Properties

Label 1682.2.b.i.1681.8
Level $1682$
Weight $2$
Character 1682.1681
Analytic conductor $13.431$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1681,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1681");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 30x^{10} + 341x^{8} + 1897x^{6} + 5456x^{4} + 7680x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1681.8
Root \(-1.74168i\) of defining polynomial
Character \(\chi\) \(=\) 1682.1681
Dual form 1682.2.b.i.1681.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.74168i q^{3} -1.00000 q^{4} +0.494698 q^{5} +1.74168 q^{6} +3.13840 q^{7} -1.00000i q^{8} -0.0334417 q^{9} +O(q^{10})\) \(q+1.00000i q^{2} -1.74168i q^{3} -1.00000 q^{4} +0.494698 q^{5} +1.74168 q^{6} +3.13840 q^{7} -1.00000i q^{8} -0.0334417 q^{9} +0.494698i q^{10} +1.39672i q^{11} +1.74168i q^{12} +5.71545 q^{13} +3.13840i q^{14} -0.861605i q^{15} +1.00000 q^{16} +5.31800i q^{17} -0.0334417i q^{18} +4.96656i q^{19} -0.494698 q^{20} -5.46607i q^{21} -1.39672 q^{22} -0.813609 q^{23} -1.74168 q^{24} -4.75527 q^{25} +5.71545i q^{26} -5.16679i q^{27} -3.13840 q^{28} +0.861605 q^{30} +6.36328i q^{31} +1.00000i q^{32} +2.43263 q^{33} -5.31800 q^{34} +1.55256 q^{35} +0.0334417 q^{36} -8.92766i q^{37} -4.96656 q^{38} -9.95448i q^{39} -0.494698i q^{40} +4.01226i q^{41} +5.46607 q^{42} -1.39672i q^{43} -1.39672i q^{44} -0.0165436 q^{45} -0.813609i q^{46} +10.2982i q^{47} -1.74168i q^{48} +2.84952 q^{49} -4.75527i q^{50} +9.26224 q^{51} -5.71545 q^{52} +4.24359 q^{53} +5.16679 q^{54} +0.690954i q^{55} -3.13840i q^{56} +8.65014 q^{57} +11.1598 q^{59} +0.861605i q^{60} +4.86648i q^{61} -6.36328 q^{62} -0.104953 q^{63} -1.00000 q^{64} +2.82742 q^{65} +2.43263i q^{66} -7.13840 q^{67} -5.31800i q^{68} +1.41705i q^{69} +1.55256i q^{70} -6.03736 q^{71} +0.0334417i q^{72} -12.2792i q^{73} +8.92766 q^{74} +8.28215i q^{75} -4.96656i q^{76} +4.38345i q^{77} +9.95448 q^{78} -9.40223i q^{79} +0.494698 q^{80} -9.09921 q^{81} -4.01226 q^{82} +12.7094 q^{83} +5.46607i q^{84} +2.63080i q^{85} +1.39672 q^{86} +1.39672 q^{88} +1.79217i q^{89} -0.0165436i q^{90} +17.9373 q^{91} +0.813609 q^{92} +11.0828 q^{93} -10.2982 q^{94} +2.45695i q^{95} +1.74168 q^{96} -3.79630i q^{97} +2.84952i q^{98} -0.0467086i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 4 q^{6} - 6 q^{7} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{4} - 4 q^{6} - 6 q^{7} - 24 q^{9} + 6 q^{13} + 12 q^{16} + 2 q^{22} - 28 q^{23} + 4 q^{24} + 8 q^{25} + 6 q^{28} + 54 q^{30} - 40 q^{33} + 12 q^{34} + 18 q^{35} + 24 q^{36} - 36 q^{38} + 20 q^{42} + 36 q^{45} + 2 q^{49} + 22 q^{51} - 6 q^{52} + 6 q^{53} + 46 q^{54} + 38 q^{57} + 38 q^{59} - 34 q^{62} + 66 q^{63} - 12 q^{64} + 22 q^{65} - 42 q^{67} + 18 q^{71} + 24 q^{74} + 20 q^{78} + 4 q^{81} - 30 q^{82} - 4 q^{83} - 2 q^{86} - 2 q^{88} + 44 q^{91} + 28 q^{92} - 2 q^{93} + 16 q^{94} - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1682\mathbb{Z}\right)^\times\).

