Properties

Label 1734.2.b.l.577.1
Level $1734$
Weight $2$
Character 1734.577
Analytic conductor $13.846$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(577,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8460597105\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.1
Root \(-0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 1734.577
Dual form 1734.2.b.l.577.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000i q^{3} +1.00000 q^{4} -1.26197i q^{5} -1.00000i q^{6} -2.94495i q^{7} +1.00000 q^{8} -1.00000 q^{9} -1.26197i q^{10} -3.29769i q^{11} -1.00000i q^{12} -3.36370 q^{13} -2.94495i q^{14} -1.26197 q^{15} +1.00000 q^{16} -1.00000 q^{18} -7.44155 q^{19} -1.26197i q^{20} -2.94495 q^{21} -3.29769i q^{22} +1.41421i q^{23} -1.00000i q^{24} +3.40743 q^{25} -3.36370 q^{26} +1.00000i q^{27} -2.94495i q^{28} +0.522726i q^{29} -1.26197 q^{30} +7.10973i q^{31} +1.00000 q^{32} -3.29769 q^{33} -3.71644 q^{35} -1.00000 q^{36} -0.792706i q^{37} -7.44155 q^{38} +3.36370i q^{39} -1.26197i q^{40} -4.06306i q^{41} -2.94495 q^{42} -0.867091 q^{43} -3.29769i q^{44} +1.26197i q^{45} +1.41421i q^{46} -10.3086 q^{47} -1.00000i q^{48} -1.67271 q^{49} +3.40743 q^{50} -3.36370 q^{52} +9.98868 q^{53} +1.00000i q^{54} -4.16160 q^{55} -2.94495i q^{56} +7.44155i q^{57} +0.522726i q^{58} +7.31543 q^{59} -1.26197 q^{60} -10.7035i q^{61} +7.10973i q^{62} +2.94495i q^{63} +1.00000 q^{64} +4.24489i q^{65} -3.29769 q^{66} +13.5349 q^{67} +1.41421 q^{69} -3.71644 q^{70} +7.38144i q^{71} -1.00000 q^{72} -5.23880i q^{73} -0.792706i q^{74} -3.40743i q^{75} -7.44155 q^{76} -9.71153 q^{77} +3.36370i q^{78} -10.9449i q^{79} -1.26197i q^{80} +1.00000 q^{81} -4.06306i q^{82} -12.3633 q^{83} -2.94495 q^{84} -0.867091 q^{86} +0.522726 q^{87} -3.29769i q^{88} -17.3975 q^{89} +1.26197i q^{90} +9.90591i q^{91} +1.41421i q^{92} +7.10973 q^{93} -10.3086 q^{94} +9.39104i q^{95} -1.00000i q^{96} -6.22466i q^{97} -1.67271 q^{98} +3.29769i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 8 q^{8} - 8 q^{9} + 16 q^{15} + 8 q^{16} - 8 q^{18} - 16 q^{19} - 24 q^{25} + 16 q^{30} + 8 q^{32} - 16 q^{33} - 16 q^{35} - 8 q^{36} - 16 q^{38} - 32 q^{47} - 24 q^{49} - 24 q^{50}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1734\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1159\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) − 1.00000i − 0.577350i
\(4\) 1.00000 0.500000
\(5\) − 1.26197i − 0.564371i −0.959360 0.282186i \(-0.908941\pi\)
0.959360 0.282186i \(-0.0910594\pi\)
\(6\) − 1.00000i − 0.408248i
\(7\) − 2.94495i − 1.11309i −0.830819 0.556543i \(-0.812128\pi\)
0.830819 0.556543i \(-0.187872\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.00000 −0.333333
\(10\) − 1.26197i − 0.399071i
\(11\) − 3.29769i − 0.994292i −0.867667 0.497146i \(-0.834381\pi\)
0.867667 0.497146i \(-0.165619\pi\)
\(12\) − 1.00000i − 0.288675i
\(13\) −3.36370 −0.932922 −0.466461 0.884542i \(-0.654471\pi\)
−0.466461 + 0.884542i \(0.654471\pi\)
\(14\) − 2.94495i − 0.787070i
\(15\) −1.26197 −0.325840
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) −1.00000 −0.235702
\(19\) −7.44155 −1.70721 −0.853605 0.520921i \(-0.825588\pi\)
−0.853605 + 0.520921i \(0.825588\pi\)
\(20\) − 1.26197i − 0.282186i
\(21\) −2.94495 −0.642640
\(22\) − 3.29769i − 0.703071i
\(23\) 1.41421i 0.294884i 0.989071 + 0.147442i \(0.0471040\pi\)
−0.989071 + 0.147442i \(0.952896\pi\)
\(24\) − 1.00000i − 0.204124i
\(25\) 3.40743 0.681485
\(26\) −3.36370 −0.659675
\(27\) 1.00000i 0.192450i
\(28\) − 2.94495i − 0.556543i
\(29\) 0.522726i 0.0970678i 0.998822 + 0.0485339i \(0.0154549\pi\)
−0.998822 + 0.0485339i \(0.984545\pi\)
\(30\) −1.26197 −0.230404
\(31\) 7.10973i 1.27695i 0.769644 + 0.638473i \(0.220434\pi\)
−0.769644 + 0.638473i \(0.779566\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.29769 −0.574055
\(34\) 0 0
\(35\) −3.71644 −0.628194
\(36\) −1.00000 −0.166667
\(37\) − 0.792706i − 0.130320i −0.997875 0.0651601i \(-0.979244\pi\)
0.997875 0.0651601i \(-0.0207558\pi\)
\(38\) −7.44155 −1.20718
\(39\) 3.36370i 0.538623i
\(40\) − 1.26197i − 0.199535i
\(41\) − 4.06306i − 0.634543i −0.948335 0.317272i \(-0.897233\pi\)
0.948335 0.317272i \(-0.102767\pi\)
\(42\) −2.94495 −0.454415
\(43\) −0.867091 −0.132230 −0.0661151 0.997812i \(-0.521060\pi\)
−0.0661151 + 0.997812i \(0.521060\pi\)
\(44\) − 3.29769i − 0.497146i
\(45\) 1.26197i 0.188124i
\(46\) 1.41421i 0.208514i
\(47\) −10.3086 −1.50367 −0.751835 0.659351i \(-0.770831\pi\)
−0.751835 + 0.659351i \(0.770831\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) −1.67271 −0.238959
\(50\) 3.40743 0.481883
\(51\) 0 0
\(52\) −3.36370 −0.466461
\(53\) 9.98868 1.37205 0.686025 0.727578i \(-0.259354\pi\)
0.686025 + 0.727578i \(0.259354\pi\)
\(54\) 1.00000i 0.136083i
\(55\) −4.16160 −0.561150
\(56\) − 2.94495i − 0.393535i
\(57\) 7.44155i 0.985658i
\(58\) 0.522726i 0.0686373i
\(59\) 7.31543 0.952388 0.476194 0.879340i \(-0.342016\pi\)
0.476194 + 0.879340i \(0.342016\pi\)
\(60\) −1.26197 −0.162920
\(61\) − 10.7035i − 1.37045i −0.728333 0.685223i \(-0.759705\pi\)
0.728333 0.685223i \(-0.240295\pi\)
\(62\) 7.10973i 0.902937i
\(63\) 2.94495i 0.371028i
\(64\) 1.00000 0.125000
\(65\) 4.24489i 0.526514i
\(66\) −3.29769 −0.405918
\(67\) 13.5349 1.65355 0.826775 0.562532i \(-0.190173\pi\)
0.826775 + 0.562532i \(0.190173\pi\)
\(68\) 0 0
