Properties

Label 1734.2.b.l
Level $1734$
Weight $2$
Character orbit 1734.b
Analytic conductor $13.846$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(577,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8460597105\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta_1 q^{3} + q^{4} + ( - \beta_{3} + \beta_{2} + 2 \beta_1) q^{5} - \beta_1 q^{6} + (2 \beta_{4} - \beta_{3}) q^{7} + q^{8} - q^{9} + ( - \beta_{3} + \beta_{2} + 2 \beta_1) q^{10} + ( - 2 \beta_{4} - 2 \beta_{3} - 2 \beta_1) q^{11}+ \cdots + (2 \beta_{4} + 2 \beta_{3} + 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 8 q^{8} - 8 q^{9} + 16 q^{15} + 8 q^{16} - 8 q^{18} - 16 q^{19} - 24 q^{25} + 16 q^{30} + 8 q^{32} - 16 q^{33} - 16 q^{35} - 8 q^{36} - 16 q^{38} - 32 q^{47} - 24 q^{49} - 24 q^{50}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{16}^{4} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{16}^{5} + \zeta_{16}^{3} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{16}^{6} + \zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{16}^{7} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{16}^{7} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{16}^{6} + \zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{16}^{5} + \zeta_{16}^{3} \) Copy content Toggle raw display
\(\zeta_{16}\)\(=\) \( ( \beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{2}\)\(=\) \( ( \beta_{6} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{3}\)\(=\) \( ( \beta_{7} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{4}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{16}^{5}\)\(=\) \( ( -\beta_{7} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{6}\)\(=\) \( ( -\beta_{6} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{7}\)\(=\) \( ( -\beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1734\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1159\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
−0.923880 0.382683i
0.923880 + 0.382683i
−0.382683 + 0.923880i
0.382683 0.923880i
0.382683 + 0.923880i
−0.382683 0.923880i
0.923880 0.382683i
−0.923880 + 0.382683i
1.00000 1.00000i 1.00000 1.26197i 1.00000i 2.94495i 1.00000 −1.00000 1.26197i
577.2 1.00000 1.00000i 1.00000 2.43355i 1.00000i 0.116520i 1.00000 −1.00000 2.43355i
577.3 1.00000 1.00000i 1.00000 2.64885i 1.00000i 5.10973i 1.00000 −1.00000 2.64885i
577.4 1.00000 1.00000i 1.00000 4.17958i 1.00000i 2.28130i 1.00000 −1.00000 4.17958i
577.5 1.00000 1.00000i 1.00000 4.17958i 1.00000i 2.28130i 1.00000 −1.00000 4.17958i
577.6 1.00000 1.00000i 1.00000 2.64885i 1.00000i 5.10973i 1.00000 −1.00000 2.64885i
577.7 1.00000 1.00000i 1.00000 2.43355i 1.00000i 0.116520i 1.00000 −1.00000 2.43355i
577.8 1.00000 1.00000i 1.00000 1.26197i 1.00000i 2.94495i 1.00000 −1.00000 1.26197i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 577.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1734.2.b.l 8
17.b even 2 1 inner 1734.2.b.l 8
17.c even 4 1 1734.2.a.t 4
17.c even 4 1 1734.2.a.u 4
17.d even 8 2 1734.2.f.k 8
17.d even 8 2 1734.2.f.l 8
17.e odd 16 2 102.2.h.b 8
51.f odd 4 1 5202.2.a.bu 4
51.f odd 4 1 5202.2.a.bx 4
51.i even 16 2 306.2.l.e 8
68.i even 16 2 816.2.bq.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.2.h.b 8 17.e odd 16 2
306.2.l.e 8 51.i even 16 2
816.2.bq.c 8 68.i even 16 2
1734.2.a.t 4 17.c even 4 1
1734.2.a.u 4 17.c even 4 1
1734.2.b.l 8 1.a even 1 1 trivial
1734.2.b.l 8 17.b even 2 1 inner
1734.2.f.k 8 17.d even 8 2
1734.2.f.l 8 17.d even 8 2
5202.2.a.bu 4 51.f odd 4 1
5202.2.a.bx 4 51.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1734, [\chi])\):

\( T_{5}^{8} + 32T_{5}^{6} + 316T_{5}^{4} + 1152T_{5}^{2} + 1156 \) Copy content Toggle raw display
\( T_{7}^{8} + 40T_{7}^{6} + 408T_{7}^{4} + 1184T_{7}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{8} + 32 T^{6} + \cdots + 1156 \) Copy content Toggle raw display
$7$ \( T^{8} + 40 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{8} + 80 T^{6} + \cdots + 73984 \) Copy content Toggle raw display
$13$ \( (T^{4} - 44 T^{2} + \cdots + 316)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} + 8 T^{3} - 32 T - 8)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$29$ \( T^{8} + 144 T^{6} + \cdots + 1156 \) Copy content Toggle raw display
$31$ \( T^{8} + 56 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( T^{8} + 112 T^{6} + \cdots + 9604 \) Copy content Toggle raw display
$41$ \( T^{8} + 56 T^{6} + \cdots + 3844 \) Copy content Toggle raw display
$43$ \( (T^{4} - 32 T^{2} + \cdots - 32)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 16 T^{3} + \cdots - 376)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 16 T^{3} + \cdots + 316)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 24 T^{3} + \cdots - 392)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + 128 T^{6} + \cdots + 8836 \) Copy content Toggle raw display
$67$ \( (T^{4} - 8 T^{3} + \cdots - 136)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 520 T^{6} + \cdots + 107412496 \) Copy content Toggle raw display
$73$ \( T^{8} + 264 T^{6} + \cdots + 8836 \) Copy content Toggle raw display
$79$ \( T^{8} + 296 T^{6} + \cdots + 6574096 \) Copy content Toggle raw display
$83$ \( (T^{4} - 8 T^{3} + \cdots - 2696)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 16 T^{3} + \cdots + 6596)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + 456 T^{6} + \cdots + 81468676 \) Copy content Toggle raw display
show more
show less