Properties

Label 2-522-29.25-c1-0-12
Degree 22
Conductor 522522
Sign 0.9050.423i-0.905 - 0.423i
Analytic cond. 4.168194.16819
Root an. cond. 2.041612.04161
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.222 − 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.110 + 0.482i)5-s + (−2.82 + 1.36i)7-s + (−0.623 + 0.781i)8-s + (0.445 + 0.214i)10-s + (−0.870 − 1.09i)11-s + (−3.56 − 4.46i)13-s + (0.698 + 3.05i)14-s + (0.623 + 0.781i)16-s − 5.31·17-s + (−4.47 − 2.15i)19-s + (0.308 − 0.386i)20-s + (−1.25 + 0.606i)22-s + (−0.181 − 0.793i)23-s + ⋯
L(s)  = 1  + (0.157 − 0.689i)2-s + (−0.450 − 0.216i)4-s + (−0.0492 + 0.215i)5-s + (−1.06 + 0.514i)7-s + (−0.220 + 0.276i)8-s + (0.140 + 0.0678i)10-s + (−0.262 − 0.329i)11-s + (−0.988 − 1.23i)13-s + (0.186 + 0.817i)14-s + (0.155 + 0.195i)16-s − 1.28·17-s + (−1.02 − 0.494i)19-s + (0.0689 − 0.0864i)20-s + (−0.268 + 0.129i)22-s + (−0.0377 − 0.165i)23-s + ⋯

Functional equation

Λ(s)=(522s/2ΓC(s)L(s)=((0.9050.423i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.905 - 0.423i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(522s/2ΓC(s+1/2)L(s)=((0.9050.423i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.905 - 0.423i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 522522    =    232292 \cdot 3^{2} \cdot 29
Sign: 0.9050.423i-0.905 - 0.423i
Analytic conductor: 4.168194.16819
Root analytic conductor: 2.041612.04161
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ522(199,)\chi_{522} (199, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 522, ( :1/2), 0.9050.423i)(2,\ 522,\ (\ :1/2),\ -0.905 - 0.423i)

Particular Values

L(1)L(1) \approx 0.0484768+0.218208i0.0484768 + 0.218208i
L(12)L(\frac12) \approx 0.0484768+0.218208i0.0484768 + 0.218208i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.222+0.974i)T 1 + (-0.222 + 0.974i)T
3 1 1
29 1+(5.380.0414i)T 1 + (5.38 - 0.0414i)T
good5 1+(0.1100.482i)T+(4.502.16i)T2 1 + (0.110 - 0.482i)T + (-4.50 - 2.16i)T^{2}
7 1+(2.821.36i)T+(4.365.47i)T2 1 + (2.82 - 1.36i)T + (4.36 - 5.47i)T^{2}
11 1+(0.870+1.09i)T+(2.44+10.7i)T2 1 + (0.870 + 1.09i)T + (-2.44 + 10.7i)T^{2}
13 1+(3.56+4.46i)T+(2.89+12.6i)T2 1 + (3.56 + 4.46i)T + (-2.89 + 12.6i)T^{2}
17 1+5.31T+17T2 1 + 5.31T + 17T^{2}
19 1+(4.47+2.15i)T+(11.8+14.8i)T2 1 + (4.47 + 2.15i)T + (11.8 + 14.8i)T^{2}
23 1+(0.181+0.793i)T+(20.7+9.97i)T2 1 + (0.181 + 0.793i)T + (-20.7 + 9.97i)T^{2}
31 1+(1.416.20i)T+(27.913.4i)T2 1 + (1.41 - 6.20i)T + (-27.9 - 13.4i)T^{2}
37 1+(5.56+6.97i)T+(8.2336.0i)T2 1 + (-5.56 + 6.97i)T + (-8.23 - 36.0i)T^{2}
41 14.01T+41T2 1 - 4.01T + 41T^{2}
43 1+(0.3101.36i)T+(38.7+18.6i)T2 1 + (-0.310 - 1.36i)T + (-38.7 + 18.6i)T^{2}
47 1+(6.428.05i)T+(10.4+45.8i)T2 1 + (-6.42 - 8.05i)T + (-10.4 + 45.8i)T^{2}
53 1+(0.944+4.13i)T+(47.722.9i)T2 1 + (-0.944 + 4.13i)T + (-47.7 - 22.9i)T^{2}
59 1+11.1T+59T2 1 + 11.1T + 59T^{2}
61 1+(4.382.11i)T+(38.047.6i)T2 1 + (4.38 - 2.11i)T + (38.0 - 47.6i)T^{2}
67 1+(4.45+5.58i)T+(14.965.3i)T2 1 + (-4.45 + 5.58i)T + (-14.9 - 65.3i)T^{2}
71 1+(3.76+4.72i)T+(15.7+69.2i)T2 1 + (3.76 + 4.72i)T + (-15.7 + 69.2i)T^{2}
73 1+(2.73+11.9i)T+(65.7+31.6i)T2 1 + (2.73 + 11.9i)T + (-65.7 + 31.6i)T^{2}
79 1+(5.867.35i)T+(17.577.0i)T2 1 + (5.86 - 7.35i)T + (-17.5 - 77.0i)T^{2}
83 1+(11.45.51i)T+(51.7+64.8i)T2 1 + (-11.4 - 5.51i)T + (51.7 + 64.8i)T^{2}
89 1+(0.398+1.74i)T+(80.138.6i)T2 1 + (-0.398 + 1.74i)T + (-80.1 - 38.6i)T^{2}
97 1+(3.42+1.64i)T+(60.4+75.8i)T2 1 + (3.42 + 1.64i)T + (60.4 + 75.8i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.71587912225879834247094726678, −9.435550884786242042487610187577, −8.952882992718297403858396311560, −7.69111753651128390067772431282, −6.56650057541530579645271122287, −5.62044833438314532497024401419, −4.51123322372680052612577950311, −3.14736503818121022309888496059, −2.43174931719043622804303630478, −0.11469088845825167069727013470, 2.37233655266475913954876742828, 4.00735830828999201012627153299, 4.65004033058177301051120052051, 6.07938331748716522764141869595, 6.81246586935018057291091831924, 7.53207468492190732353879145972, 8.773794919880636393677592204241, 9.467859598669375575608209325789, 10.28537491651074004640096240601, 11.40807592521721833379575859043

Graph of the ZZ-function along the critical line