\(69\) 1.41421 0.170251
\(70\) −3.71644 −0.444200
\(71\) 7.38144i 0.876015i 0.898971 + 0.438008i \(0.144316\pi\)
−0.898971 + 0.438008i \(0.855684\pi\)
\(72\) −1.00000 −0.117851
\(73\) − 5.23880i − 0.613155i −0.951846 0.306577i \(-0.900816\pi\)
0.951846 0.306577i \(-0.0991838\pi\)
\(74\) − 0.792706i − 0.0921502i
\(75\) − 3.40743i − 0.393456i
\(76\) −7.44155 −0.853605
\(77\) −9.71153 −1.10673
\(78\) 3.36370i 0.380864i
\(79\) − 10.9449i − 1.23140i −0.787980 0.615701i \(-0.788873\pi\)
0.787980 0.615701i \(-0.211127\pi\)
\(80\) − 1.26197i − 0.141093i
\(81\) 1.00000 0.111111
\(82\) − 4.06306i − 0.448690i
\(83\) −12.3633 −1.35705 −0.678526 0.734577i \(-0.737381\pi\)
−0.678526 + 0.734577i \(0.737381\pi\)
\(84\) −2.94495 −0.321320
\(85\) 0 0
\(86\) −0.867091 −0.0935008
\(87\) 0.522726 0.0560421
\(88\) − 3.29769i − 0.351535i
\(89\) −17.3975 −1.84413 −0.922063 0.387040i \(-0.873498\pi\)
−0.922063 + 0.387040i \(0.873498\pi\)
\(90\) 1.26197i 0.133024i
\(91\) 9.90591i 1.03842i
\(92\) 1.41421i 0.147442i
\(93\) 7.10973 0.737245
\(94\) −10.3086 −1.06326
\(95\) 9.39104i 0.963500i
\(96\) − 1.00000i − 0.102062i
\(97\) − 6.22466i − 0.632018i −0.948756 0.316009i \(-0.897657\pi\)
0.948756 0.316009i \(-0.102343\pi\)
\(98\) −1.67271 −0.168970
\(99\) 3.29769i 0.331431i
\(100\) 3.40743 0.340743
\(101\) 9.88764 0.983857 0.491929 0.870636i \(-0.336292\pi\)
0.491929 + 0.870636i \(0.336292\pi\)
\(102\) 0 0
\(103\) 6.54168 0.644571 0.322286 0.946642i \(-0.395549\pi\)
0.322286 + 0.946642i \(0.395549\pi\)
\(104\) −3.36370 −0.329838
\(105\) 3.71644i 0.362688i
\(106\) 9.98868 0.970186
\(107\) − 3.49207i − 0.337591i −0.985651 0.168796i \(-0.946012\pi\)
0.985651 0.168796i \(-0.0539878\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) − 15.8751i − 1.52056i −0.649596 0.760279i \(-0.725062\pi\)
0.649596 0.760279i \(-0.274938\pi\)
\(110\) −4.16160 −0.396793
\(111\) −0.792706 −0.0752404
\(112\) − 2.94495i − 0.278271i
\(113\) − 19.3827i − 1.82337i −0.410893 0.911683i \(-0.634783\pi\)
0.410893 0.911683i \(-0.365217\pi\)
\(114\) 7.44155i 0.696965i
\(115\) 1.78470 0.166424
\(116\) 0.522726i 0.0485339i
\(117\) 3.36370 0.310974
\(118\) 7.31543 0.673440
\(119\) 0 0
\(120\) −1.26197 −0.115202
\(121\) 0.125218 0.0113835
\(122\) − 10.7035i − 0.969052i
\(123\) −4.06306 −0.366354
\(124\) 7.10973i 0.638473i
\(125\) − 10.6099i − 0.948982i
\(126\) 2.94495i 0.262357i
\(127\) −17.7830 −1.57798 −0.788992 0.614404i \(-0.789397\pi\)
−0.788992 + 0.614404i \(0.789397\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.867091i 0.0763431i
\(130\) 4.24489i 0.372302i
\(131\) 15.2127i 1.32914i 0.747227 + 0.664569i \(0.231385\pi\)
−0.747227 + 0.664569i \(0.768615\pi\)
\(132\) −3.29769 −0.287027
\(133\) 21.9150i 1.90027i
\(134\) 13.5349 1.16924
\(135\) 1.26197 0.108613
\(136\) 0 0
\(137\) 3.61766 0.309078 0.154539 0.987987i \(-0.450611\pi\)
0.154539 + 0.987987i \(0.450611\pi\)
\(138\) 1.41421 0.120386
\(139\) − 20.2446i − 1.71712i −0.512713 0.858560i \(-0.671359\pi\)
0.512713 0.858560i \(-0.328641\pi\)
\(140\) −3.71644 −0.314097
\(141\) 10.3086i 0.868144i
\(142\) 7.38144i 0.619436i
\(143\) 11.0924i 0.927596i
\(144\) −1.00000 −0.0833333
\(145\) 0.659666 0.0547823
\(146\) − 5.23880i − 0.433566i
\(147\) 1.67271i 0.137963i
\(148\) − 0.792706i − 0.0651601i
\(149\) 7.73418 0.633609 0.316804 0.948491i \(-0.397390\pi\)
0.316804 + 0.948491i \(0.397390\pi\)
\(150\) − 3.40743i − 0.278215i
\(151\) −1.02280 −0.0832346 −0.0416173 0.999134i \(-0.513251\pi\)
−0.0416173 + 0.999134i \(0.513251\pi\)
\(152\) −7.44155 −0.603590
\(153\) 0 0
\(154\) −9.71153 −0.782578
\(155\) 8.97229 0.720671
\(156\) 3.36370i 0.269311i
\(157\) 23.7502 1.89547 0.947736 0.319055i \(-0.103366\pi\)
0.947736 + 0.319055i \(0.103366\pi\)
\(158\) − 10.9449i − 0.870733i
\(159\) − 9.98868i − 0.792154i
\(160\) − 1.26197i − 0.0997677i
\(161\) 4.16478 0.328231
\(162\) 1.00000 0.0785674
\(163\) 3.22037i 0.252239i 0.992015 + 0.126119i \(0.0402522\pi\)
−0.992015 + 0.126119i \(0.959748\pi\)
\(164\) − 4.06306i − 0.317272i
\(165\) 4.16160i 0.323980i
\(166\) −12.3633 −0.959580
\(167\) 4.68231i 0.362328i 0.983453 + 0.181164i \(0.0579865\pi\)
−0.983453 + 0.181164i \(0.942013\pi\)
\(168\) −2.94495 −0.227208
\(169\) −1.68554 −0.129657
\(170\) 0 0
\(171\) 7.44155 0.569070
\(172\) −0.867091 −0.0661151
\(173\) 17.4428i 1.32615i 0.748553 + 0.663075i \(0.230749\pi\)
−0.748553 + 0.663075i \(0.769251\pi\)
\(174\) 0.522726 0.0396278
\(175\) − 10.0347i − 0.758551i
\(176\) − 3.29769i − 0.248573i
\(177\) − 7.31543i − 0.549862i
\(178\) −17.3975 −1.30399
\(179\) 8.76606 0.655206 0.327603 0.944815i \(-0.393759\pi\)
0.327603 + 0.944815i \(0.393759\pi\)
\(180\) 1.26197i 0.0940619i
\(181\) 3.78273i 0.281168i 0.990069 + 0.140584i \(0.0448981\pi\)
−0.990069 + 0.140584i \(0.955102\pi\)
\(182\) 9.90591i 0.734275i
\(183\) −10.7035 −0.791227
\(184\) 1.41421i 0.104257i
\(185\) −1.00037 −0.0735489
\(186\) 7.10973 0.521311
\(187\) 0 0
\(188\) −10.3086 −0.751835
\(189\) 2.94495 0.214213
\(190\) 9.39104i 0.681297i
\(191\) −0.371014 −0.0268456 −0.0134228 0.999910i \(-0.504273\pi\)
−0.0134228 + 0.999910i \(0.504273\pi\)
\(192\) − 1.00000i − 0.0721688i
\(193\) − 1.04026i − 0.0748793i −0.999299 0.0374397i \(-0.988080\pi\)
0.999299 0.0374397i \(-0.0119202\pi\)
\(194\) − 6.22466i − 0.446904i
\(195\) 4.24489 0.303983
\(196\) −1.67271 −0.119480
