L(s) = 1 | + (0.222 − 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.110 + 0.482i)5-s + (−2.82 + 1.36i)7-s + (−0.623 + 0.781i)8-s + (0.445 + 0.214i)10-s + (−0.870 − 1.09i)11-s + (−3.56 − 4.46i)13-s + (0.698 + 3.05i)14-s + (0.623 + 0.781i)16-s − 5.31·17-s + (−4.47 − 2.15i)19-s + (0.308 − 0.386i)20-s + (−1.25 + 0.606i)22-s + (−0.181 − 0.793i)23-s + ⋯ |
L(s) = 1 | + (0.157 − 0.689i)2-s + (−0.450 − 0.216i)4-s + (−0.0492 + 0.215i)5-s + (−1.06 + 0.514i)7-s + (−0.220 + 0.276i)8-s + (0.140 + 0.0678i)10-s + (−0.262 − 0.329i)11-s + (−0.988 − 1.23i)13-s + (0.186 + 0.817i)14-s + (0.155 + 0.195i)16-s − 1.28·17-s + (−1.02 − 0.494i)19-s + (0.0689 − 0.0864i)20-s + (−0.268 + 0.129i)22-s + (−0.0377 − 0.165i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.905 - 0.423i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.905 - 0.423i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0484768 + 0.218208i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0484768 + 0.218208i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.222 + 0.974i)T \) |
| 3 | \( 1 \) |
| 29 | \( 1 + (5.38 - 0.0414i)T \) |
good | 5 | \( 1 + (0.110 - 0.482i)T + (-4.50 - 2.16i)T^{2} \) |
| 7 | \( 1 + (2.82 - 1.36i)T + (4.36 - 5.47i)T^{2} \) |
| 11 | \( 1 + (0.870 + 1.09i)T + (-2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (3.56 + 4.46i)T + (-2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + 5.31T + 17T^{2} \) |
| 19 | \( 1 + (4.47 + 2.15i)T + (11.8 + 14.8i)T^{2} \) |
| 23 | \( 1 + (0.181 + 0.793i)T + (-20.7 + 9.97i)T^{2} \) |
| 31 | \( 1 + (1.41 - 6.20i)T + (-27.9 - 13.4i)T^{2} \) |
| 37 | \( 1 + (-5.56 + 6.97i)T + (-8.23 - 36.0i)T^{2} \) |
| 41 | \( 1 - 4.01T + 41T^{2} \) |
| 43 | \( 1 + (-0.310 - 1.36i)T + (-38.7 + 18.6i)T^{2} \) |
| 47 | \( 1 + (-6.42 - 8.05i)T + (-10.4 + 45.8i)T^{2} \) |
| 53 | \( 1 + (-0.944 + 4.13i)T + (-47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + 11.1T + 59T^{2} \) |
| 61 | \( 1 + (4.38 - 2.11i)T + (38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 + (-4.45 + 5.58i)T + (-14.9 - 65.3i)T^{2} \) |
| 71 | \( 1 + (3.76 + 4.72i)T + (-15.7 + 69.2i)T^{2} \) |
| 73 | \( 1 + (2.73 + 11.9i)T + (-65.7 + 31.6i)T^{2} \) |
| 79 | \( 1 + (5.86 - 7.35i)T + (-17.5 - 77.0i)T^{2} \) |
| 83 | \( 1 + (-11.4 - 5.51i)T + (51.7 + 64.8i)T^{2} \) |
| 89 | \( 1 + (-0.398 + 1.74i)T + (-80.1 - 38.6i)T^{2} \) |
| 97 | \( 1 + (3.42 + 1.64i)T + (60.4 + 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71587912225879834247094726678, −9.435550884786242042487610187577, −8.952882992718297403858396311560, −7.69111753651128390067772431282, −6.56650057541530579645271122287, −5.62044833438314532497024401419, −4.51123322372680052612577950311, −3.14736503818121022309888496059, −2.43174931719043622804303630478, −0.11469088845825167069727013470,
2.37233655266475913954876742828, 4.00735830828999201012627153299, 4.65004033058177301051120052051, 6.07938331748716522764141869595, 6.81246586935018057291091831924, 7.53207468492190732353879145972, 8.773794919880636393677592204241, 9.467859598669375575608209325789, 10.28537491651074004640096240601, 11.40807592521721833379575859043