\(n\) \(843\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) − 1.74168i − 1.00556i −0.864415 0.502779i \(-0.832311\pi\)
0.864415 0.502779i \(-0.167689\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0.494698 0.221236 0.110618 0.993863i \(-0.464717\pi\)
0.110618 + 0.993863i \(0.464717\pi\)
\(6\) 1.74168 0.711037
\(7\) 3.13840 1.18620 0.593101 0.805128i \(-0.297904\pi\)
0.593101 + 0.805128i \(0.297904\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −0.0334417 −0.0111472
\(10\) 0.494698i 0.156437i
\(11\) 1.39672i 0.421126i 0.977580 + 0.210563i \(0.0675297\pi\)
−0.977580 + 0.210563i \(0.932470\pi\)
\(12\) 1.74168i 0.502779i
\(13\) 5.71545 1.58518 0.792591 0.609754i \(-0.208732\pi\)
0.792591 + 0.609754i \(0.208732\pi\)
\(14\) 3.13840i 0.838771i
\(15\) − 0.861605i − 0.222465i
\(16\) 1.00000 0.250000
\(17\) 5.31800i 1.28980i 0.764265 + 0.644902i \(0.223102\pi\)
−0.764265 + 0.644902i \(0.776898\pi\)
\(18\) − 0.0334417i − 0.00788229i
\(19\) 4.96656i 1.13941i 0.821850 + 0.569703i \(0.192942\pi\)
−0.821850 + 0.569703i \(0.807058\pi\)
\(20\) −0.494698 −0.110618
\(21\) − 5.46607i − 1.19279i
\(22\) −1.39672 −0.297781
\(23\) −0.813609 −0.169649 −0.0848246 0.996396i \(-0.527033\pi\)
−0.0848246 + 0.996396i \(0.527033\pi\)
\(24\) −1.74168 −0.355519
\(25\) −4.75527 −0.951055
\(26\) 5.71545i 1.12089i
\(27\) − 5.16679i − 0.994349i
\(28\) −3.13840 −0.593101
\(29\) 0 0
\(30\) 0.861605 0.157307
\(31\) 6.36328i 1.14288i 0.820645 + 0.571439i \(0.193615\pi\)
−0.820645 + 0.571439i \(0.806385\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.43263 0.423467
\(34\) −5.31800 −0.912029
\(35\) 1.55256 0.262430
\(36\) 0.0334417 0.00557362
\(37\) − 8.92766i − 1.46770i −0.679313 0.733849i \(-0.737722\pi\)
0.679313 0.733849i \(-0.262278\pi\)
\(38\) −4.96656 −0.805682
\(39\) − 9.95448i − 1.59399i
\(40\) − 0.494698i − 0.0782187i
\(41\) 4.01226i 0.626610i 0.949652 + 0.313305i \(0.101436\pi\)
−0.949652 + 0.313305i \(0.898564\pi\)
\(42\) 5.46607 0.843433
\(43\) − 1.39672i − 0.212997i −0.994313 0.106499i \(-0.966036\pi\)
0.994313 0.106499i \(-0.0339640\pi\)
\(44\) − 1.39672i − 0.210563i
\(45\) −0.0165436 −0.00246617
\(46\) − 0.813609i − 0.119960i
\(47\) 10.2982i 1.50214i 0.660223 + 0.751070i \(0.270462\pi\)
−0.660223 + 0.751070i \(0.729538\pi\)
\(48\) − 1.74168i − 0.251390i
\(49\) 2.84952 0.407075
\(50\) − 4.75527i − 0.672497i
\(51\) 9.26224 1.29697
\(52\) −5.71545 −0.792591
\(53\) 4.24359 0.582902 0.291451 0.956586i \(-0.405862\pi\)
0.291451 + 0.956586i \(0.405862\pi\)
\(54\) 5.16679 0.703111
\(55\) 0.690954i 0.0931682i
\(56\) − 3.13840i − 0.419386i
\(57\) 8.65014 1.14574