\(197\) 5.29573i 0.377305i 0.982044 + 0.188652i \(0.0604120\pi\)
−0.982044 + 0.188652i \(0.939588\pi\)
\(198\) 3.29769i 0.234357i
\(199\) − 21.2738i − 1.50806i −0.656841 0.754029i \(-0.728108\pi\)
0.656841 0.754029i \(-0.271892\pi\)
\(200\) 3.40743 0.240941
\(201\) − 13.5349i − 0.954678i
\(202\) 9.88764 0.695692
\(203\) 1.53940 0.108045
\(204\) 0 0
\(205\) −5.12747 −0.358118
\(206\) 6.54168 0.455781
\(207\) − 1.41421i − 0.0982946i
\(208\) −3.36370 −0.233230
\(209\) 24.5400i 1.69746i
\(210\) 3.71644i 0.256459i
\(211\) − 12.9900i − 0.894270i −0.894466 0.447135i \(-0.852444\pi\)
0.894466 0.447135i \(-0.147556\pi\)
\(212\) 9.98868 0.686025
\(213\) 7.38144 0.505768
\(214\) − 3.49207i − 0.238713i
\(215\) 1.09425i 0.0746269i
\(216\) 1.00000i 0.0680414i
\(217\) 20.9378 1.42135
\(218\) − 15.8751i − 1.07520i
\(219\) −5.23880 −0.354005
\(220\) −4.16160 −0.280575
\(221\) 0 0
\(222\) −0.792706 −0.0532030
\(223\) 3.88573 0.260208 0.130104 0.991500i \(-0.458469\pi\)
0.130104 + 0.991500i \(0.458469\pi\)
\(224\) − 2.94495i − 0.196768i
\(225\) −3.40743 −0.227162
\(226\) − 19.3827i − 1.28932i
\(227\) − 4.38875i − 0.291292i −0.989337 0.145646i \(-0.953474\pi\)
0.989337 0.145646i \(-0.0465260\pi\)
\(228\) 7.44155i 0.492829i
\(229\) 3.42063 0.226041 0.113021 0.993593i \(-0.463947\pi\)
0.113021 + 0.993593i \(0.463947\pi\)
\(230\) 1.78470 0.117680
\(231\) 9.71153i 0.638972i
\(232\) 0.522726i 0.0343187i
\(233\) − 0.893211i − 0.0585162i −0.999572 0.0292581i \(-0.990686\pi\)
0.999572 0.0292581i \(-0.00931448\pi\)
\(234\) 3.36370 0.219892
\(235\) 13.0092i 0.848628i
\(236\) 7.31543 0.476194
\(237\) −10.9449 −0.710951
\(238\) 0 0
\(239\) 0.389157 0.0251725 0.0125863 0.999921i \(-0.495994\pi\)
0.0125863 + 0.999921i \(0.495994\pi\)
\(240\) −1.26197 −0.0814600
\(241\) 15.7554i 1.01489i 0.861683 + 0.507447i \(0.169411\pi\)
−0.861683 + 0.507447i \(0.830589\pi\)
\(242\) 0.125218 0.00804934
\(243\) − 1.00000i − 0.0641500i
\(244\) − 10.7035i − 0.685223i
\(245\) 2.11092i 0.134862i
\(246\) −4.06306 −0.259051
\(247\) 25.0311 1.59269
\(248\) 7.10973i 0.451468i
\(249\) 12.3633i 0.783494i
\(250\) − 10.6099i − 0.671032i
\(251\) 15.2423 0.962083 0.481042 0.876698i \(-0.340259\pi\)
0.481042 + 0.876698i \(0.340259\pi\)
\(252\) 2.94495i 0.185514i
\(253\) 4.66364 0.293201
\(254\) −17.7830 −1.11580
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 7.05696 0.440201 0.220101 0.975477i \(-0.429361\pi\)
0.220101 + 0.975477i \(0.429361\pi\)
\(258\) 0.867091i 0.0539827i
\(259\) −2.33448 −0.145057
\(260\) 4.24489i 0.263257i
\(261\) − 0.522726i − 0.0323559i
\(262\) 15.2127i 0.939842i
\(263\) −5.53808 −0.341493 −0.170746 0.985315i \(-0.554618\pi\)
−0.170746 + 0.985315i \(0.554618\pi\)
\(264\) −3.29769 −0.202959
\(265\) − 12.6054i − 0.774346i
\(266\) 21.9150i 1.34369i
\(267\) 17.3975i 1.06471i
\(268\) 13.5349 0.826775
\(269\) − 4.31477i − 0.263076i −0.991311 0.131538i \(-0.958008\pi\)
0.991311 0.131538i \(-0.0419916\pi\)
\(270\) 1.26197 0.0768012
\(271\) −4.45569 −0.270664 −0.135332 0.990800i \(-0.543210\pi\)
−0.135332 + 0.990800i \(0.543210\pi\)
\(272\) 0 0
\(273\) 9.90591 0.599533
\(274\) 3.61766 0.218551
\(275\) − 11.2366i − 0.677595i
\(276\) 1.41421 0.0851257
\(277\) 14.0382i 0.843471i 0.906719 + 0.421736i \(0.138579\pi\)
−0.906719 + 0.421736i \(0.861421\pi\)
\(278\) − 20.2446i − 1.21419i
\(279\) − 7.10973i − 0.425649i
\(280\) −3.71644 −0.222100
\(281\) −8.67913 −0.517753 −0.258877 0.965910i \(-0.583352\pi\)
−0.258877 + 0.965910i \(0.583352\pi\)
\(282\) 10.3086i 0.613871i
\(283\) 14.3623i 0.853753i 0.904310 + 0.426876i \(0.140386\pi\)
−0.904310 + 0.426876i \(0.859614\pi\)
\(284\) 7.38144i 0.438008i
\(285\) 9.39104 0.556277
\(286\) 11.0924i 0.655910i
\(287\) −11.9655 −0.706301
\(288\) −1.00000 −0.0589256
\(289\) 0 0
\(290\) 0.659666 0.0387369
\(291\) −6.22466 −0.364896
\(292\) − 5.23880i − 0.306577i
\(293\) 22.0243 1.28668 0.643338 0.765582i \(-0.277549\pi\)
0.643338 + 0.765582i \(0.277549\pi\)
\(294\) 1.67271i 0.0975547i
\(295\) − 9.23188i − 0.537501i
\(296\) − 0.792706i − 0.0460751i
\(297\) 3.29769 0.191352
\(298\) 7.73418 0.448029
\(299\) − 4.75699i − 0.275104i
\(300\) − 3.40743i − 0.196728i
\(301\) 2.55354i 0.147183i
\(302\) −1.02280 −0.0588557
\(303\) − 9.88764i − 0.568030i
\(304\) −7.44155 −0.426802
\(305\) −13.5076 −0.773440
\(306\) 0 0
\(307\) −7.13291 −0.407097 −0.203548 0.979065i \(-0.565247\pi\)
−0.203548 + 0.979065i \(0.565247\pi\)
\(308\) −9.71153 −0.553366
\(309\) − 6.54168i − 0.372143i
\(310\) 8.97229 0.509592
\(311\) 19.1212i 1.08427i 0.840293 + 0.542133i \(0.182383\pi\)
−0.840293 + 0.542133i \(0.817617\pi\)
\(312\) 3.36370i 0.190432i
\(313\) 13.0225i 0.736076i 0.929811 + 0.368038i \(0.119970\pi\)
−0.929811 + 0.368038i \(0.880030\pi\)
\(314\) 23.7502 1.34030
\(315\) 3.71644 0.209398
\(316\) − 10.9449i − 0.615701i
\(317\) − 4.55648i − 0.255917i −0.991779 0.127959i \(-0.959157\pi\)
0.991779 0.127959i \(-0.0408425\pi\)
\(318\) − 9.98868i − 0.560137i
\(319\) 1.72379 0.0965137
\(320\) − 1.26197i − 0.0705464i
\(321\) −3.49207 −0.194908
\(322\) 4.16478 0.232094
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −11.4615 −0.635772
\(326\) 3.22037i 0.178360i
\(327\) −15.8751 −0.877895
\(328\) − 4.06306i − 0.224345i
\(329\) 30.3584i 1.67371i
\(330\) 4.16160i 0.229088i
\(331\) 18.7047 1.02811 0.514053 0.857758i \(-0.328144\pi\)
0.514053 + 0.857758i \(0.328144\pi\)
\(332\) −12.3633 −0.678526
