Properties

Label 522.2.k.h.199.1
Level $522$
Weight $2$
Character 522.199
Analytic conductor $4.168$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [522,2,Mod(181,522)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(522, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("522.181");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 522 = 2 \cdot 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 522.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16819098551\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 13 x^{10} - 9 x^{9} - 5 x^{8} + 35 x^{7} + 197 x^{6} - 140 x^{5} - 80 x^{4} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 199.1
Root \(2.06920 + 0.996473i\) of defining polynomial
Character \(\chi\) \(=\) 522.199
Dual form 522.2.k.h.181.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.222521 - 0.974928i) q^{2} +(-0.900969 - 0.433884i) q^{4} +(-0.110081 + 0.482295i) q^{5} +(-2.82760 + 1.36170i) q^{7} +(-0.623490 + 0.781831i) q^{8} +O(q^{10})\) \(q+(0.222521 - 0.974928i) q^{2} +(-0.900969 - 0.433884i) q^{4} +(-0.110081 + 0.482295i) q^{5} +(-2.82760 + 1.36170i) q^{7} +(-0.623490 + 0.781831i) q^{8} +(0.445708 + 0.214642i) q^{10} +(-0.870839 - 1.09200i) q^{11} +(-3.56353 - 4.46852i) q^{13} +(0.698359 + 3.05971i) q^{14} +(0.623490 + 0.781831i) q^{16} -5.31800 q^{17} +(-4.47471 - 2.15491i) q^{19} +(0.308439 - 0.386771i) q^{20} +(-1.25840 + 0.606013i) q^{22} +(-0.181045 - 0.793210i) q^{23} +(4.28435 + 2.06324i) q^{25} +(-5.14944 + 2.47984i) q^{26} +3.13840 q^{28} +(-5.38501 + 0.0414712i) q^{29} +(-1.41596 + 6.20373i) q^{31} +(0.900969 - 0.433884i) q^{32} +(-1.18337 + 5.18466i) q^{34} +(-0.345477 - 1.51363i) q^{35} +(5.56630 - 6.97992i) q^{37} +(-3.09660 + 3.88301i) q^{38} +(-0.308439 - 0.386771i) q^{40} +4.01226 q^{41} +(0.310799 + 1.36170i) q^{43} +(0.310799 + 1.36170i) q^{44} -0.813609 q^{46} +(6.42079 + 8.05142i) q^{47} +(1.77665 - 2.22785i) q^{49} +(2.96486 - 3.71782i) q^{50} +(1.27181 + 5.57215i) q^{52} +(0.944288 - 4.13720i) q^{53} +(0.622528 - 0.299794i) q^{55} +(0.698359 - 3.05971i) q^{56} +(-1.15784 + 5.25922i) q^{58} -11.1598 q^{59} +(-4.38454 + 2.11149i) q^{61} +(5.73311 + 2.76092i) q^{62} +(-0.222521 - 0.974928i) q^{64} +(2.54742 - 1.22677i) q^{65} +(4.45072 - 5.58102i) q^{67} +(4.79135 + 2.30739i) q^{68} -1.55256 q^{70} +(-3.76423 - 4.72019i) q^{71} +(-2.73238 - 11.9713i) q^{73} +(-5.56630 - 6.97992i) q^{74} +(3.09660 + 3.88301i) q^{76} +(3.94935 + 1.90191i) q^{77} +(-5.86220 + 7.35096i) q^{79} +(-0.445708 + 0.214642i) q^{80} +(0.892813 - 3.91167i) q^{82} +(11.4508 + 5.51441i) q^{83} +(0.585409 - 2.56484i) q^{85} +1.39672 q^{86} +1.39672 q^{88} +(0.398796 - 1.74724i) q^{89} +(16.1610 + 7.78272i) q^{91} +(-0.181045 + 0.793210i) q^{92} +(9.27831 - 4.46820i) q^{94} +(1.53188 - 1.92092i) q^{95} +(-3.42035 - 1.64715i) q^{97} +(-1.77665 - 2.22785i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - 2 q^{4} + q^{7} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} - 2 q^{4} + q^{7} + 2 q^{8} - 7 q^{10} + 2 q^{11} + q^{13} - q^{14} - 2 q^{16} + 12 q^{17} - 6 q^{19} - 7 q^{20} - 2 q^{22} - 35 q^{23} - 6 q^{25} - 8 q^{26} - 6 q^{28} + 14 q^{29} - 8 q^{31} + 2 q^{32} - 5 q^{34} + 18 q^{35} + 31 q^{37} - q^{38} + 7 q^{40} + 30 q^{41} - 5 q^{43} - 5 q^{44} - 28 q^{46} + 33 q^{47} + 37 q^{49} - q^{50} - 6 q^{52} - 13 q^{53} + 36 q^{55} - q^{56} - 38 q^{59} - 5 q^{61} + 8 q^{62} - 2 q^{64} + 20 q^{65} - 7 q^{67} + 19 q^{68} - 18 q^{70} - 3 q^{71} - 22 q^{73} - 31 q^{74} + q^{76} - 10 q^{77} - 60 q^{79} + 7 q^{80} + 26 q^{82} + 39 q^{83} + 38 q^{85} - 2 q^{86} - 2 q^{88} - 39 q^{89} + 61 q^{91} - 35 q^{92} + 16 q^{94} - 55 q^{95} - 19 q^{97} - 37 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/522\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.222521 0.974928i 0.157346 0.689378i
\(3\) 0 0
\(4\) −0.900969 0.433884i −0.450484 0.216942i
\(5\) −0.110081 + 0.482295i −0.0492296 + 0.215689i −0.993560 0.113311i \(-0.963854\pi\)
0.944330 + 0.329000i \(0.106712\pi\)
\(6\) 0 0
\(7\) −2.82760 + 1.36170i −1.06873 + 0.514674i −0.883697 0.468059i \(-0.844954\pi\)
−0.185033 + 0.982732i \(0.559239\pi\)
\(8\) −0.623490 + 0.781831i −0.220437 + 0.276419i
\(9\) 0 0
\(10\) 0.445708 + 0.214642i 0.140945 + 0.0678756i
\(11\) −0.870839 1.09200i −0.262568 0.329250i 0.633019 0.774136i \(-0.281815\pi\)
−0.895587 + 0.444887i \(0.853244\pi\)
\(12\) 0 0
\(13\) −3.56353 4.46852i −0.988344 1.23934i −0.970897 0.239497i \(-0.923018\pi\)
−0.0174472 0.999848i \(-0.505554\pi\)
\(14\) 0.698359 + 3.05971i 0.186644 + 0.817742i
\(15\) 0 0
\(16\) 0.623490 + 0.781831i 0.155872 + 0.195458i
\(17\) −5.31800 −1.28980 −0.644902 0.764265i \(-0.723102\pi\)
−0.644902 + 0.764265i \(0.723102\pi\)
\(18\) 0 0
\(19\) −4.47471 2.15491i −1.02657 0.494370i −0.156697 0.987647i \(-0.550085\pi\)
−0.869872 + 0.493277i \(0.835799\pi\)
\(20\) 0.308439 0.386771i 0.0689691 0.0864845i
\(21\) 0 0
\(22\) −1.25840 + 0.606013i −0.268292 + 0.129202i
\(23\) −0.181045 0.793210i −0.0377505 0.165396i 0.952539 0.304417i \(-0.0984616\pi\)
−0.990289 + 0.139021i \(0.955604\pi\)
\(24\) 0 0
\(25\) 4.28435 + 2.06324i 0.856871 + 0.412647i
\(26\) −5.14944 + 2.47984i −1.00989 + 0.486337i
\(27\) 0 0
\(28\) 3.13840 0.593101
\(29\) −5.38501 + 0.0414712i −0.999970 + 0.00770101i
\(30\) 0 0
\(31\) −1.41596 + 6.20373i −0.254314 + 1.11422i 0.672912 + 0.739722i \(0.265043\pi\)
−0.927226 + 0.374501i \(0.877814\pi\)
\(32\) 0.900969 0.433884i 0.159270 0.0767005i
\(33\) 0 0
\(34\) −1.18337 + 5.18466i −0.202946 + 0.889162i
\(35\) −0.345477 1.51363i −0.0583962 0.255851i
\(36\) 0 0
\(37\) 5.56630 6.97992i 0.915095 1.14749i −0.0735606 0.997291i \(-0.523436\pi\)
0.988655 0.150202i \(-0.0479923\pi\)
\(38\) −3.09660 + 3.88301i −0.502335 + 0.629908i
\(39\) 0 0
\(40\) −0.308439 0.386771i −0.0487685 0.0611538i
\(41\) 4.01226 0.626610 0.313305 0.949652i \(-0.398564\pi\)
0.313305 + 0.949652i \(0.398564\pi\)
\(42\) 0 0
\(43\) 0.310799 + 1.36170i 0.0473964 + 0.207657i 0.993082 0.117427i \(-0.0374646\pi\)
−0.945685 + 0.325084i \(0.894607\pi\)
\(44\) 0.310799 + 1.36170i 0.0468547 + 0.205284i
\(45\) 0 0
\(46\) −0.813609 −0.119960
\(47\) 6.42079 + 8.05142i 0.936569 + 1.17442i 0.984467 + 0.175568i \(0.0561761\pi\)
−0.0478986 + 0.998852i \(0.515252\pi\)
\(48\) 0 0
\(49\) 1.77665 2.22785i 0.253807 0.318264i
\(50\) 2.96486 3.71782i 0.419295 0.525780i
