751i 0.506853i
982982 −30.4170 −0.970646
983983 36.8882i 1.17655i 0.808661 + 0.588275i 0.200193π0.200193\pi
−0.808661 + 0.588275i 0.799807π0.799807\pi
984984 −4.06306 −0.129526
985985 6.68306 0.212940
986986 0 0
987987 30.3584 0.966319
988988 25.0311 0.796346
989989 − 1.22625i − 0.0389925i
990990 4.16160 0.132264
991991 − 0.650857i − 0.0206751i −0.999947 0.0103376i 0.996709π-0.996709\pi
0.999947 0.0103376i 0.00329061π-0.00329061\pi
992992 7.10973i 0.225734i
993993 − 18.7047i − 0.593577i
994994 21.7379 0.689486
995995 −26.8469 −0.851104
996996 12.3633i 0.391747i
997997 49.6033i 1.57095i 0.618892 + 0.785476i 0.287582π0.287582\pi
−0.618892 + 0.785476i 0.712418π0.712418\pi
998998 − 22.3333i − 0.706949i
999999 0.792706 0.0250801
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.2.b.l.577.1 8
17.2 even 8 1734.2.f.l.829.2 8
17.3 odd 16 102.2.h.b.25.2 8
17.4 even 4 1734.2.a.t.1.1 4
17.8 even 8 1734.2.f.l.1483.2 8
17.9 even 8 1734.2.f.k.1483.3 8
17.11 odd 16 102.2.h.b.49.2 yes 8
17.13 even 4 1734.2.a.u.1.4 4
17.15 even 8 1734.2.f.k.829.3 8
17.16 even 2 inner 1734.2.b.l.577.8 8
51.11 even 16 306.2.l.e.253.2 8
51.20 even 16 306.2.l.e.127.2 8
51.38 odd 4 5202.2.a.bu.1.4 4
51.47 odd 4 5202.2.a.bx.1.1 4
68.3 even 16 816.2.bq.c.433.1 8
68.11 even 16 816.2.bq.c.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.h.b.25.2 8 17.3 odd 16
102.2.h.b.49.2 yes 8 17.11 odd 16
306.2.l.e.127.2 8 51.20 even 16
306.2.l.e.253.2 8 51.11 even 16
816.2.bq.c.49.1 8 68.11 even 16
816.2.bq.c.433.1 8 68.3 even 16
1734.2.a.t.1.1 4 17.4 even 4
1734.2.a.u.1.4 4 17.13 even 4
1734.2.b.l.577.1 8 1.1 even 1 trivial
1734.2.b.l.577.8 8 17.16 even 2 inner
1734.2.f.k.829.3 8 17.15 even 8
1734.2.f.k.1483.3 8 17.9 even 8
1734.2.f.l.829.2 8 17.2 even 8
1734.2.f.l.1483.2 8 17.8 even 8
5202.2.a.bu.1.4 4 51.38 odd 4
5202.2.a.bx.1.1 4 51.47 odd 4