\(333\) 0.792706i 0.0434400i
\(334\) 4.68231i 0.256205i
\(335\) − 17.0807i − 0.933217i
\(336\) −2.94495 −0.160660
\(337\) − 23.8756i − 1.30059i −0.759683 0.650294i \(-0.774646\pi\)
0.759683 0.650294i \(-0.225354\pi\)
\(338\) −1.68554 −0.0916815
\(339\) −19.3827 −1.05272
\(340\) 0 0
\(341\) 23.4457 1.26966
\(342\) 7.44155 0.402393
\(343\) − 15.6886i − 0.847103i
\(344\) −0.867091 −0.0467504
\(345\) − 1.78470i − 0.0960850i
\(346\) 17.4428i 0.937729i
\(347\) 24.9127i 1.33738i 0.743540 + 0.668692i \(0.233145\pi\)
−0.743540 + 0.668692i \(0.766855\pi\)
\(348\) 0.522726 0.0280211
\(349\) 19.5194 1.04485 0.522425 0.852685i \(-0.325027\pi\)
0.522425 + 0.852685i \(0.325027\pi\)
\(350\) − 10.0347i − 0.536377i
\(351\) − 3.36370i − 0.179541i
\(352\) − 3.29769i − 0.175768i
\(353\) −25.7115 −1.36849 −0.684243 0.729254i \(-0.739867\pi\)
−0.684243 + 0.729254i \(0.739867\pi\)
\(354\) − 7.31543i − 0.388811i
\(355\) 9.31517 0.494398
\(356\) −17.3975 −0.922063
\(357\) 0 0
\(358\) 8.76606 0.463301
\(359\) −19.2482 −1.01588 −0.507939 0.861393i \(-0.669593\pi\)
−0.507939 + 0.861393i \(0.669593\pi\)
\(360\) 1.26197i 0.0665118i
\(361\) 36.3767 1.91456
\(362\) 3.78273i 0.198816i
\(363\) − 0.125218i − 0.00657225i
\(364\) 9.90591i 0.519211i
\(365\) −6.61122 −0.346047
\(366\) −10.7035 −0.559482
\(367\) − 5.08708i − 0.265544i −0.991147 0.132772i \(-0.957612\pi\)
0.991147 0.132772i \(-0.0423877\pi\)
\(368\) 1.41421i 0.0737210i
\(369\) 4.06306i 0.211514i
\(370\) −1.00037 −0.0520070
\(371\) − 29.4161i − 1.52721i
\(372\) 7.10973 0.368622
\(373\) 21.9719 1.13766 0.568831 0.822454i \(-0.307396\pi\)
0.568831 + 0.822454i \(0.307396\pi\)
\(374\) 0 0
\(375\) −10.6099 −0.547895
\(376\) −10.3086 −0.531628
\(377\) − 1.75829i − 0.0905567i
\(378\) 2.94495 0.151472
\(379\) − 10.0798i − 0.517763i −0.965909 0.258881i \(-0.916646\pi\)
0.965909 0.258881i \(-0.0833539\pi\)
\(380\) 9.39104i 0.481750i
\(381\) 17.7830i 0.911049i
\(382\) −0.371014 −0.0189827
\(383\) 27.9738 1.42940 0.714698 0.699433i \(-0.246564\pi\)
0.714698 + 0.699433i \(0.246564\pi\)
\(384\) − 1.00000i − 0.0510310i
\(385\) 12.2557i 0.624608i
\(386\) − 1.04026i − 0.0529477i
\(387\) 0.867091 0.0440767
\(388\) − 6.22466i − 0.316009i
\(389\) 12.3355 0.625432 0.312716 0.949847i \(-0.398761\pi\)
0.312716 + 0.949847i \(0.398761\pi\)
\(390\) 4.24489 0.214949
\(391\) 0 0
\(392\) −1.67271 −0.0844848
\(393\) 15.2127 0.767378
\(394\) 5.29573i 0.266795i
\(395\) −13.8122 −0.694968
\(396\) 3.29769i 0.165715i
\(397\) − 7.10626i − 0.356653i −0.983971 0.178326i \(-0.942932\pi\)
0.983971 0.178326i \(-0.0570683\pi\)
\(398\) − 21.2738i − 1.06636i
\(399\) 21.9150 1.09712
\(400\) 3.40743 0.170371
\(401\) 29.6691i 1.48160i 0.671725 + 0.740801i \(0.265554\pi\)
−0.671725 + 0.740801i \(0.734446\pi\)
\(402\) − 13.5349i − 0.675059i
\(403\) − 23.9150i − 1.19129i
\(404\) 9.88764 0.491929
\(405\) − 1.26197i − 0.0627079i
\(406\) 1.53940 0.0763992
\(407\) −2.61410 −0.129576
\(408\) 0 0
\(409\) 14.8922 0.736371 0.368185 0.929752i \(-0.379979\pi\)
0.368185 + 0.929752i \(0.379979\pi\)
\(410\) −5.12747 −0.253228
\(411\) − 3.61766i − 0.178446i
\(412\) 6.54168 0.322286
\(413\) − 21.5436i − 1.06009i
\(414\) − 1.41421i − 0.0695048i
\(415\) 15.6022i 0.765881i
\(416\) −3.36370 −0.164919
\(417\) −20.2446 −0.991380
\(418\) 24.5400i 1.20029i
\(419\) 26.2549i 1.28264i 0.767274 + 0.641319i \(0.221612\pi\)
−0.767274 + 0.641319i \(0.778388\pi\)
\(420\) 3.71644i 0.181344i
\(421\) 16.6683 0.812365 0.406182 0.913792i \(-0.366860\pi\)
0.406182 + 0.913792i \(0.366860\pi\)
\(422\) − 12.9900i − 0.632345i
\(423\) 10.3086 0.501223
\(424\) 9.98868 0.485093
\(425\) 0 0
\(426\) 7.38144 0.357632
\(427\) −31.5213 −1.52542
\(428\) − 3.49207i − 0.168796i
\(429\) 11.0924 0.535548
\(430\) 1.09425i 0.0527692i
\(431\) − 4.86443i − 0.234312i −0.993114 0.117156i \(-0.962622\pi\)
0.993114 0.117156i \(-0.0373777\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) −2.20663 −0.106044 −0.0530220 0.998593i \(-0.516885\pi\)
−0.0530220 + 0.998593i \(0.516885\pi\)
\(434\) 20.9378 1.00505
\(435\) − 0.659666i − 0.0316286i
\(436\) − 15.8751i − 0.760279i
\(437\) − 10.5239i − 0.503429i
\(438\) −5.23880 −0.250319
\(439\) 9.89180i 0.472110i 0.971740 + 0.236055i \(0.0758546\pi\)
−0.971740 + 0.236055i \(0.924145\pi\)
\(440\) −4.16160 −0.198396
\(441\) 1.67271 0.0796531
\(442\) 0 0
\(443\) 5.50565 0.261581 0.130791 0.991410i \(-0.458248\pi\)
0.130791 + 0.991410i \(0.458248\pi\)
\(444\) −0.792706 −0.0376202
\(445\) 21.9551i 1.04077i
\(446\) 3.88573 0.183995
\(447\) − 7.73418i − 0.365814i
\(448\) − 2.94495i − 0.139136i
\(449\) 33.2572i 1.56951i 0.619808 + 0.784753i \(0.287210\pi\)
−0.619808 + 0.784753i \(0.712790\pi\)
\(450\) −3.40743 −0.160628
\(451\) −13.3987 −0.630921
\(452\) − 19.3827i − 0.911683i
\(453\) 1.02280i 0.0480555i
\(454\) − 4.38875i − 0.205974i
\(455\) 12.5010 0.586055
\(456\) 7.44155i 0.348483i
\(457\) 17.4812 0.817736 0.408868 0.912594i \(-0.365924\pi\)
0.408868 + 0.912594i \(0.365924\pi\)
\(458\) 3.42063 0.159835
\(459\) 0 0
\(460\) 1.78470 0.0832120
\(461\) 14.5385 0.677123 0.338562 0.940944i \(-0.390060\pi\)
0.338562 + 0.940944i \(0.390060\pi\)
\(462\) 9.71153i 0.451821i
\(463\) −1.47703 −0.0686435 −0.0343217 0.999411i \(-0.510927\pi\)
−0.0343217 + 0.999411i \(0.510927\pi\)
\(464\) 0.522726i 0.0242670i
\(465\) − 8.97229i − 0.416080i
\(466\) − 0.893211i − 0.0413772i