\(51\) 0 0
\(52\) 1.27181 + 5.57215i 0.176368 + 0.772719i
\(53\) 0.944288 4.13720i 0.129708 0.568288i −0.867748 0.497004i \(-0.834433\pi\)
0.997456 0.0712835i \(-0.0227095\pi\)
\(54\) 0 0
\(55\) 0.622528 0.299794i 0.0839416 0.0404241i
\(56\) 0.698359 3.05971i 0.0933221 0.408871i
\(57\) 0 0
\(58\) −1.15784 + 5.25922i −0.152032 + 0.690569i
\(59\) −11.1598 −1.45288 −0.726438 0.687232i \(-0.758826\pi\)
−0.726438 + 0.687232i \(0.758826\pi\)
\(60\) 0 0
\(61\) −4.38454 + 2.11149i −0.561383 + 0.270348i −0.692982 0.720955i \(-0.743703\pi\)
0.131598 + 0.991303i \(0.457989\pi\)
\(62\) 5.73311 + 2.76092i 0.728106 + 0.350637i
\(63\) 0 0
\(64\) −0.222521 0.974928i −0.0278151 0.121866i
\(65\) 2.54742 1.22677i 0.315969 0.152163i
\(66\) 0 0
\(67\) 4.45072 5.58102i 0.543742 0.681830i −0.431718 0.902009i \(-0.642092\pi\)
0.975460 + 0.220178i \(0.0706639\pi\)
\(68\) 4.79135 + 2.30739i 0.581036 + 0.279812i
\(69\) 0 0
\(70\) −1.55256 −0.185566
\(71\) −3.76423 4.72019i −0.446732 0.560184i 0.506572 0.862198i \(-0.330913\pi\)
−0.953304 + 0.302014i \(0.902341\pi\)
\(72\) 0 0
\(73\) −2.73238 11.9713i −0.319801 1.40114i −0.837903 0.545819i \(-0.816219\pi\)
0.518103 0.855319i \(-0.326639\pi\)
\(74\) −5.56630 6.97992i −0.647070 0.811400i
\(75\) 0 0
\(76\) 3.09660 + 3.88301i 0.355204 + 0.445412i
\(77\) 3.94935 + 1.90191i 0.450070 + 0.216743i
\(78\) 0 0
\(79\) −5.86220 + 7.35096i −0.659549 + 0.827048i −0.993294 0.115615i \(-0.963116\pi\)
0.333745 + 0.942663i \(0.391687\pi\)
\(80\) −0.445708 + 0.214642i −0.0498316 + 0.0239977i
\(81\) 0 0
\(82\) 0.892813 3.91167i 0.0985947 0.431971i
\(83\) 11.4508 + 5.51441i 1.25689 + 0.605285i 0.939350 0.342960i \(-0.111430\pi\)
0.317538 + 0.948246i \(0.397144\pi\)
\(84\) 0 0
\(85\) 0.585409 2.56484i 0.0634965 0.278196i
\(86\) 1.39672 0.150612
\(87\) 0 0
\(88\) 1.39672 0.148891
\(89\) 0.398796 1.74724i 0.0422722 0.185207i −0.949384 0.314118i \(-0.898291\pi\)
0.991656 + 0.128911i \(0.0411483\pi\)
\(90\) 0 0
\(91\) 16.1610 + 7.78272i 1.69413 + 0.815851i
\(92\) −0.181045 + 0.793210i −0.0188753 + 0.0826979i
\(93\) 0 0
\(94\) 9.27831 4.46820i 0.956985 0.460860i
\(95\) 1.53188 1.92092i 0.157168 0.197082i
\(96\) 0 0
\(97\) −3.42035 1.64715i −0.347283 0.167243i 0.252108 0.967699i \(-0.418876\pi\)
−0.599391 + 0.800456i \(0.704591\pi\)
\(98\) −1.77665 2.22785i −0.179469 0.225047i
\(99\) 0 0
\(100\) −2.96486 3.71782i −0.296486 0.371782i
\(101\) −0.271881 1.19119i −0.0270532 0.118528i 0.959598 0.281373i \(-0.0907899\pi\)
−0.986652 + 0.162846i \(0.947933\pi\)
\(102\) 0 0
\(103\) 1.12736 + 1.41366i 0.111082 + 0.139292i 0.834264 0.551365i \(-0.185893\pi\)
−0.723182 + 0.690657i \(0.757321\pi\)
\(104\) 5.71545 0.560446
\(105\) 0 0
\(106\) −3.82334 1.84123i −0.371356 0.178836i
\(107\) −2.58788 + 3.24509i −0.250179 + 0.313715i −0.891025 0.453955i \(-0.850013\pi\)
0.640845 + 0.767670i \(0.278584\pi\)
\(108\) 0 0
\(109\) −13.0682 + 6.29330i −1.25170 + 0.602789i −0.937968 0.346721i \(-0.887295\pi\)
−0.313736 + 0.949510i \(0.601581\pi\)
\(110\) −0.153752 0.673630i −0.0146596 0.0642281i
\(111\) 0 0
\(112\) −2.82760 1.36170i −0.267183 0.128668i
\(113\) 15.0312 7.23864i 1.41402 0.680954i 0.438065 0.898943i \(-0.355664\pi\)
0.975951 + 0.217989i \(0.0699497\pi\)
\(114\) 0 0
\(115\) 0.402491 0.0375325
\(116\) 4.86972 + 2.29910i 0.452142 + 0.213466i
\(117\) 0 0
\(118\) −2.48328 + 10.8800i −0.228604 + 1.00158i
\(119\) 15.0371 7.24151i 1.37845 0.663828i
\(120\) 0 0
\(121\) 2.01363 8.82230i 0.183057 0.802027i
\(122\) 1.08289 + 4.74446i 0.0980405 + 0.429544i
\(123\) 0 0
\(124\) 3.96744 4.97501i 0.356286 0.446769i
\(125\) −3.00891 + 3.77305i −0.269125 + 0.337472i
\(126\) 0 0
\(127\) −7.91387 9.92368i −0.702243 0.880584i 0.294946 0.955514i \(-0.404698\pi\)
−0.997189 + 0.0749295i \(0.976127\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −0.629161 2.75653i −0.0551811 0.241764i
\(131\) −3.29243 14.4251i −0.287661 1.26033i −0.887725 0.460374i \(-0.847715\pi\)
0.600064 0.799952i \(-0.295142\pi\)
\(132\) 0 0
\(133\) 15.5870 1.35157
\(134\) −4.45072 5.58102i −0.384483 0.482127i
\(135\) 0 0
\(136\) 3.31572 4.15778i 0.284320 0.356526i
\(137\) 0.941003 1.17998i 0.0803953 0.100813i −0.740007 0.672599i \(-0.765178\pi\)
0.820403 + 0.571786i \(0.193749\pi\)
\(138\) 0 0
\(139\) −1.94848 8.53684i −0.165268 0.724086i −0.987846 0.155434i \(-0.950322\pi\)
0.822578 0.568652i \(-0.192535\pi\)
\(140\) −0.345477 + 1.51363i −0.0291981 + 0.127925i
\(141\) 0 0
\(142\) −5.43947 + 2.61951i −0.456470 + 0.219824i
\(143\) −1.77636 + 7.78272i −0.148546 + 0.650824i
\(144\) 0 0
\(145\) 0.572784 2.60173i 0.0475671 0.216062i
\(146\) −12.2792 −1.01623
\(147\) 0 0
\(148\) −8.04354 + 3.87357i −0.661175 + 0.318405i
\(149\) −4.27124 2.05692i −0.349914 0.168510i 0.250668 0.968073i \(-0.419350\pi\)
−0.600581 + 0.799564i \(0.705064\pi\)
\(150\) 0 0
\(151\) 1.44508 + 6.33133i 0.117599 + 0.515236i 0.999075 + 0.0430064i \(0.0136936\pi\)
−0.881475 + 0.472230i \(0.843449\pi\)
\(152\) 4.47471 2.15491i 0.362947 0.174786i
\(153\) 0 0
\(154\) 2.73304 3.42712i 0.220234 0.276165i
\(155\) −2.83616 1.36582i −0.227806 0.109706i
\(156\) 0 0
\(157\) 6.56139 0.523656 0.261828 0.965115i \(-0.415675\pi\)
0.261828 + 0.965115i \(0.415675\pi\)
\(158\) 5.86220 + 7.35096i 0.466371 + 0.584811i
\(159\) 0 0
\(160\) 0.110081 + 0.482295i 0.00870264 + 0.0381288i
\(161\) 1.59204 + 1.99635i 0.125470 + 0.157334i
\(162\) 0 0
\(163\) 3.52776 + 4.42367i 0.276315 + 0.346488i 0.900553 0.434746i \(-0.143162\pi\)
−0.624238 + 0.781234i \(0.714590\pi\)
\(164\) −3.61493 1.74086i −0.282278 0.135938i
\(165\) 0 0
\(166\) 7.92419 9.93663i 0.615037 0.771232i
\(167\) −10.8919 + 5.24527i −0.842842 + 0.405891i −0.804915 0.593389i \(-0.797789\pi\)
−0.0379260 + 0.999281i \(0.512075\pi\)
\(168\) 0 0
\(169\) −4.37618 + 19.1733i −0.336630 + 1.47487i
\(170\) −2.37027 1.14146i −0.181792 0.0875462i
\(171\) 0 0
\(172\) 0.310799 1.36170i 0.0236982 0.103829i
\(173\) −11.6405 −0.885008 −0.442504 0.896767i \(-0.645910\pi\)
−0.442504 + 0.896767i \(0.645910\pi\)
\(174\) 0 0
\(175\) −14.9239 −1.12814
\(176\) 0.310799 1.36170i 0.0234273 0.102642i
\(177\) 0 0
\(178\) −1.61469 0.777594i −0.121026 0.0582831i
\(179\) −4.08440 + 17.8949i −0.305282 + 1.33753i 0.556752 + 0.830678i \(0.312047\pi\)
−0.862034 + 0.506850i \(0.830810\pi\)
\(180\) 0 0
\(181\) 8.91422 4.29286i 0.662589 0.319086i −0.0721917 0.997391i \(-0.522999\pi\)
0.734781 + 0.678305i \(0.237285\pi\)
\(182\) 11.1838 14.0240i 0.828995 1.03953i
\(183\) 0 0
\(184\) 0.733037 + 0.353012i 0.0540402 + 0.0260244i
\(185\) 2.75364 + 3.45296i 0.202452 + 0.253866i
\(186\) 0 0
\(187\) 4.63112 + 5.80724i 0.338661 + 0.424667i
\(188\) −2.29155 10.0400i −0.167129 0.732239i
\(189\) 0 0
\(190\) −1.53188 1.92092i −0.111134 0.139358i
\(191\) −0.424259 −0.0306983 −0.0153492 0.999882i \(-0.504886\pi\)
−0.0153492 + 0.999882i \(0.504886\pi\)
\(192\) 0 0
\(193\) 9.30230 + 4.47975i 0.669594 + 0.322460i 0.737612 0.675225i \(-0.235953\pi\)
−0.0680181 + 0.997684i \(0.521668\pi\)
\(194\) −2.36695 + 2.96806i −0.169937 + 0.213095i
\(195\) 0 0
\(196\) −2.56733 + 1.23636i −0.183381 + 0.0883116i
\(197\) −5.97308 26.1698i −0.425564 1.86452i −0.498050 0.867148i \(-0.665950\pi\)
0.0724862 0.997369i \(-0.476907\pi\)
\(198\) 0 0
\(199\) 6.12924 + 2.95169i 0.434490 + 0.209239i 0.638327 0.769765i \(-0.279627\pi\)
−0.203837 + 0.979005i \(0.565341\pi\)
\(200\) −4.28435 + 2.06324i −0.302950 + 0.145893i
\(201\) 0 0
\(202\) −1.22182 −0.0859671
\(203\) 15.1701 7.45002i 1.06474 0.522889i
\(204\) 0 0
\(205\) −0.441673 + 1.93510i −0.0308478 + 0.135153i
\(206\) 1.62908 0.784523i 0.113503 0.0546603i
\(207\) 0 0
\(208\) 1.27181 5.57215i 0.0881840 0.386359i
\(209\) 1.54360 + 6.76296i 0.106773 + 0.467803i
\(210\) 0 0
\(211\) 3.64156 4.56638i 0.250696 0.314362i −0.640521 0.767941i \(-0.721281\pi\)
0.891216 + 0.453579i \(0.149853\pi\)
\(212\) −2.64584 + 3.31777i −0.181717 + 0.227866i
\(213\) 0 0
\(214\) 2.58788 + 3.24509i 0.176904 + 0.221830i
\(215\) −0.690954 −0.0471226
\(216\) 0 0
\(217\) −4.44385 19.4698i −0.301668 1.32169i
\(218\) 3.22757 + 14.1409i 0.218599 + 0.957744i
\(219\) 0 0
\(220\) −0.690954 −0.0465841
\(221\) 18.9508 + 23.7636i 1.27477 + 1.59851i
\(222\) 0 0
\(223\) −13.6769 + 17.1503i −0.915874 + 1.14847i 0.0726432 + 0.997358i \(0.476857\pi\)
−0.988517 + 0.151111i \(0.951715\pi\)
\(224\) −1.95676 + 2.45370i −0.130741 + 0.163944i
\(225\) 0 0
\(226\) −3.71240 16.2651i −0.246945 1.08194i
\(227\) −0.479626 + 2.10138i −0.0318339 + 0.139474i −0.988348 0.152214i \(-0.951360\pi\)
0.956514 + 0.291688i \(0.0942168\pi\)
\(228\) 0 0
\(229\) −8.37172 + 4.03161i −0.553219 + 0.266416i −0.689539 0.724249i \(-0.742187\pi\)
0.136320 + 0.990665i \(0.456472\pi\)
\(230\) 0.0895627 0.392400i 0.00590559 0.0258741i
\(231\) 0 0
\(232\) 3.32507 4.23602i 0.218302 0.278109i
\(233\) 11.7848 0.772045 0.386022 0.922489i \(-0.373849\pi\)
0.386022 + 0.922489i \(0.373849\pi\)
\(234\) 0 0
\(235\) −4.58996 + 2.21041i −0.299416 + 0.144191i
\(236\) 10.0546 + 4.84204i 0.654498 + 0.315190i
\(237\) 0 0
\(238\) −3.71387 16.2715i −0.240734 1.05473i
\(239\) −12.9462 + 6.23455i −0.837419 + 0.403280i −0.802892 0.596124i \(-0.796707\pi\)
−0.0345265 + 0.999404i \(0.510992\pi\)
\(240\) 0 0
\(241\) −5.73880 + 7.19623i −0.369669 + 0.463550i −0.931521 0.363688i \(-0.881517\pi\)
0.561852 + 0.827238i \(0.310089\pi\)
\(242\) −8.15303 3.92629i −0.524097 0.252392i
\(243\) 0 0
\(244\) 4.86648 0.311544
\(245\) 0.878905 + 1.10211i 0.0561512 + 0.0704114i
\(246\) 0 0
\(247\) 6.31651 + 27.6744i 0.401910 + 1.76088i
\(248\) −3.96744 4.97501i −0.251933 0.315913i
\(249\) 0 0
\(250\) 3.00891 + 3.77305i 0.190300 + 0.238629i
\(251\) 5.33012 + 2.56685i 0.336434 + 0.162018i 0.594471 0.804117i \(-0.297361\pi\)
−0.258037 + 0.966135i \(0.583076\pi\)
\(252\) 0 0
\(253\) −0.708523 + 0.888459i −0.0445444 + 0.0558569i
\(254\) −11.4359 + 5.50723i −0.717551 + 0.345554i
\(255\) 0 0
\(256\) −0.222521 + 0.974928i −0.0139076 + 0.0609330i
\(257\) −24.0750 11.5939i −1.50176 0.723209i −0.511094 0.859525i \(-0.670759\pi\)
−0.990665 + 0.136316i \(0.956474\pi\)
\(258\) 0 0
\(259\) −6.23471 + 27.3160i −0.387406 + 1.69734i
\(260\) −2.82742 −0.175349
\(261\) 0 0
\(262\) −14.7961 −0.914104
\(263\) −5.19684 + 22.7688i −0.320451 + 1.40399i 0.516302 + 0.856407i \(0.327308\pi\)
−0.836753 + 0.547581i \(0.815549\pi\)
\(264\) 0 0
\(265\) 1.89140 + 0.910851i 0.116188 + 0.0559531i
\(266\) 3.46844 15.1962i 0.212664 0.931740i
\(267\) 0 0
\(268\) −6.43147 + 3.09723i −0.392865 + 0.189194i
\(269\) −9.73222 + 12.2038i −0.593384 + 0.744080i −0.984331 0.176333i \(-0.943576\pi\)
0.390946 + 0.920413i \(0.372148\pi\)
\(270\) 0 0
\(271\) −0.197924 0.0953153i −0.0120230 0.00578999i 0.427863 0.903844i \(-0.359267\pi\)
−0.439886 + 0.898054i \(0.644981\pi\)
\(272\) −3.31572 4.15778i −0.201045 0.252102i
\(273\) 0 0
\(274\) −0.941003 1.17998i −0.0568481 0.0712853i
\(275\) −1.47793 6.47525i −0.0891227 0.390472i
\(276\) 0 0
\(277\) 2.33928 + 2.93336i 0.140554 + 0.176249i 0.847126 0.531392i \(-0.178331\pi\)
−0.706572 + 0.707641i \(0.749759\pi\)
\(278\) −8.75639 −0.525173
\(279\) 0 0
\(280\) 1.39881 + 0.673630i 0.0835947 + 0.0402571i
\(281\) 15.2450 19.1167i 0.909442 1.14040i −0.0801905 0.996780i \(-0.525553\pi\)
0.989632 0.143624i \(-0.0458757\pi\)
\(282\) 0 0
\(283\) −6.84512 + 3.29644i −0.406900 + 0.195953i −0.626127 0.779721i \(-0.715361\pi\)
0.219227 + 0.975674i \(0.429647\pi\)
\(284\) 1.34344 + 5.88599i 0.0797184 + 0.349269i
\(285\) 0 0
\(286\) 7.19232 + 3.46364i 0.425291 + 0.204809i
\(287\) −11.3451 + 5.46349i −0.669678 + 0.322500i
\(288\) 0 0
\(289\) 11.2811 0.663593
\(290\) −2.40904 1.13736i −0.141464 0.0667882i
\(291\) 0 0
\(292\) −2.73238 + 11.9713i −0.159900 + 0.700569i
\(293\) −23.1750 + 11.1605i −1.35390 + 0.652003i −0.963267 0.268545i \(-0.913457\pi\)
−0.390631 + 0.920547i \(0.627743\pi\)
\(294\) 0 0
\(295\) 1.22847 5.38230i 0.0715245 0.313369i
\(296\) 1.98659 + 8.70382i 0.115468 + 0.505899i
\(297\) 0 0
\(298\) −2.95579 + 3.70644i −0.171224 + 0.214709i
\(299\) −2.89932 + 3.63563i −0.167672 + 0.210254i
\(300\) 0 0
\(301\) −2.73304 3.42712i −0.157530 0.197536i
\(302\) 6.49415 0.373696
\(303\) 0 0
\(304\) −1.10516 4.84204i −0.0633855 0.277710i
\(305\) −0.535705 2.34708i −0.0306744 0.134393i
\(306\) 0 0
\(307\) 1.81399 0.103530 0.0517649 0.998659i \(-0.483515\pi\)
0.0517649 + 0.998659i \(0.483515\pi\)
\(308\) −2.73304 3.42712i −0.155729 0.195278i
\(309\) 0 0
\(310\) −1.96268 + 2.46113i −0.111473 + 0.139783i
\(311\) −12.1020 + 15.1754i −0.686239 + 0.860517i −0.995912 0.0903265i \(-0.971209\pi\)
0.309673 + 0.950843i \(0.399780\pi\)
\(312\) 0 0
\(313\) −7.54006 33.0352i −0.426189 1.86726i −0.493847 0.869549i \(-0.664410\pi\)
0.0676576 0.997709i \(-0.478447\pi\)
\(314\) 1.46005 6.39688i 0.0823952 0.360997i