\(467\) −8.68873 −0.402066 −0.201033 0.979584i \(-0.564430\pi\)
−0.201033 + 0.979584i \(0.564430\pi\)
\(468\) 3.36370 0.155487
\(469\) − 39.8596i − 1.84054i
\(470\) 13.0092i 0.600071i
\(471\) − 23.7502i − 1.09435i
\(472\) 7.31543 0.336720
\(473\) 2.85940i 0.131475i
\(474\) −10.9449 −0.502718
\(475\) −25.3565 −1.16344
\(476\) 0 0
\(477\) −9.98868 −0.457350
\(478\) 0.389157 0.0177996
\(479\) 10.9463i 0.500151i 0.968226 + 0.250075i \(0.0804554\pi\)
−0.968226 + 0.250075i \(0.919545\pi\)
\(480\) −1.26197 −0.0576009
\(481\) 2.66642i 0.121578i
\(482\) 15.7554i 0.717638i
\(483\) − 4.16478i − 0.189504i
\(484\) 0.125218 0.00569174
\(485\) −7.85535 −0.356693
\(486\) − 1.00000i − 0.0453609i
\(487\) 8.75751i 0.396841i 0.980117 + 0.198420i \(0.0635811\pi\)
−0.980117 + 0.198420i \(0.936419\pi\)
\(488\) − 10.7035i − 0.484526i
\(489\) 3.22037 0.145630
\(490\) 2.11092i 0.0953616i
\(491\) −30.4170 −1.37270 −0.686351 0.727271i \(-0.740788\pi\)
−0.686351 + 0.727271i \(0.740788\pi\)
\(492\) −4.06306 −0.183177
\(493\) 0 0
\(494\) 25.0311 1.12620
\(495\) 4.16160 0.187050
\(496\) 7.10973i 0.319236i
\(497\) 21.7379 0.975080
\(498\) 12.3633i 0.554014i
\(499\) − 22.3333i − 0.999777i −0.866090 0.499889i \(-0.833374\pi\)
0.866090 0.499889i \(-0.166626\pi\)
\(500\) − 10.6099i − 0.474491i
\(501\) 4.68231 0.209190
\(502\) 15.2423 0.680296
\(503\) 42.3520i 1.88838i 0.329398 + 0.944191i \(0.393154\pi\)
−0.329398 + 0.944191i \(0.606846\pi\)
\(504\) 2.94495i 0.131178i
\(505\) − 12.4779i − 0.555261i
\(506\) 4.66364 0.207324
\(507\) 1.68554i 0.0748576i
\(508\) −17.7830 −0.788992
\(509\) −9.03882 −0.400639 −0.200319 0.979731i \(-0.564198\pi\)
−0.200319 + 0.979731i \(0.564198\pi\)
\(510\) 0 0
\(511\) −15.4280 −0.682493
\(512\) 1.00000 0.0441942
\(513\) − 7.44155i − 0.328553i
\(514\) 7.05696 0.311269
\(515\) − 8.25543i − 0.363778i
\(516\) 0.867091i 0.0381716i
\(517\) 33.9947i 1.49509i
\(518\) −2.33448 −0.102571
\(519\) 17.4428 0.765653
\(520\) 4.24489i 0.186151i
\(521\) − 33.4356i − 1.46484i −0.680853 0.732420i \(-0.738391\pi\)
0.680853 0.732420i \(-0.261609\pi\)
\(522\) − 0.522726i − 0.0228791i
\(523\) −23.9751 −1.04836 −0.524180 0.851608i \(-0.675628\pi\)
−0.524180 + 0.851608i \(0.675628\pi\)
\(524\) 15.2127i 0.664569i
\(525\) −10.0347 −0.437950
\(526\) −5.53808 −0.241472
\(527\) 0 0
\(528\) −3.29769 −0.143514
\(529\) 21.0000 0.913043
\(530\) − 12.6054i − 0.547545i
\(531\) −7.31543 −0.317463
\(532\) 21.9150i 0.950135i
\(533\) 13.6669i 0.591979i
\(534\) 17.3975i 0.752861i
\(535\) −4.40690 −0.190527
\(536\) 13.5349 0.584618
\(537\) − 8.76606i − 0.378283i
\(538\) − 4.31477i − 0.186023i
\(539\) 5.51610i 0.237595i
\(540\) 1.26197 0.0543067
\(541\) − 17.5884i − 0.756182i −0.925768 0.378091i \(-0.876581\pi\)
0.925768 0.378091i \(-0.123419\pi\)
\(542\) −4.45569 −0.191388
\(543\) 3.78273 0.162333
\(544\) 0 0
\(545\) −20.0339 −0.858160
\(546\) 9.90591 0.423934
\(547\) 4.79884i 0.205183i 0.994724 + 0.102592i \(0.0327135\pi\)
−0.994724 + 0.102592i \(0.967286\pi\)
\(548\) 3.61766 0.154539
\(549\) 10.7035i 0.456815i
\(550\) − 11.2366i − 0.479132i
\(551\) − 3.88989i − 0.165715i
\(552\) 1.41421 0.0601929
\(553\) −32.2323 −1.37066
\(554\) 14.0382i 0.596424i
\(555\) 1.00037i 0.0424635i
\(556\) − 20.2446i − 0.858560i
\(557\) −27.0366 −1.14558 −0.572788 0.819704i \(-0.694138\pi\)
−0.572788 + 0.819704i \(0.694138\pi\)
\(558\) − 7.10973i − 0.300979i
\(559\) 2.91663 0.123360
\(560\) −3.71644 −0.157048
\(561\) 0 0
\(562\) −8.67913 −0.366107
\(563\) −38.3143 −1.61475 −0.807377 0.590036i \(-0.799114\pi\)
−0.807377 + 0.590036i \(0.799114\pi\)
\(564\) 10.3086i 0.434072i
\(565\) −24.4604 −1.02906
\(566\) 14.3623i 0.603694i
\(567\) − 2.94495i − 0.123676i
\(568\) 7.38144i 0.309718i
\(569\) −18.6210 −0.780633 −0.390317 0.920681i \(-0.627634\pi\)
−0.390317 + 0.920681i \(0.627634\pi\)
\(570\) 9.39104 0.393347
\(571\) − 3.86349i − 0.161682i −0.996727 0.0808410i \(-0.974239\pi\)
0.996727 0.0808410i \(-0.0257606\pi\)
\(572\) 11.0924i 0.463798i
\(573\) 0.371014i 0.0154993i
\(574\) −11.9655 −0.499430
\(575\) 4.81883i 0.200959i
\(576\) −1.00000 −0.0416667
\(577\) −25.4772 −1.06063 −0.530315 0.847801i \(-0.677926\pi\)
−0.530315 + 0.847801i \(0.677926\pi\)
\(578\) 0 0
\(579\) −1.04026 −0.0432316
\(580\) 0.659666 0.0273911
\(581\) 36.4093i 1.51051i
\(582\) −6.22466 −0.258020
\(583\) − 32.9396i − 1.36422i
\(584\) − 5.23880i − 0.216783i
\(585\) − 4.24489i − 0.175505i
\(586\) 22.0243 0.909817
\(587\) 0.531636 0.0219430 0.0109715 0.999940i \(-0.496508\pi\)
0.0109715 + 0.999940i \(0.496508\pi\)
\(588\) 1.67271i 0.0689816i
\(589\) − 52.9074i − 2.18001i
\(590\) − 9.23188i − 0.380070i
\(591\) 5.29573 0.217837
\(592\) − 0.792706i − 0.0325800i
\(593\) 12.1266 0.497982 0.248991 0.968506i \(-0.419901\pi\)
0.248991 + 0.968506i \(0.419901\pi\)
\(594\) 3.29769 0.135306
\(595\) 0 0
\(596\) 7.73418 0.316804
\(597\) −21.2738 −0.870677
\(598\) − 4.75699i − 0.194528i
\(599\) 14.6476 0.598486 0.299243 0.954177i \(-0.403266\pi\)
0.299243 + 0.954177i \(0.403266\pi\)
\(600\) − 3.40743i − 0.139108i
\(601\) 26.2961i 1.07264i 0.844015 + 0.536320i \(0.180186\pi\)
−0.844015 + 0.536320i \(0.819814\pi\)
\(602\) 2.55354i 0.104074i
\(603\) −13.5349 −0.551184
\(604\) −1.02280 −0.0416173
\(605\) − 0.158022i − 0.00642451i
\(606\) − 9.88764i − 0.401658i
\(607\) 24.3315i 0.987584i 0.869580 + 0.493792i \(0.164390\pi\)