\(315\) 0 0
\(316\) 8.47112 4.07948i 0.476538 0.229489i
\(317\) 1.22333 5.35977i 0.0687092 0.301035i −0.928884 0.370370i \(-0.879231\pi\)
0.997593 + 0.0693356i \(0.0220879\pi\)
\(318\) 0 0
\(319\) 4.73476 + 5.84430i 0.265096 + 0.327218i
\(320\) 0.494698 0.0276545
\(321\) 0 0
\(322\) 2.30056 1.10789i 0.128205 0.0617403i
\(323\) 23.7965 + 11.4598i 1.32407 + 0.637640i
\(324\) 0 0
\(325\) −6.04779 26.4971i −0.335471 1.46980i
\(326\) 5.09776 2.45495i 0.282339 0.135967i
\(327\) 0 0
\(328\) −2.50161 + 3.13691i −0.138128 + 0.173207i
\(329\) −29.1190 14.0230i −1.60538 0.773112i
\(330\) 0 0
\(331\) −13.6463 −0.750067 −0.375034 0.927011i \(-0.622369\pi\)
−0.375034 + 0.927011i \(0.622369\pi\)
\(332\) −7.92419 9.93663i −0.434897 0.545343i
\(333\) 0 0
\(334\) 2.69008 + 11.7860i 0.147195 + 0.644902i
\(335\) 2.20176 + 2.76092i 0.120295 + 0.150845i
\(336\) 0 0
\(337\) 14.0705 + 17.6438i 0.766469 + 0.961122i 0.999937 0.0112429i \(-0.00357882\pi\)
−0.233468 + 0.972365i \(0.575007\pi\)
\(338\) 17.7188 + 8.53293i 0.963776 + 0.464130i
\(339\) 0 0
\(340\) −1.64028 + 2.05684i −0.0889566 + 0.111548i
\(341\) 8.00754 3.85623i 0.433632 0.208826i
\(342\) 0 0
\(343\) 2.89852 12.6993i 0.156505 0.685695i
\(344\) −1.25840 0.606013i −0.0678483 0.0326740i
\(345\) 0 0
\(346\) −2.59025 + 11.3486i −0.139253 + 0.610105i
\(347\) 2.97305 0.159602 0.0798008 0.996811i \(-0.474572\pi\)
0.0798008 + 0.996811i \(0.474572\pi\)
\(348\) 0 0
\(349\) −5.73913 −0.307208 −0.153604 0.988132i \(-0.549088\pi\)
−0.153604 + 0.988132i \(0.549088\pi\)
\(350\) −3.32089 + 14.5498i −0.177509 + 0.777717i
\(351\) 0 0
\(352\) −1.25840 0.606013i −0.0670729 0.0323006i
\(353\) −1.44019 + 6.30988i −0.0766536 + 0.335841i −0.998685 0.0512748i \(-0.983672\pi\)
0.922031 + 0.387116i \(0.126529\pi\)
\(354\) 0 0
\(355\) 2.69090 1.29587i 0.142818 0.0687775i
\(356\) −1.11740 + 1.40118i −0.0592221 + 0.0742622i
\(357\) 0 0
\(358\) 16.5374 + 7.96398i 0.874028 + 0.420910i
\(359\) −6.69717 8.39798i −0.353463 0.443229i 0.573034 0.819532i \(-0.305766\pi\)
−0.926496 + 0.376303i \(0.877195\pi\)
\(360\) 0 0
\(361\) 3.53313 + 4.43041i 0.185954 + 0.233179i
\(362\) −2.20163 9.64598i −0.115715 0.506981i
\(363\) 0 0
\(364\) −11.1838 14.0240i −0.586188 0.735056i
\(365\) 6.07449 0.317954
\(366\) 0 0
\(367\) −17.0637 8.21747i −0.890720 0.428948i −0.0681919 0.997672i \(-0.521723\pi\)
−0.822529 + 0.568724i \(0.807437\pi\)
\(368\) 0.507277 0.636105i 0.0264436 0.0331593i
\(369\) 0 0
\(370\) 3.97913 1.91625i 0.206865 0.0996209i
\(371\) 2.96355 + 12.9842i 0.153860 + 0.674104i
\(372\) 0 0
\(373\) −2.19298 1.05608i −0.113548 0.0546819i 0.376247 0.926519i \(-0.377214\pi\)
−0.489796 + 0.871837i \(0.662929\pi\)
\(374\) 6.69216 3.22277i 0.346043 0.166646i
\(375\) 0 0
\(376\) −10.2982 −0.531087
\(377\) 19.3749 + 23.9152i 0.997859 + 1.23170i
\(378\) 0 0
\(379\) 3.81433 16.7117i 0.195929 0.858422i −0.777400 0.629007i \(-0.783462\pi\)
0.973329 0.229415i \(-0.0736812\pi\)
\(380\) −2.21363 + 1.06603i −0.113557 + 0.0546862i
\(381\) 0 0
\(382\) −0.0944066 + 0.413622i −0.00483026 + 0.0211628i
\(383\) −5.29096 23.1812i −0.270355 1.18450i −0.909595 0.415497i \(-0.863608\pi\)
0.639239 0.769008i \(-0.279249\pi\)
\(384\) 0 0
\(385\) −1.35203 + 1.69539i −0.0689057 + 0.0864051i
\(386\) 6.43739 8.07223i 0.327655 0.410866i
\(387\) 0 0
\(388\) 2.36695 + 2.96806i 0.120164 + 0.150681i
\(389\) 11.5272 0.584453 0.292227 0.956349i \(-0.405604\pi\)
0.292227 + 0.956349i \(0.405604\pi\)
\(390\) 0 0
\(391\) 0.962797 + 4.21829i 0.0486907 + 0.213328i
\(392\) 0.634079 + 2.77808i 0.0320258 + 0.140314i
\(393\) 0 0
\(394\) −26.8428 −1.35232
\(395\) −2.90002 3.63651i −0.145916 0.182973i
\(396\) 0 0
\(397\) 18.0708 22.6601i 0.906948 1.13728i −0.0830990 0.996541i \(-0.526482\pi\)
0.990047 0.140736i \(-0.0449468\pi\)
\(398\) 4.24156 5.31875i 0.212610 0.266605i
\(399\) 0 0
\(400\) 1.05815 + 4.63605i 0.0529074 + 0.231802i
\(401\) 2.29856 10.0707i 0.114785 0.502905i −0.884550 0.466445i \(-0.845535\pi\)
0.999335 0.0364602i \(-0.0116082\pi\)
\(402\) 0 0
\(403\) 32.7673 15.7799i 1.63226 0.786054i
\(404\) −0.271881 + 1.19119i −0.0135266 + 0.0592638i
\(405\) 0 0
\(406\) −3.88755 16.4476i −0.192936 0.816280i
\(407\) −12.4694 −0.618086
\(408\) 0 0
\(409\) −8.97519 + 4.32222i −0.443794 + 0.213720i −0.642416 0.766356i \(-0.722068\pi\)
0.198622 + 0.980076i \(0.436354\pi\)
\(410\) 1.78830 + 0.861198i 0.0883177 + 0.0425316i
\(411\) 0 0
\(412\) −0.402349 1.76281i −0.0198223 0.0868473i
\(413\) 31.5553 15.1962i 1.55273 0.747757i
\(414\) 0 0
\(415\) −3.92009 + 4.91563i −0.192429 + 0.241299i
\(416\) −5.14944 2.47984i −0.252472 0.121584i
\(417\) 0 0
\(418\) 6.93688 0.339294
\(419\) −17.6773 22.1667i −0.863595 1.08291i −0.995788 0.0916894i \(-0.970773\pi\)
0.132193 0.991224i \(-0.457798\pi\)
\(420\) 0 0
\(421\) 2.11840 + 9.28130i 0.103244 + 0.452343i 0.999953 + 0.00972116i \(0.00309439\pi\)
−0.896708 + 0.442622i \(0.854048\pi\)
\(422\) −3.64156 4.56638i −0.177268 0.222288i
\(423\) 0 0
\(424\) 2.64584 + 3.31777i 0.128493 + 0.161125i
\(425\) −22.7842 10.9723i −1.10519 0.532234i
\(426\) 0 0
\(427\) 9.52251 11.9409i 0.460827 0.577859i
\(428\) 3.73959 1.80089i 0.180760 0.0870493i
\(429\) 0 0
\(430\) −0.153752 + 0.673630i −0.00741456 + 0.0324853i
\(431\) −17.0958 8.23291i −0.823477 0.396566i −0.0258122 0.999667i \(-0.508217\pi\)
−0.797665 + 0.603101i \(0.793931\pi\)
\(432\) 0 0
\(433\) −6.30063 + 27.6049i −0.302789 + 1.32661i 0.563108 + 0.826383i \(0.309605\pi\)
−0.865897 + 0.500222i \(0.833252\pi\)
\(434\) −19.9705 −0.958613
\(435\) 0 0
\(436\) 14.5046 0.694644
\(437\) −0.899171 + 3.93953i −0.0430132 + 0.188453i
\(438\) 0 0
\(439\) 17.9255 + 8.63248i 0.855539 + 0.412006i 0.809631 0.586940i \(-0.199667\pi\)
0.0459084 + 0.998946i \(0.485382\pi\)
\(440\) −0.153752 + 0.673630i −0.00732982 + 0.0321140i
\(441\) 0 0
\(442\) 27.3847 13.1878i 1.30256 0.627279i
\(443\) 22.1713 27.8019i 1.05339 1.32091i 0.108292 0.994119i \(-0.465462\pi\)
0.945097 0.326790i \(-0.105967\pi\)
\(444\) 0 0
\(445\) 0.798784 + 0.384674i 0.0378660 + 0.0182353i
\(446\) 13.6769 + 17.1503i 0.647620 + 0.812090i
\(447\) 0 0
\(448\) 1.95676 + 2.45370i 0.0924481 + 0.115926i
\(449\) 2.41460 + 10.5790i 0.113952 + 0.499256i 0.999404 + 0.0345250i \(0.0109918\pi\)
−0.885452 + 0.464731i \(0.846151\pi\)
\(450\) 0 0
\(451\) −3.49404 4.38138i −0.164528 0.206311i
\(452\) −16.6834 −0.784720
\(453\) 0 0
\(454\) 1.94197 + 0.935202i 0.0911411 + 0.0438912i
\(455\) −5.53258 + 6.93764i −0.259371 + 0.325242i
\(456\) 0 0
\(457\) −29.1336 + 14.0300i −1.36281 + 0.656296i −0.965262 0.261285i \(-0.915854\pi\)
−0.397550 + 0.917580i \(0.630140\pi\)
\(458\) 2.06764 + 9.05894i 0.0966146 + 0.423296i
\(459\) 0 0
\(460\) −0.362632 0.174634i −0.0169078 0.00814237i
\(461\) 22.8888 11.0227i 1.06604 0.513377i 0.183211 0.983074i \(-0.441351\pi\)
0.882828 + 0.469696i \(0.155637\pi\)
\(462\) 0 0
\(463\) 3.22072 0.149680 0.0748398 0.997196i \(-0.476155\pi\)
0.0748398 + 0.997196i \(0.476155\pi\)
\(464\) −3.38992 4.18431i −0.157373 0.194252i
\(465\) 0 0
\(466\) 2.62235 11.4893i 0.121478 0.532231i
\(467\) 20.5930 9.91706i 0.952929 0.458907i 0.108217 0.994127i \(-0.465486\pi\)
0.844712 + 0.535221i \(0.179772\pi\)
\(468\) 0 0
\(469\) −4.98516 + 21.8414i −0.230193 + 1.00854i
\(470\) 1.13363 + 4.96675i 0.0522903 + 0.229099i
\(471\) 0 0
\(472\) 6.95799 8.72505i 0.320268 0.401603i
\(473\) 1.21632 1.52521i 0.0559263 0.0701293i
\(474\) 0 0
\(475\) −14.7252 18.4648i −0.675637 0.847222i
\(476\) −16.6900 −0.764984
\(477\) 0 0
\(478\) 3.19744 + 14.0089i 0.146248 + 0.640753i
\(479\) 0.477409 + 2.09166i 0.0218134 + 0.0955706i 0.984663 0.174468i \(-0.0558206\pi\)
−0.962849 + 0.270039i \(0.912963\pi\)
\(480\) 0 0
\(481\) −51.0256 −2.32657
\(482\) 5.73880 + 7.19623i 0.261395 + 0.327779i
\(483\) 0 0
\(484\) −5.64207 + 7.07493i −0.256458 + 0.321588i
\(485\) 1.17093 1.46830i 0.0531691 0.0666719i
\(486\) 0 0
\(487\) −4.84560 21.2300i −0.219575 0.962021i −0.957793 0.287459i \(-0.907190\pi\)
0.738218 0.674562i \(-0.235668\pi\)
\(488\) 1.08289 4.74446i 0.0490203 0.214772i
\(489\) 0 0
\(490\) 1.27005 0.611626i 0.0573752 0.0276304i
\(491\) −8.64786 + 37.8888i −0.390273 + 1.70990i 0.273423 + 0.961894i \(0.411844\pi\)
−0.663696 + 0.748002i \(0.731013\pi\)
\(492\) 0 0
\(493\) 28.6374 0.220544i 1.28977 0.00993279i
\(494\) 28.3861 1.27715
\(495\) 0 0
\(496\) −5.73311 + 2.76092i −0.257424 + 0.123969i
\(497\) 17.0712 + 8.22106i 0.765748 + 0.368765i
\(498\) 0 0
\(499\) −8.74490 38.3139i −0.391476 1.71517i −0.659457 0.751742i \(-0.729214\pi\)
0.267981 0.963424i \(-0.413643\pi\)
\(500\) 4.34800 2.09389i 0.194449 0.0936415i
\(501\) 0 0
\(502\) 3.68856 4.62530i 0.164628 0.206437i
\(503\) 25.2735 + 12.1711i 1.12689 + 0.542680i 0.902014 0.431707i \(-0.142089\pi\)
0.224874 + 0.974388i \(0.427803\pi\)
\(504\) 0 0
\(505\) 0.604433 0.0268969
\(506\) 0.708523 + 0.888459i 0.0314977 + 0.0394968i
\(507\) 0 0
\(508\) 2.82443 + 12.3746i 0.125314 + 0.549035i
\(509\) −1.06278 1.33268i −0.0471069 0.0590701i 0.757720 0.652580i \(-0.226313\pi\)
−0.804827 + 0.593510i \(0.797742\pi\)
\(510\) 0 0
\(511\) 24.0274 + 30.1294i 1.06291 + 1.33285i
\(512\) 0.900969 + 0.433884i 0.0398176 + 0.0191751i
\(513\) 0 0
\(514\) −16.6604 + 20.8915i −0.734860 + 0.921486i
\(515\) −0.805903 + 0.388102i −0.0355123 + 0.0171018i
\(516\) 0 0
\(517\) 3.20065 14.0230i 0.140765 0.616730i
\(518\) 25.2438 + 12.1568i 1.10915 + 0.534138i
\(519\) 0 0
\(520\) −0.629161 + 2.75653i −0.0275905 + 0.120882i
\(521\) 21.0834 0.923678 0.461839 0.886964i \(-0.347190\pi\)
0.461839 + 0.886964i \(0.347190\pi\)
\(522\) 0 0
\(523\) −8.93606 −0.390747 −0.195373 0.980729i \(-0.562592\pi\)
−0.195373 + 0.980729i \(0.562592\pi\)
\(524\) −3.29243 + 14.4251i −0.143831 + 0.630163i
\(525\) 0 0
\(526\) 21.0416 + 10.1331i 0.917457 + 0.441824i
\(527\) 7.53008 32.9914i 0.328015 1.43713i
\(528\) 0 0
\(529\) 20.1259 9.69211i 0.875038 0.421396i
\(530\) 1.30889 1.64130i 0.0568546 0.0712934i
\(531\) 0 0
\(532\) −14.0434 6.76296i −0.608860 0.293211i
\(533\) −14.2978 17.9289i −0.619307 0.776586i
\(534\) 0 0
\(535\) −1.28022 1.60534i −0.0553486 0.0694050i
\(536\) 1.58844 + 6.95942i 0.0686103 + 0.300601i
\(537\) 0 0
\(538\) 9.73222 + 12.2038i 0.419586 + 0.526144i
\(539\) −3.97998 −0.171430
\(540\) 0 0
\(541\) 10.7827 + 5.19269i 0.463586 + 0.223251i 0.651072 0.759016i \(-0.274320\pi\)
−0.187486 + 0.982267i \(0.560034\pi\)
\(542\) −0.136968 + 0.171752i −0.00588327 + 0.00737739i
\(543\) 0 0
\(544\) −4.79135 + 2.30739i −0.205427 + 0.0989286i
\(545\) −1.59668 6.99549i −0.0683940 0.299654i
\(546\) 0 0
\(547\) 21.7331 + 10.4661i 0.929239 + 0.447498i 0.836361 0.548180i \(-0.184679\pi\)
0.0928783 + 0.995677i \(0.470393\pi\)
\(548\) −1.35979 + 0.654840i −0.0580873 + 0.0279734i
\(549\) 0 0
\(550\) −6.64177 −0.283206
\(551\) 24.1857 + 11.4186i 1.03035 + 0.486450i
\(552\) 0 0
\(553\) 6.56613 28.7681i 0.279220 1.22334i
\(554\) 3.38036 1.62789i 0.143618 0.0691626i
\(555\) 0 0
\(556\) −1.94848 + 8.53684i −0.0826339 + 0.362043i
\(557\) −4.05033 17.7456i −0.171618 0.751907i −0.985333 0.170643i \(-0.945416\pi\)
0.813715 0.581264i \(-0.197442\pi\)
\(558\) 0 0
\(559\) 4.97724 6.24126i 0.210515 0.263977i
\(560\) 0.968004 1.21384i 0.0409057 0.0512941i
\(561\) 0 0
\(562\) −15.2450 19.1167i −0.643072 0.806387i
\(563\) 31.5149 1.32820 0.664098 0.747646i \(-0.268816\pi\)
0.664098 + 0.747646i \(0.268816\pi\)
\(564\) 0 0
\(565\) 1.83652 + 8.04631i 0.0772629 + 0.338511i
\(566\) 1.69060 + 7.40702i 0.0710614 + 0.311340i
\(567\) 0 0
\(568\) 6.03736 0.253322
\(569\) 17.7477 + 22.2549i 0.744023 + 0.932975i 0.999427 0.0338594i \(-0.0107798\pi\)
−0.255404 + 0.966834i \(0.582208\pi\)
\(570\) 0 0
\(571\) −2.65790 + 3.33290i −0.111230 + 0.139478i −0.834330 0.551266i \(-0.814145\pi\)
0.723100 + 0.690743i \(0.242717\pi\)
\(572\) 4.97724 6.24126i 0.208109 0.260960i
\(573\) 0 0
\(574\) 2.80200 + 12.2764i 0.116953 + 0.512405i
\(575\) 0.860919 3.77193i 0.0359028 0.157300i
\(576\) 0 0
\(577\) −20.3474 + 9.79878i −0.847072 + 0.407929i −0.806490 0.591248i \(-0.798636\pi\)
−0.0405823 + 0.999176i \(0.512921\pi\)
\(578\) 2.51028 10.9982i 0.104414 0.457467i
\(579\) 0 0
\(580\) −1.64491 + 2.09555i −0.0683011 + 0.0870131i
\(581\) −39.8872 −1.65480
\(582\) 0 0
\(583\) −5.34013 + 2.57167i −0.221166 + 0.106508i
\(584\) 11.0632 + 5.32774i 0.457797 + 0.220463i
\(585\) 0 0
\(586\) 5.72375 + 25.0774i 0.236446 + 1.03594i
\(587\) −30.1868 + 14.5372i −1.24594 + 0.600015i −0.936422 0.350877i \(-0.885884\pi\)
−0.309523 + 0.950892i \(0.600169\pi\)
\(588\) 0 0
\(589\) 19.7045 24.7087i 0.811910 1.01810i
\(590\) −4.97399 2.39535i −0.204776 0.0986149i
\(591\) 0 0
\(592\) 8.92766 0.366925
\(593\) −8.32767 10.4426i −0.341977 0.428825i 0.580868 0.813998i \(-0.302713\pi\)
−0.922844 + 0.385173i \(0.874142\pi\)