−0.869580 + 0.493792i \(0.835610\pi\)
\(608\) −7.44155 −0.301795
\(609\) − 1.53940i − 0.0623797i
\(610\) −13.5076 −0.546905
\(611\) 34.6752 1.40281
\(612\) 0 0
\(613\) −8.21114 −0.331645 −0.165822 0.986156i \(-0.553028\pi\)
−0.165822 + 0.986156i \(0.553028\pi\)
\(614\) −7.13291 −0.287861
\(615\) 5.12747i 0.206760i
\(616\) −9.71153 −0.391289
\(617\) 44.5518i 1.79359i 0.442450 + 0.896793i \(0.354109\pi\)
−0.442450 + 0.896793i \(0.645891\pi\)
\(618\) − 6.54168i − 0.263145i
\(619\) − 21.8112i − 0.876668i −0.898812 0.438334i \(-0.855569\pi\)
0.898812 0.438334i \(-0.144431\pi\)
\(620\) 8.97229 0.360336
\(621\) −1.41421 −0.0567504
\(622\) 19.1212i 0.766692i
\(623\) 51.2346i 2.05267i
\(624\) 3.36370i 0.134656i
\(625\) 3.64767 0.145907
\(626\) 13.0225i 0.520484i
\(627\) 24.5400 0.980032
\(628\) 23.7502 0.947736
\(629\) 0 0
\(630\) 3.71644 0.148067
\(631\) 41.7021 1.66014 0.830068 0.557663i \(-0.188302\pi\)
0.830068 + 0.557663i \(0.188302\pi\)
\(632\) − 10.9449i − 0.435367i
\(633\) −12.9900 −0.516307
\(634\) − 4.55648i − 0.180961i
\(635\) 22.4416i 0.890569i
\(636\) − 9.98868i − 0.396077i
\(637\) 5.62650 0.222930
\(638\) 1.72379 0.0682455
\(639\) − 7.38144i − 0.292005i
\(640\) − 1.26197i − 0.0498838i
\(641\) 13.7067i 0.541381i 0.962666 + 0.270691i \(0.0872521\pi\)
−0.962666 + 0.270691i \(0.912748\pi\)
\(642\) −3.49207 −0.137821
\(643\) − 21.8390i − 0.861247i −0.902532 0.430624i \(-0.858294\pi\)
0.902532 0.430624i \(-0.141706\pi\)
\(644\) 4.16478 0.164115
\(645\) 1.09425 0.0430859
\(646\) 0 0
\(647\) −21.2760 −0.836447 −0.418223 0.908344i \(-0.637347\pi\)
−0.418223 + 0.908344i \(0.637347\pi\)
\(648\) 1.00000 0.0392837
\(649\) − 24.1241i − 0.946952i
\(650\) −11.4615 −0.449559
\(651\) − 20.9378i − 0.820616i
\(652\) 3.22037i 0.126119i
\(653\) − 33.1843i − 1.29860i −0.760531 0.649301i \(-0.775062\pi\)
0.760531 0.649301i \(-0.224938\pi\)
\(654\) −15.8751 −0.620765
\(655\) 19.1980 0.750127
\(656\) − 4.06306i − 0.158636i
\(657\) 5.23880i 0.204385i
\(658\) 30.3584i 1.18349i
\(659\) −0.649089 −0.0252849 −0.0126425 0.999920i \(-0.504024\pi\)
−0.0126425 + 0.999920i \(0.504024\pi\)
\(660\) 4.16160i 0.161990i
\(661\) 30.8996 1.20185 0.600927 0.799304i \(-0.294798\pi\)
0.600927 + 0.799304i \(0.294798\pi\)
\(662\) 18.7047 0.726981
\(663\) 0 0
\(664\) −12.3633 −0.479790
\(665\) 27.6561 1.07246
\(666\) 0.792706i 0.0307167i
\(667\) −0.739246 −0.0286237
\(668\) 4.68231i 0.181164i
\(669\) − 3.88573i − 0.150231i
\(670\) − 17.0807i − 0.659884i
\(671\) −35.2969 −1.36262
\(672\) −2.94495 −0.113604
\(673\) 30.3508i 1.16994i 0.811056 + 0.584968i \(0.198893\pi\)
−0.811056 + 0.584968i \(0.801107\pi\)
\(674\) − 23.8756i − 0.919655i
\(675\) 3.40743i 0.131152i
\(676\) −1.68554 −0.0648286
\(677\) − 6.53702i − 0.251238i −0.992079 0.125619i \(-0.959908\pi\)
0.992079 0.125619i \(-0.0400917\pi\)
\(678\) −19.3827 −0.744386
\(679\) −18.3313 −0.703490
\(680\) 0 0
\(681\) −4.38875 −0.168177
\(682\) 23.4457 0.897783
\(683\) 10.6469i 0.407392i 0.979034 + 0.203696i \(0.0652953\pi\)
−0.979034 + 0.203696i \(0.934705\pi\)
\(684\) 7.44155 0.284535
\(685\) − 4.56539i − 0.174435i
\(686\) − 15.6886i − 0.598993i
\(687\) − 3.42063i − 0.130505i
\(688\) −0.867091 −0.0330575
\(689\) −33.5989 −1.28002
\(690\) − 1.78470i − 0.0679423i
\(691\) 19.7603i 0.751718i 0.926677 + 0.375859i \(0.122652\pi\)
−0.926677 + 0.375859i \(0.877348\pi\)
\(692\) 17.4428i 0.663075i
\(693\) 9.71153 0.368911
\(694\) 24.9127i 0.945673i
\(695\) −25.5481 −0.969093
\(696\) 0.522726 0.0198139
\(697\) 0 0
\(698\) 19.5194 0.738821
\(699\) −0.893211 −0.0337844
\(700\) − 10.0347i − 0.379276i
\(701\) 39.7169 1.50009 0.750043 0.661390i \(-0.230033\pi\)
0.750043 + 0.661390i \(0.230033\pi\)
\(702\) − 3.36370i − 0.126955i
\(703\) 5.89897i 0.222484i
\(704\) − 3.29769i − 0.124286i
\(705\) 13.0092 0.489956
\(706\) −25.7115 −0.967666
\(707\) − 29.1186i − 1.09512i
\(708\) − 7.31543i − 0.274931i
\(709\) 44.9863i 1.68950i 0.535163 + 0.844749i \(0.320250\pi\)
−0.535163 + 0.844749i \(0.679750\pi\)
\(710\) 9.31517 0.349592
\(711\) 10.9449i 0.410468i
\(712\) −17.3975 −0.651997
\(713\) −10.0547 −0.376551
\(714\) 0 0
\(715\) 13.9984 0.523509
\(716\) 8.76606 0.327603
\(717\) − 0.389157i − 0.0145334i
\(718\) −19.2482 −0.718335
\(719\) − 34.9648i − 1.30397i −0.758233 0.651983i \(-0.773937\pi\)
0.758233 0.651983i \(-0.226063\pi\)
\(720\) 1.26197i 0.0470309i
\(721\) − 19.2649i − 0.717463i
\(722\) 36.3767 1.35380
\(723\) 15.7554 0.585949
\(724\) 3.78273i 0.140584i
\(725\) 1.78115i 0.0661503i
\(726\) − 0.125218i − 0.00464729i
\(727\) −9.34543 −0.346603 −0.173301 0.984869i \(-0.555443\pi\)
−0.173301 + 0.984869i \(0.555443\pi\)
\(728\) 9.90591i 0.367137i
\(729\) −1.00000 −0.0370370
\(730\) −6.61122 −0.244692
\(731\) 0 0
\(732\) −10.7035 −0.395614
\(733\) −35.0025 −1.29285 −0.646423 0.762979i \(-0.723736\pi\)
−0.646423 + 0.762979i \(0.723736\pi\)
\(734\) − 5.08708i − 0.187768i
\(735\) 2.11092 0.0778625
\(736\) 1.41421i 0.0521286i
\(737\) − 44.6339i − 1.64411i
\(738\) 4.06306i 0.149563i
\(739\) −20.3466 −0.748460 −0.374230 0.927336i \(-0.622093\pi\)
−0.374230 + 0.927336i \(0.622093\pi\)
\(740\) −1.00037 −0.0367745
\(741\) − 25.0311i − 0.919541i
\(742\) − 29.4161i − 1.07990i
\(743\) 19.1359i 0.702027i 0.936370 + 0.351014i \(0.114163\pi\)
−0.936370 + 0.351014i \(0.885837\pi\)
\(744\) 7.10973 0.260655
\(745\) − 9.76033i − 0.357591i