\(594\) 0 0
\(595\) 1.83724 + 8.04949i 0.0753197 + 0.329997i
\(596\) 2.95579 + 3.70644i 0.121074 + 0.151822i
\(597\) 0 0
\(598\) 2.89932 + 3.63563i 0.118562 + 0.148672i
\(599\) 0.824990 + 0.397294i 0.0337082 + 0.0162330i 0.450662 0.892695i \(-0.351188\pi\)
−0.416954 + 0.908928i \(0.636902\pi\)
\(600\) 0 0
\(601\) 3.60037 4.51472i 0.146862 0.184159i −0.702959 0.711230i \(-0.748138\pi\)
0.849821 + 0.527071i \(0.176710\pi\)
\(602\) −3.94935 + 1.90191i −0.160964 + 0.0775160i
\(603\) 0 0
\(604\) 1.44508 6.33133i 0.0587996 0.257618i
\(605\) 4.03329 + 1.94233i 0.163977 + 0.0789669i
\(606\) 0 0
\(607\) 3.33385 14.6065i 0.135317 0.592861i −0.861111 0.508416i \(-0.830231\pi\)
0.996428 0.0844449i \(-0.0269117\pi\)
\(608\) −4.96656 −0.201421
\(609\) 0 0
\(610\) −2.40744 −0.0974743
\(611\) 13.0973 57.3829i 0.529859 2.32146i
\(612\) 0 0
\(613\) 21.5458 + 10.3759i 0.870228 + 0.419080i 0.815046 0.579396i \(-0.196712\pi\)
0.0551825 + 0.998476i \(0.482426\pi\)
\(614\) 0.403651 1.76851i 0.0162900 0.0713712i
\(615\) 0 0
\(616\) −3.94935 + 1.90191i −0.159124 + 0.0766300i
\(617\) 9.16964 11.4984i 0.369156 0.462907i −0.562208 0.826996i \(-0.690048\pi\)
0.931364 + 0.364089i \(0.118620\pi\)
\(618\) 0 0
\(619\) −20.6449 9.94208i −0.829790 0.399606i −0.0297537 0.999557i \(-0.509472\pi\)
−0.800036 + 0.599951i \(0.795187\pi\)
\(620\) 1.96268 + 2.46113i 0.0788233 + 0.0988413i
\(621\) 0 0
\(622\) 12.1020 + 15.1754i 0.485244 + 0.608477i
\(623\) 1.25158 + 5.48352i 0.0501434 + 0.219693i
\(624\) 0 0
\(625\) 13.3358 + 16.7226i 0.533433 + 0.668904i
\(626\) −33.8847 −1.35431
\(627\) 0 0
\(628\) −5.91161 2.84688i −0.235899 0.113603i
\(629\) −29.6016 + 37.1192i −1.18029 + 1.48004i
\(630\) 0 0
\(631\) −11.8128 + 5.68872i −0.470258 + 0.226465i −0.653977 0.756514i \(-0.726901\pi\)
0.183719 + 0.982979i \(0.441186\pi\)
\(632\) −2.09219 9.16650i −0.0832230 0.364624i
\(633\) 0 0
\(634\) −4.95317 2.38532i −0.196716 0.0947333i
\(635\) 5.65731 2.72442i 0.224503 0.108115i
\(636\) 0 0
\(637\) −16.2863 −0.645287
\(638\) 6.75135 3.31557i 0.267289 0.131265i
\(639\) 0 0
\(640\) 0.110081 0.482295i 0.00435132 0.0190644i
\(641\) −38.8282 + 18.6987i −1.53362 + 0.738553i −0.994604 0.103742i \(-0.966918\pi\)
−0.539017 + 0.842295i \(0.681204\pi\)
\(642\) 0 0
\(643\) 1.92324 8.42626i 0.0758451 0.332299i −0.922743 0.385415i \(-0.874058\pi\)
0.998588 + 0.0531161i \(0.0169153\pi\)
\(644\) −0.568191 2.48941i −0.0223899 0.0980964i
\(645\) 0 0
\(646\) 16.4677 20.6498i 0.647913 0.812457i
\(647\) 2.98700 3.74558i 0.117431 0.147254i −0.719641 0.694346i \(-0.755694\pi\)
0.837073 + 0.547092i \(0.184265\pi\)
\(648\) 0 0
\(649\) 9.71835 + 12.1864i 0.381479 + 0.478359i
\(650\) −27.1785 −1.06603
\(651\) 0 0
\(652\) −1.25904 5.51622i −0.0493079 0.216032i
\(653\) 1.22812 + 5.38073i 0.0480599 + 0.210564i 0.993257 0.115938i \(-0.0369872\pi\)
−0.945197 + 0.326502i \(0.894130\pi\)
\(654\) 0 0
\(655\) 7.31958 0.286000
\(656\) 2.50161 + 3.13691i 0.0976713 + 0.122476i
\(657\) 0 0
\(658\) −20.1510 + 25.2685i −0.785567 + 0.985070i
\(659\) 1.14932 1.44120i 0.0447712 0.0561413i −0.758942 0.651158i \(-0.774283\pi\)
0.803713 + 0.595017i \(0.202855\pi\)
\(660\) 0 0
\(661\) 5.80735 + 25.4436i 0.225880 + 0.989643i 0.952961 + 0.303092i \(0.0980190\pi\)
−0.727082 + 0.686551i \(0.759124\pi\)
\(662\) −3.03658 + 13.3041i −0.118020 + 0.517080i
\(663\) 0 0
\(664\) −11.4508 + 5.51441i −0.444377 + 0.214001i
\(665\) −1.71583 + 7.51754i −0.0665371 + 0.291518i
\(666\) 0 0
\(667\) 1.00782 + 4.26393i 0.0390231 + 0.165100i
\(668\) 12.0891 0.467742
\(669\) 0 0
\(670\) 3.18164 1.53220i 0.122917 0.0591939i
\(671\) 6.12397 + 2.94915i 0.236413 + 0.113851i
\(672\) 0 0
\(673\) −4.88021 21.3816i −0.188118 0.824200i −0.977608 0.210436i \(-0.932512\pi\)
0.789489 0.613764i \(-0.210345\pi\)
\(674\) 20.3325 9.79160i 0.783177 0.377158i
\(675\) 0 0
\(676\) 12.2618 15.3758i 0.471608 0.591377i
\(677\) 9.15884 + 4.41066i 0.352003 + 0.169516i 0.601526 0.798853i \(-0.294560\pi\)
−0.249523 + 0.968369i \(0.580274\pi\)
\(678\) 0 0
\(679\) 11.9143 0.457228
\(680\) 1.64028 + 2.05684i 0.0629018 + 0.0788764i
\(681\) 0 0
\(682\) −1.97770 8.66486i −0.0757300 0.331795i
\(683\) −12.7734 16.0173i −0.488760 0.612886i 0.474893 0.880044i \(-0.342487\pi\)
−0.963653 + 0.267158i \(0.913915\pi\)
\(684\) 0 0
\(685\) 0.465513 + 0.583735i 0.0177863 + 0.0223033i
\(686\) −11.7359 5.65170i −0.448078 0.215783i
\(687\) 0 0
\(688\) −0.870839 + 1.09200i −0.0332004 + 0.0416320i
\(689\) −21.8521 + 10.5234i −0.832500 + 0.400911i
\(690\) 0 0
\(691\) 6.86393 30.0728i 0.261116 1.14402i −0.658927 0.752207i \(-0.728989\pi\)
0.920043 0.391817i \(-0.128154\pi\)
\(692\) 10.4877 + 5.05061i 0.398682 + 0.191995i
\(693\) 0 0
\(694\) 0.661565 2.89851i 0.0251127 0.110026i
\(695\) 4.33177 0.164313
\(696\) 0 0
\(697\) −21.3372 −0.808204
\(698\) −1.27708 + 5.59523i −0.0483380 + 0.211783i
\(699\) 0 0
\(700\) 13.4460 + 6.47525i 0.508211 + 0.244741i
\(701\) −4.60087 + 20.1577i −0.173773 + 0.761347i 0.810650 + 0.585530i \(0.199114\pi\)
−0.984423 + 0.175817i \(0.943743\pi\)
\(702\) 0 0
\(703\) −39.9487 + 19.2383i −1.50669 + 0.725586i
\(704\) −0.870839 + 1.09200i −0.0328210 + 0.0411562i
\(705\) 0 0
\(706\) 5.83121 + 2.80816i 0.219460 + 0.105687i
\(707\) 2.39081 + 2.99798i 0.0899156 + 0.112751i
\(708\) 0 0
\(709\) −28.0695 35.1981i −1.05417 1.32189i −0.944712 0.327901i \(-0.893659\pi\)
−0.109461 0.993991i \(-0.534913\pi\)
\(710\) −0.664596 2.91179i −0.0249419 0.109277i
\(711\) 0 0
\(712\) 1.11740 + 1.40118i 0.0418763 + 0.0525113i
\(713\) 5.17722 0.193888
\(714\) 0 0
\(715\) −3.55803 1.71346i −0.133063 0.0640796i
\(716\) 11.4442 14.3506i 0.427691 0.536307i
\(717\) 0 0
\(718\) −9.67769 + 4.66053i −0.361168 + 0.173929i
\(719\) −2.24249 9.82501i −0.0836309 0.366411i 0.915744 0.401762i \(-0.131602\pi\)
−0.999375 + 0.0353512i \(0.988745\pi\)
\(720\) 0 0
\(721\) −5.11269 2.46214i −0.190407 0.0916950i
\(722\) 5.10552 2.45869i 0.190008 0.0915029i
\(723\) 0 0
\(724\) −9.89404 −0.367709
\(725\) −23.1568 10.9329i −0.860023 0.406036i
\(726\) 0 0
\(727\) −4.98758 + 21.8520i −0.184979 + 0.810447i 0.794234 + 0.607612i \(0.207872\pi\)
−0.979213 + 0.202835i \(0.934985\pi\)
\(728\) −16.1610 + 7.78272i −0.598966 + 0.288447i
\(729\) 0 0
\(730\) 1.35170 5.92219i 0.0500287 0.219190i
\(731\) −1.65283 7.24151i −0.0611320 0.267837i
\(732\) 0 0
\(733\) 2.46035 3.08518i 0.0908749 0.113954i −0.734315 0.678809i \(-0.762497\pi\)
0.825190 + 0.564855i \(0.191068\pi\)
\(734\) −11.8085 + 14.8074i −0.435859 + 0.546550i
\(735\) 0 0
\(736\) −0.507277 0.636105i −0.0186985 0.0234472i
\(737\) −9.97032 −0.367261
\(738\) 0 0
\(739\) −1.38003 6.04632i −0.0507653 0.222417i 0.943182 0.332277i \(-0.107817\pi\)
−0.993947 + 0.109860i \(0.964960\pi\)
\(740\) −0.982763 4.30577i −0.0361271 0.158283i
\(741\) 0 0
\(742\) 13.3181 0.488922
\(743\) −30.3589 38.0689i −1.11376 1.39661i −0.908490 0.417907i \(-0.862764\pi\)
−0.205271 0.978705i \(-0.565808\pi\)
\(744\) 0 0
\(745\) 1.46222 1.83357i 0.0535718 0.0671769i
\(746\) −1.51759 + 1.90300i −0.0555629 + 0.0696737i
\(747\) 0 0
\(748\) −1.65283 7.24151i −0.0604333 0.264776i
\(749\) 2.89863 12.6997i 0.105914 0.464038i
\(750\) 0 0
\(751\) −23.7677 + 11.4459i −0.867296 + 0.417668i −0.813968 0.580909i \(-0.802697\pi\)
−0.0533277 + 0.998577i \(0.516983\pi\)
\(752\) −2.29155 + 10.0400i −0.0835644 + 0.366119i
\(753\) 0 0
\(754\) 27.6269 13.5675i 1.00611 0.494100i
\(755\) −3.21264 −0.116920
\(756\) 0 0
\(757\) −34.4086 + 16.5703i −1.25060 + 0.602259i −0.937673 0.347518i \(-0.887025\pi\)
−0.312930 + 0.949776i \(0.601310\pi\)
\(758\) −15.4439 7.43740i −0.560949 0.270139i
\(759\) 0 0
\(760\) 0.546722 + 2.39535i 0.0198317 + 0.0868884i
\(761\) 5.62055 2.70672i 0.203745 0.0981183i −0.329229 0.944250i \(-0.606789\pi\)
0.532974 + 0.846132i \(0.321074\pi\)
\(762\) 0 0
\(763\) 28.3820 35.5898i 1.02750 1.28844i
\(764\) 0.382244 + 0.184079i 0.0138291 + 0.00665975i
\(765\) 0 0
\(766\) −23.7774 −0.859111
\(767\) 39.7681 + 49.8676i 1.43594 + 1.80061i
\(768\) 0 0
\(769\) 6.26532 + 27.4502i 0.225933 + 0.989879i 0.952919 + 0.303226i \(0.0980637\pi\)
−0.726985 + 0.686653i \(0.759079\pi\)
\(770\) 1.35203 + 1.69539i 0.0487237 + 0.0610976i
\(771\) 0 0
\(772\) −6.43739 8.07223i −0.231687 0.290526i
\(773\) 31.5991 + 15.2173i 1.13654 + 0.547329i 0.904964 0.425488i \(-0.139897\pi\)
0.231576 + 0.972817i \(0.425612\pi\)
\(774\) 0 0
\(775\) −18.8663 + 23.6575i −0.677696 + 0.849804i
\(776\) 3.42035 1.64715i 0.122783 0.0591293i
\(777\) 0 0
\(778\) 2.56505 11.2382i 0.0919614 0.402909i
\(779\) −17.9537 8.64606i −0.643259 0.309777i
\(780\) 0 0
\(781\) −1.87640 + 8.22106i −0.0671430 + 0.294173i
\(782\) 4.32677 0.154725
\(783\) 0 0
\(784\) 2.84952 0.101769
\(785\) −0.722283 + 3.16453i −0.0257794 + 0.112947i
\(786\) 0 0
\(787\) 24.5984 + 11.8459i 0.876837 + 0.422262i 0.817468 0.575974i \(-0.195377\pi\)
0.0593688 + 0.998236i \(0.481091\pi\)
\(788\) −5.97308 + 26.1698i −0.212782 + 0.932259i
\(789\) 0 0
\(790\) −4.19065 + 2.01811i −0.149097 + 0.0718011i
\(791\) −32.6453 + 40.9359i −1.16073 + 1.45551i
\(792\) 0 0
\(793\) 25.0597 + 12.0681i 0.889894 + 0.428551i
\(794\) −18.0708 22.6601i −0.641309 0.804176i
\(795\) 0 0
\(796\) −4.24156 5.31875i −0.150338 0.188518i
\(797\) 9.11491 + 39.9350i 0.322867 + 1.41457i 0.832426 + 0.554136i \(0.186951\pi\)
−0.509560 + 0.860435i \(0.670192\pi\)
\(798\) 0 0
\(799\) −34.1457 42.8174i −1.20799 1.51477i
\(800\) 4.75527 0.168124
\(801\) 0 0
\(802\) −9.30669 4.48187i −0.328631 0.158260i
\(803\) −10.6932 + 13.4088i −0.377355 + 0.473188i
\(804\) 0 0
\(805\) −1.13808 + 0.548071i −0.0401121 + 0.0193170i
\(806\) −8.09286 35.4572i −0.285059 1.24892i
\(807\) 0 0
\(808\) 1.10082 + 0.530129i 0.0387268 + 0.0186499i
\(809\) −38.8637 + 18.7158i −1.36638 + 0.658012i −0.966049 0.258360i \(-0.916818\pi\)
−0.400327 + 0.916372i \(0.631104\pi\)
\(810\) 0 0
\(811\) 38.0001 1.33436 0.667182 0.744894i \(-0.267500\pi\)
0.667182 + 0.744894i \(0.267500\pi\)
\(812\) −16.9003 + 0.130153i −0.593083 + 0.00456748i
\(813\) 0 0
\(814\) −2.77471 + 12.1568i −0.0972534 + 0.426095i
\(815\) −2.52185 + 1.21446i −0.0883366 + 0.0425407i
\(816\) 0 0
\(817\) 1.54360 6.76296i 0.0540037 0.236606i
\(818\) 2.21669 + 9.71194i 0.0775047 + 0.339570i
\(819\) 0 0
\(820\) 1.23754 1.55183i 0.0432168 0.0541921i
\(821\) 7.61753 9.55208i 0.265854 0.333370i −0.630930 0.775840i \(-0.717326\pi\)
0.896783 + 0.442470i \(0.145898\pi\)
\(822\) 0 0
\(823\) 22.8365 + 28.6361i 0.796030 + 0.998190i 0.999816 + 0.0191747i \(0.00610387\pi\)
−0.203786 + 0.979015i \(0.565325\pi\)
\(824\) −1.80814 −0.0629896
\(825\) 0 0
\(826\) −7.79351 34.1456i −0.271171 1.18808i
\(827\) −5.74425 25.1672i −0.199747 0.875149i −0.971087 0.238726i \(-0.923270\pi\)
0.771340 0.636423i \(-0.219587\pi\)
\(828\) 0 0
\(829\) −15.7732 −0.547825 −0.273913 0.961755i \(-0.588318\pi\)
−0.273913 + 0.961755i \(0.588318\pi\)
\(830\) 3.92009 + 4.91563i 0.136068 + 0.170624i
\(831\) 0 0
\(832\) −3.56353 + 4.46852i −0.123543 + 0.154918i
\(833\) −9.44821 + 11.8477i −0.327361 + 0.410498i
\(834\) 0 0
\(835\) −1.33078 5.83052i −0.0460535 0.201773i
\(836\) 1.54360 6.76296i 0.0533865 0.233902i
\(837\) 0 0
\(838\) −25.5445 + 12.3016i −0.882420 + 0.424951i
\(839\) 0.479893 2.10255i 0.0165677 0.0725880i −0.965968 0.258661i \(-0.916719\pi\)
0.982536 + 0.186073i \(0.0595760\pi\)
\(840\) 0 0
\(841\) 28.9966 0.446646i 0.999881 0.0154016i
\(842\) 9.51999 0.328080
\(843\) 0 0
\(844\) −5.26221 + 2.53415i −0.181133 + 0.0872289i
\(845\) −8.76546 4.22123i −0.301541 0.145215i
\(846\) 0 0
\(847\) 6.31957 + 27.6879i 0.217143 + 0.951366i
\(848\) 3.82334 1.84123i 0.131294 0.0632279i
\(849\) 0 0
\(850\) −15.7671 + 19.7714i −0.540808 + 0.678152i
\(851\) −6.54430 3.15157i −0.224336 0.108034i
\(852\) 0 0
\(853\) −21.6578 −0.741548 −0.370774 0.928723i \(-0.620908\pi\)
−0.370774 + 0.928723i \(0.620908\pi\)
\(854\) −9.52251 11.9409i −0.325854 0.408608i
\(855\) 0 0
\(856\) −0.923602 4.04656i −0.0315681 0.138309i
\(857\) 7.86892 + 9.86732i 0.268797 + 0.337061i 0.897850 0.440302i \(-0.145128\pi\)
−0.629053 + 0.777363i \(0.716557\pi\)
\(858\) 0 0
\(859\) −12.1127 15.1888i −0.413280 0.518236i 0.531004 0.847369i \(-0.321815\pi\)
−0.944284 + 0.329133i \(0.893244\pi\)
\(860\) 0.622528 + 0.299794i 0.0212280 + 0.0102229i
\(861\) 0 0
\(862\) −11.8307 + 14.8352i −0.402954 + 0.505289i
\(863\) −41.3801 + 19.9276i −1.40860 + 0.678344i −0.974885 0.222708i \(-0.928510\pi\)
−0.433711 + 0.901052i \(0.642796\pi\)
\(864\) 0 0
\(865\) 1.28139 5.61414i 0.0435686 0.190886i
\(866\) 25.5107 + 12.2853i 0.866890 + 0.417472i
\(867\) 0 0
\(868\) −4.44385 + 19.4698i −0.150834 + 0.660847i
\(869\) 13.1323 0.445482
\(870\) 0 0
\(871\) −40.7992 −1.38243
\(872\) 3.22757 14.1409i 0.109299 0.478872i
\(873\) 0 0