\(746\) 21.9719 0.804449
\(747\) 12.3633 0.452350
\(748\) 0 0
\(749\) −10.2840 −0.375768
\(750\) −10.6099 −0.387420
\(751\) − 42.2934i − 1.54331i −0.636043 0.771654i \(-0.719430\pi\)
0.636043 0.771654i \(-0.280570\pi\)
\(752\) −10.3086 −0.375918
\(753\) − 15.2423i − 0.555459i
\(754\) − 1.75829i − 0.0640332i
\(755\) 1.29075i 0.0469752i
\(756\) 2.94495 0.107107
\(757\) −46.3076 −1.68308 −0.841538 0.540197i \(-0.818350\pi\)
−0.841538 + 0.540197i \(0.818350\pi\)
\(758\) − 10.0798i − 0.366114i
\(759\) − 4.66364i − 0.169280i
\(760\) 9.39104i 0.340649i
\(761\) −2.15386 −0.0780775 −0.0390388 0.999238i \(-0.512430\pi\)
−0.0390388 + 0.999238i \(0.512430\pi\)
\(762\) 17.7830i 0.644209i
\(763\) −46.7513 −1.69251
\(764\) −0.371014 −0.0134228
\(765\) 0 0
\(766\) 27.9738 1.01074
\(767\) −24.6069 −0.888504
\(768\) − 1.00000i − 0.0360844i
\(769\) −22.8143 −0.822705 −0.411353 0.911476i \(-0.634944\pi\)
−0.411353 + 0.911476i \(0.634944\pi\)
\(770\) 12.2557i 0.441664i
\(771\) − 7.05696i − 0.254150i
\(772\) − 1.04026i − 0.0374397i
\(773\) −14.4131 −0.518403 −0.259201 0.965823i \(-0.583459\pi\)
−0.259201 + 0.965823i \(0.583459\pi\)
\(774\) 0.867091 0.0311669
\(775\) 24.2259i 0.870219i
\(776\) − 6.22466i − 0.223452i
\(777\) 2.33448i 0.0837489i
\(778\) 12.3355 0.442247
\(779\) 30.2355i 1.08330i
\(780\) 4.24489 0.151992
\(781\) 24.3417 0.871015
\(782\) 0 0
\(783\) −0.522726 −0.0186807
\(784\) −1.67271 −0.0597398
\(785\) − 29.9721i − 1.06975i
\(786\) 15.2127 0.542618
\(787\) − 1.65367i − 0.0589469i −0.999566 0.0294735i \(-0.990617\pi\)
0.999566 0.0294735i \(-0.00938305\pi\)
\(788\) 5.29573i 0.188652i
\(789\) 5.53808i 0.197161i
\(790\) −13.8122 −0.491417
\(791\) −57.0809 −2.02956
\(792\) 3.29769i 0.117178i
\(793\) 36.0034i 1.27852i
\(794\) − 7.10626i − 0.252192i
\(795\) −12.6054 −0.447069
\(796\) − 21.2738i − 0.754029i
\(797\) 37.4699 1.32725 0.663625 0.748065i \(-0.269017\pi\)
0.663625 + 0.748065i \(0.269017\pi\)
\(798\) 21.9150 0.775782
\(799\) 0 0
\(800\) 3.40743 0.120471
\(801\) 17.3975 0.614709
\(802\) 29.6691i 1.04765i
\(803\) −17.2759 −0.609655
\(804\) − 13.5349i − 0.477339i
\(805\) − 5.25584i − 0.185244i
\(806\) − 23.9150i − 0.842369i
\(807\) −4.31477 −0.151887
\(808\) 9.88764 0.347846
\(809\) − 51.2959i − 1.80347i −0.432291 0.901734i \(-0.642295\pi\)
0.432291 0.901734i \(-0.357705\pi\)
\(810\) − 1.26197i − 0.0443412i
\(811\) 1.19528i 0.0419719i 0.999780 + 0.0209860i \(0.00668053\pi\)
−0.999780 + 0.0209860i \(0.993319\pi\)
\(812\) 1.53940 0.0540224
\(813\) 4.45569i 0.156268i
\(814\) −2.61410 −0.0916242
\(815\) 4.06401 0.142356
\(816\) 0 0
\(817\) 6.45250 0.225745
\(818\) 14.8922 0.520693
\(819\) − 9.90591i − 0.346140i
\(820\) −5.12747 −0.179059
\(821\) − 14.3412i − 0.500511i −0.968180 0.250255i \(-0.919485\pi\)
0.968180 0.250255i \(-0.0805146\pi\)
\(822\) − 3.61766i − 0.126180i
\(823\) − 45.4114i − 1.58294i −0.611207 0.791471i \(-0.709316\pi\)
0.611207 0.791471i \(-0.290684\pi\)
\(824\) 6.54168 0.227890
\(825\) −11.2366 −0.391210
\(826\) − 21.5436i − 0.749596i
\(827\) − 23.4799i − 0.816475i −0.912876 0.408238i \(-0.866143\pi\)
0.912876 0.408238i \(-0.133857\pi\)
\(828\) − 1.41421i − 0.0491473i
\(829\) −4.28183 −0.148714 −0.0743571 0.997232i \(-0.523690\pi\)
−0.0743571 + 0.997232i \(0.523690\pi\)
\(830\) 15.6022i 0.541559i
\(831\) 14.0382 0.486978
\(832\) −3.36370 −0.116615
\(833\) 0 0
\(834\) −20.2446 −0.701011
\(835\) 5.90895 0.204488
\(836\) 24.5400i 0.848732i
\(837\) −7.10973 −0.245748
\(838\) 26.2549i 0.906962i
\(839\) 29.6465i 1.02351i 0.859131 + 0.511756i \(0.171005\pi\)
−0.859131 + 0.511756i \(0.828995\pi\)
\(840\) 3.71644i 0.128229i
\(841\) 28.7268 0.990578
\(842\) 16.6683 0.574429
\(843\) 8.67913i 0.298925i
\(844\) − 12.9900i − 0.447135i
\(845\) 2.12711i 0.0731748i
\(846\) 10.3086 0.354418
\(847\) − 0.368761i − 0.0126708i
\(848\) 9.98868 0.343013
\(849\) 14.3623 0.492914
\(850\) 0 0
\(851\) 1.12106 0.0384293
\(852\) 7.38144 0.252884
\(853\) − 1.16274i − 0.0398116i −0.999802 0.0199058i \(-0.993663\pi\)
0.999802 0.0199058i \(-0.00633663\pi\)
\(854\) −31.5213 −1.07864
\(855\) − 9.39104i − 0.321167i
\(856\) − 3.49207i − 0.119356i
\(857\) − 38.8166i − 1.32595i −0.748642 0.662975i \(-0.769294\pi\)
0.748642 0.662975i \(-0.230706\pi\)
\(858\) 11.0924 0.378690
\(859\) −11.0615 −0.377412 −0.188706 0.982034i \(-0.560429\pi\)
−0.188706 + 0.982034i \(0.560429\pi\)
\(860\) 1.09425i 0.0373134i
\(861\) 11.9655i 0.407783i
\(862\) − 4.86443i − 0.165683i
\(863\) 8.01331 0.272776 0.136388 0.990655i \(-0.456451\pi\)
0.136388 + 0.990655i \(0.456451\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 22.0123 0.748441
\(866\) −2.20663 −0.0749845
\(867\) 0 0
\(868\) 20.9378 0.710675
\(869\) −36.0931 −1.22437
\(870\) − 0.659666i − 0.0223648i
\(871\) −45.5273 −1.54263
\(872\) − 15.8751i − 0.537599i
\(873\) 6.22466i 0.210673i
\(874\) − 10.5239i − 0.355978i
\(875\) −31.2457 −1.05630
\(876\) −5.23880 −0.177002
\(877\) − 14.8632i − 0.501894i −0.968001 0.250947i \(-0.919258\pi\)
0.968001 0.250947i \(-0.0807419\pi\)
\(878\) 9.89180i 0.333832i
\(879\) − 22.0243i − 0.742863i
\(880\) −4.16160 −0.140287
\(881\) 9.72089i 0.327505i 0.986501 + 0.163753i \(0.0523599\pi\)
−0.986501 + 0.163753i \(0.947640\pi\)
\(882\) 1.67271 0.0563232
\(883\) 21.2137 0.713896 0.356948 0.934124i \(-0.383817\pi\)
0.356948 + 0.934124i \(0.383817\pi\)
\(884\) 0 0