\(874\) 3.64067 + 1.75325i 0.123147 + 0.0593047i
\(875\) 3.37022 14.7659i 0.113934 0.499179i
\(876\) 0 0
\(877\) −7.29358 + 3.51240i −0.246287 + 0.118605i −0.552955 0.833211i \(-0.686500\pi\)
0.306669 + 0.951816i \(0.400786\pi\)
\(878\) 12.4049 15.5552i 0.418644 0.524962i
\(879\) 0 0
\(880\) 0.622528 + 0.299794i 0.0209854 + 0.0101060i
\(881\) −1.87163 2.34695i −0.0630569 0.0790709i 0.749303 0.662228i \(-0.230389\pi\)
−0.812360 + 0.583157i \(0.801817\pi\)
\(882\) 0 0
\(883\) −24.0764 30.1908i −0.810235 1.01600i −0.999420 0.0340614i \(-0.989156\pi\)
0.189184 0.981942i \(-0.439416\pi\)
\(884\) −6.76347 29.6327i −0.227480 0.996655i
\(885\) 0 0
\(886\) −22.1713 27.8019i −0.744859 0.934023i
\(887\) 29.4281 0.988100 0.494050 0.869433i \(-0.335516\pi\)
0.494050 + 0.869433i \(0.335516\pi\)
\(888\) 0 0
\(889\) 35.8903 + 17.2839i 1.20372 + 0.579682i
\(890\) 0.552776 0.693159i 0.0185291 0.0232347i
\(891\) 0 0
\(892\) 19.7637 9.51770i 0.661738 0.318676i
\(893\) −11.3811 49.8640i −0.380855 1.66864i
\(894\) 0 0
\(895\) −8.18101 3.93977i −0.273461 0.131692i
\(896\) 2.82760 1.36170i 0.0944634 0.0454912i
\(897\) 0 0
\(898\) 10.8511 0.362106
\(899\) 7.36769 33.4659i 0.245726 1.11615i
\(900\) 0 0
\(901\) −5.02172 + 22.0016i −0.167298 + 0.732979i
\(902\) −5.04903 + 2.43148i −0.168114 + 0.0809596i
\(903\) 0 0
\(904\) −3.71240 + 16.2651i −0.123473 + 0.540969i
\(905\) 1.08914 + 4.77185i 0.0362043 + 0.158622i
\(906\) 0 0
\(907\) 2.90939 3.64825i 0.0966046 0.121138i −0.731179 0.682185i \(-0.761030\pi\)
0.827784 + 0.561047i \(0.189601\pi\)
\(908\) 1.34388 1.68518i 0.0445983 0.0559245i
\(909\) 0 0
\(910\) 5.53258 + 6.93764i 0.183403 + 0.229981i
\(911\) 37.9571 1.25758 0.628788 0.777577i \(-0.283551\pi\)
0.628788 + 0.777577i \(0.283551\pi\)
\(912\) 0 0
\(913\) −3.95007 17.3064i −0.130728 0.572758i
\(914\) 7.19540 + 31.5251i 0.238003 + 1.04276i
\(915\) 0 0
\(916\) 9.29190 0.307013
\(917\) 28.9523 + 36.3050i 0.956089 + 1.19890i
\(918\) 0 0
\(919\) 15.8113 19.8268i 0.521568 0.654026i −0.449373 0.893344i \(-0.648353\pi\)
0.970941 + 0.239318i \(0.0769240\pi\)
\(920\) −0.250949 + 0.314680i −0.00827355 + 0.0103747i
\(921\) 0 0
\(922\) −5.65307 24.7677i −0.186174 0.815682i
\(923\) −7.67836 + 33.6411i −0.252736 + 1.10731i
\(924\) 0 0
\(925\) 38.2492 18.4199i 1.25763 0.605641i
\(926\) 0.716678 3.13997i 0.0235515 0.103186i
\(927\) 0 0
\(928\) −4.83373 + 2.37383i −0.158675 + 0.0779248i
\(929\) −36.8642 −1.20947 −0.604737 0.796425i \(-0.706722\pi\)
−0.604737 + 0.796425i \(0.706722\pi\)
\(930\) 0 0
\(931\) −12.7508 + 6.14046i −0.417891 + 0.201246i
\(932\) −10.6177 5.11321i −0.347794 0.167489i
\(933\) 0 0
\(934\) −5.08605 22.2834i −0.166421 0.729136i
\(935\) −3.31060 + 1.59430i −0.108268 + 0.0521392i
\(936\) 0 0
\(937\) −1.45551 + 1.82515i −0.0475493 + 0.0596249i −0.805038 0.593224i \(-0.797855\pi\)
0.757488 + 0.652849i \(0.226426\pi\)
\(938\) 20.1845 + 9.72034i 0.659047 + 0.317380i
\(939\) 0 0
\(940\) 5.09448 0.166164
\(941\) −5.47972 6.87136i −0.178634 0.224000i 0.684451 0.729059i \(-0.260042\pi\)
−0.863085 + 0.505059i \(0.831471\pi\)
\(942\) 0 0
\(943\) −0.726401 3.18257i −0.0236549 0.103639i
\(944\) −6.95799 8.72505i −0.226463 0.283976i
\(945\) 0 0
\(946\) −1.21632 1.52521i −0.0395458 0.0495889i
\(947\) −11.4402 5.50930i −0.371756 0.179028i 0.238672 0.971100i \(-0.423288\pi\)
−0.610428 + 0.792072i \(0.709002\pi\)
\(948\) 0 0
\(949\) −43.7572 + 54.8698i −1.42042 + 1.78115i
\(950\) −21.2785 + 10.2472i −0.690365 + 0.332462i
\(951\) 0 0
\(952\) −3.71387 + 16.2715i −0.120367 + 0.527363i
\(953\) 49.0633 + 23.6277i 1.58932 + 0.765375i 0.999122 0.0418854i \(-0.0133364\pi\)
0.590195 + 0.807261i \(0.299051\pi\)
\(954\) 0 0
\(955\) 0.0467028 0.204618i 0.00151127 0.00662129i
\(956\) 14.3692 0.464732
\(957\) 0 0
\(958\) 2.14546 0.0693165
\(959\) −1.05400 + 4.61787i −0.0340354 + 0.149119i
\(960\) 0 0
\(961\) −8.55134 4.11811i −0.275850 0.132842i
\(962\) −11.3543 + 49.7463i −0.366076 + 1.60388i
\(963\) 0 0
\(964\) 8.29280 3.99360i 0.267093 0.128625i
\(965\) −3.18457 + 3.99332i −0.102515 + 0.128549i
\(966\) 0 0
\(967\) −44.6567 21.5055i −1.43606 0.691572i −0.455949 0.890006i \(-0.650700\pi\)
−0.980114 + 0.198434i \(0.936414\pi\)
\(968\) 5.64207 + 7.07493i 0.181343 + 0.227397i
\(969\) 0 0
\(970\) −1.17093 1.46830i −0.0375962 0.0471442i
\(971\) −6.13766 26.8909i −0.196967 0.862969i −0.972729 0.231944i \(-0.925492\pi\)
0.775762 0.631025i \(-0.217366\pi\)
\(972\) 0 0
\(973\) 17.1341 + 21.4855i 0.549295 + 0.688794i
\(974\) −21.7759 −0.697746
\(975\) 0 0
\(976\) −4.38454 2.11149i −0.140346 0.0675870i
\(977\) 27.7654 34.8167i 0.888294 1.11389i −0.104556 0.994519i \(-0.533342\pi\)
0.992850 0.119367i \(-0.0380864\pi\)
\(978\) 0 0
\(979\) −2.25527 + 1.08608i −0.0720786 + 0.0347112i
\(980\) −0.313678 1.37431i −0.0100201 0.0439008i
\(981\) 0 0
\(982\) 35.0145 + 16.8621i 1.11736 + 0.538091i
\(983\) −1.07817 + 0.519217i −0.0343882 + 0.0165605i −0.450999 0.892525i \(-0.648932\pi\)
0.416611 + 0.909085i \(0.363218\pi\)
\(984\) 0 0
\(985\) 13.2791 0.423106
\(986\) 6.15741 27.9685i 0.196092 0.890699i
\(987\) 0 0
\(988\) 6.31651 27.6744i 0.200955 0.880441i
\(989\) 1.02384 0.493058i 0.0325564 0.0156783i
\(990\) 0 0
\(991\) −7.79435 + 34.1493i −0.247596 + 1.08479i 0.686321 + 0.727298i \(0.259224\pi\)
−0.933917 + 0.357490i \(0.883633\pi\)
\(992\) 1.41596 + 6.20373i 0.0449568 + 0.196969i
\(993\) 0 0
\(994\) 11.8136 14.8138i 0.374706 0.469866i
\(995\) −2.09829 + 2.63118i −0.0665204 + 0.0834139i
\(996\) 0 0
\(997\) 19.4359 + 24.3719i 0.615543 + 0.771866i 0.987710 0.156300i \(-0.0499566\pi\)
−0.372167 + 0.928166i \(0.621385\pi\)
\(998\) −39.2992 −1.24400
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 522.2.k.h.199.1 12
3.2 odd 2 58.2.d.b.25.2 yes 12
12.11 even 2 464.2.u.h.257.1 12
29.7 even 7 inner 522.2.k.h.181.1 12
87.14 even 28 1682.2.b.i.1681.5 12
87.23 odd 14 1682.2.a.t.1.2 6
87.35 odd 14 1682.2.a.q.1.5 6
87.44 even 28 1682.2.b.i.1681.8 12
87.65 odd 14 58.2.d.b.7.2 12
348.239 even 14 464.2.u.h.65.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.b.7.2 12 87.65 odd 14
58.2.d.b.25.2 yes 12 3.2 odd 2
464.2.u.h.65.1 12 348.239 even 14
464.2.u.h.257.1 12 12.11 even 2
522.2.k.h.181.1 12 29.7 even 7 inner
522.2.k.h.199.1 12 1.1 even 1 trivial
1682.2.a.q.1.5 6 87.35 odd 14
1682.2.a.t.1.2 6 87.23 odd 14
1682.2.b.i.1681.5 12 87.14 even 28
1682.2.b.i.1681.8 12 87.44 even 28