\(885\) −9.23188 −0.310326
\(886\) 5.50565 0.184966
\(887\) − 1.24492i − 0.0418005i −0.999782 0.0209002i \(-0.993347\pi\)
0.999782 0.0209002i \(-0.00665323\pi\)
\(888\) −0.792706 −0.0266015
\(889\) 52.3699i 1.75643i
\(890\) 21.9551i 0.735937i
\(891\) − 3.29769i − 0.110477i
\(892\) 3.88573 0.130104
\(893\) 76.7123 2.56708
\(894\) − 7.73418i − 0.258670i
\(895\) − 11.0625i − 0.369779i
\(896\) − 2.94495i − 0.0983838i
\(897\) −4.75699 −0.158831
\(898\) 33.2572i 1.10981i
\(899\) −3.71644 −0.123950
\(900\) −3.40743 −0.113581
\(901\) 0 0
\(902\) −13.3987 −0.446129
\(903\) 2.55354 0.0849764
\(904\) − 19.3827i − 0.644658i
\(905\) 4.77370 0.158683
\(906\) 1.02280i 0.0339804i
\(907\) − 16.2330i − 0.539009i −0.962999 0.269505i \(-0.913140\pi\)
0.962999 0.269505i \(-0.0868600\pi\)
\(908\) − 4.38875i − 0.145646i
\(909\) −9.88764 −0.327952
\(910\) 12.5010 0.414404
\(911\) − 19.2058i − 0.636316i −0.948038 0.318158i \(-0.896936\pi\)
0.948038 0.318158i \(-0.103064\pi\)
\(912\) 7.44155i 0.246414i
\(913\) 40.7704i 1.34930i
\(914\) 17.4812 0.578226
\(915\) 13.5076i 0.446546i
\(916\) 3.42063 0.113021
\(917\) 44.8005 1.47944
\(918\) 0 0
\(919\) −35.7959 −1.18080 −0.590398 0.807112i \(-0.701029\pi\)
−0.590398 + 0.807112i \(0.701029\pi\)
\(920\) 1.78470 0.0588398
\(921\) 7.13291i 0.235037i
\(922\) 14.5385 0.478799
\(923\) − 24.8289i − 0.817254i
\(924\) 9.71153i 0.319486i
\(925\) − 2.70109i − 0.0888112i
\(926\) −1.47703 −0.0485383
\(927\) −6.54168 −0.214857
\(928\) 0.522726i 0.0171593i
\(929\) − 38.9490i − 1.27788i −0.769258 0.638938i \(-0.779374\pi\)
0.769258 0.638938i \(-0.220626\pi\)
\(930\) − 8.97229i − 0.294213i
\(931\) 12.4476 0.407953
\(932\) − 0.893211i − 0.0292581i
\(933\) 19.1212 0.626001
\(934\) −8.68873 −0.284304
\(935\) 0 0
\(936\) 3.36370 0.109946
\(937\) 49.5538 1.61885 0.809426 0.587222i \(-0.199778\pi\)
0.809426 + 0.587222i \(0.199778\pi\)
\(938\) − 39.8596i − 1.30146i
\(939\) 13.0225 0.424974
\(940\) 13.0092i 0.424314i
\(941\) − 3.44941i − 0.112447i −0.998418 0.0562237i \(-0.982094\pi\)
0.998418 0.0562237i \(-0.0179060\pi\)
\(942\) − 23.7502i − 0.773823i
\(943\) 5.74603 0.187117
\(944\) 7.31543 0.238097
\(945\) − 3.71644i − 0.120896i
\(946\) 2.85940i 0.0929671i
\(947\) 21.5300i 0.699631i 0.936819 + 0.349815i \(0.113756\pi\)
−0.936819 + 0.349815i \(0.886244\pi\)
\(948\) −10.9449 −0.355475
\(949\) 17.6217i 0.572025i
\(950\) −25.3565 −0.822675
\(951\) −4.55648 −0.147754
\(952\) 0 0
\(953\) −40.4171 −1.30924 −0.654619 0.755959i \(-0.727171\pi\)
−0.654619 + 0.755959i \(0.727171\pi\)
\(954\) −9.98868 −0.323395
\(955\) 0.468209i 0.0151509i
\(956\) 0.389157 0.0125863
\(957\) − 1.72379i − 0.0557222i
\(958\) 10.9463i 0.353660i
\(959\) − 10.6538i − 0.344030i
\(960\) −1.26197 −0.0407300
\(961\) −19.5483 −0.630590
\(962\) 2.66642i 0.0859690i
\(963\) 3.49207i 0.112530i
\(964\) 15.7554i 0.507447i
\(965\) −1.31278 −0.0422597
\(966\) − 4.16478i − 0.134000i
\(967\) 19.1408 0.615528 0.307764 0.951463i \(-0.400419\pi\)
0.307764 + 0.951463i \(0.400419\pi\)
\(968\) 0.125218 0.00402467
\(969\) 0 0
\(970\) −7.85535 −0.252220
\(971\) 52.0327 1.66981 0.834905 0.550394i \(-0.185522\pi\)
0.834905 + 0.550394i \(0.185522\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) −59.6191 −1.91130
\(974\) 8.75751i 0.280609i
\(975\) 11.4615i 0.367063i
\(976\) − 10.7035i − 0.342612i
\(977\) −50.2515 −1.60769 −0.803845 0.594839i \(-0.797216\pi\)
−0.803845 + 0.594839i \(0.797216\pi\)
\(978\) 3.22037 0.102976
\(979\) 57.3715i 1.83360i
\(980\) 2.11092i 0.0674309i
\(981\) 15.8751i 0.506853i
\(982\) −30.4170 −0.970646
\(983\) 36.8882i 1.17655i 0.808661 + 0.588275i \(0.200193\pi\)
−0.808661 + 0.588275i \(0.799807\pi\)
\(984\) −4.06306 −0.129526
\(985\) 6.68306 0.212940
\(986\) 0 0
\(987\) 30.3584 0.966319
\(988\) 25.0311 0.796346
\(989\) − 1.22625i − 0.0389925i
\(990\) 4.16160 0.132264
\(991\) − 0.650857i − 0.0206751i −0.999947 0.0103376i \(-0.996709\pi\)
0.999947 0.0103376i \(-0.00329061\pi\)
\(992\) 7.10973i 0.225734i
\(993\) − 18.7047i − 0.593577i
\(994\) 21.7379 0.689486
\(995\) −26.8469 −0.851104
\(996\) 12.3633i 0.391747i
\(997\) 49.6033i 1.57095i 0.618892 + 0.785476i \(0.287582\pi\)
−0.618892 + 0.785476i \(0.712418\pi\)
\(998\) − 22.3333i − 0.706949i
\(999\) 0.792706 0.0250801
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.2.b.l.577.1 8
17.2 even 8 1734.2.f.l.829.2 8
17.3 odd 16 102.2.h.b.25.2 8
17.4 even 4 1734.2.a.t.1.1 4
17.8 even 8 1734.2.f.l.1483.2 8
17.9 even 8 1734.2.f.k.1483.3 8
17.11 odd 16 102.2.h.b.49.2 yes 8
17.13 even 4 1734.2.a.u.1.4 4
17.15 even 8 1734.2.f.k.829.3 8
17.16 even 2 inner 1734.2.b.l.577.8 8
51.11 even 16 306.2.l.e.253.2 8
51.20 even 16 306.2.l.e.127.2 8
51.38 odd 4 5202.2.a.bu.1.4 4
51.47 odd 4 5202.2.a.bx.1.1 4
68.3 even 16 816.2.bq.c.433.1 8
68.11 even 16 816.2.bq.c.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.h.b.25.2 8 17.3 odd 16
102.2.h.b.49.2 yes 8 17.11 odd 16
306.2.l.e.127.2 8 51.20 even 16
306.2.l.e.253.2 8 51.11 even 16
816.2.bq.c.49.1 8 68.11 even 16
816.2.bq.c.433.1 8 68.3 even 16
1734.2.a.t.1.1 4 17.4 even 4
1734.2.a.u.1.4 4 17.13 even 4
1734.2.b.l.577.1 8 1.1 even 1 trivial
1734.2.b.l.577.8 8 17.16 even 2 inner
1734.2.f.k.829.3 8 17.15 even 8
1734.2.f.k.1483.3 8 17.9 even 8
1734.2.f.l.829.2 8 17.2 even 8
1734.2.f.l.1483.2 8 17.8 even 8
5202.2.a.bu.1.4 4 51.38 odd 4
5202.2.a.bx.1.1 4 51.47 odd 4