\(58\) 0 0
\(59\) 11.1598 1.45288 0.726438 0.687232i \(-0.241174\pi\)
0.726438 + 0.687232i \(0.241174\pi\)
\(60\) 0.861605i 0.111233i
\(61\) 4.86648i 0.623089i 0.950232 + 0.311544i \(0.100846\pi\)
−0.950232 + 0.311544i \(0.899154\pi\)
\(62\) −6.36328 −0.808137
\(63\) −0.104953 −0.0132229
\(64\) −1.00000 −0.125000
\(65\) 2.82742 0.350699
\(66\) 2.43263i 0.299436i
\(67\) −7.13840 −0.872094 −0.436047 0.899924i \(-0.643622\pi\)
−0.436047 + 0.899924i \(0.643622\pi\)
\(68\) − 5.31800i − 0.644902i
\(69\) 1.41705i 0.170592i
\(70\) 1.55256i 0.185566i
\(71\) −6.03736 −0.716502 −0.358251 0.933625i \(-0.616627\pi\)
−0.358251 + 0.933625i \(0.616627\pi\)
\(72\) 0.0334417i 0.00394114i
\(73\) − 12.2792i − 1.43717i −0.695439 0.718585i \(-0.744790\pi\)
0.695439 0.718585i \(-0.255210\pi\)
\(74\) 8.92766 1.03782
\(75\) 8.28215i 0.956341i
\(76\) − 4.96656i − 0.569703i
\(77\) 4.38345i 0.499541i
\(78\) 9.95448 1.12712
\(79\) − 9.40223i − 1.05783i −0.848674 0.528917i \(-0.822598\pi\)
0.848674 0.528917i \(-0.177402\pi\)
\(80\) 0.494698 0.0553089
\(81\) −9.09921 −1.01102
\(82\) −4.01226 −0.443080
\(83\) 12.7094 1.39504 0.697520 0.716565i \(-0.254287\pi\)
0.697520 + 0.716565i \(0.254287\pi\)
\(84\) 5.46607i 0.596397i
\(85\) 2.63080i 0.285351i
\(86\) 1.39672 0.150612
\(87\) 0 0
\(88\) 1.39672 0.148891
\(89\) 1.79217i 0.189970i 0.995479 + 0.0949849i \(0.0302803\pi\)
−0.995479 + 0.0949849i \(0.969720\pi\)
\(90\) − 0.0165436i − 0.00174384i
\(91\) 17.9373 1.88034
\(92\) 0.813609 0.0848246
\(93\) 11.0828 1.14923
\(94\) −10.2982 −1.06217
\(95\) 2.45695i 0.252078i
\(96\) 1.74168 0.177759
\(97\) − 3.79630i − 0.385456i −0.981252 0.192728i \(-0.938267\pi\)
0.981252 0.192728i \(-0.0617334\pi\)
\(98\) 2.84952i 0.287845i
\(99\) − 0.0467086i − 0.00469439i
\(100\) 4.75527 0.475527
\(101\) − 1.22182i − 0.121576i −0.998151 0.0607879i \(-0.980639\pi\)
0.998151 0.0607879i \(-0.0193613\pi\)
\(102\) 9.26224i 0.917098i
\(103\) 1.80814 0.178161 0.0890807 0.996024i \(-0.471607\pi\)
0.0890807 + 0.996024i \(0.471607\pi\)
\(104\) − 5.71545i − 0.560446i
\(105\) − 2.70406i − 0.263889i
\(106\) 4.24359i 0.412174i
\(107\) 4.15063 0.401257 0.200628 0.979667i \(-0.435702\pi\)
0.200628 + 0.979667i \(0.435702\pi\)
\(108\) 5.16679i 0.497174i
\(109\) −14.5046 −1.38929 −0.694644 0.719354i \(-0.744438\pi\)
−0.694644 + 0.719354i \(0.744438\pi\)
\(110\) −0.690954 −0.0658798
\(111\) −15.5491 −1.47586
\(112\) 3.13840 0.296550
\(113\) − 16.6834i − 1.56944i −0.619851 0.784720i \(-0.712807\pi\)
0.619851 0.784720i \(-0.287193\pi\)
\(114\) 8.65014i 0.810160i
\(115\) −0.402491 −0.0375325
\(116\) 0 0
\(117\) −0.191135 −0.0176704
\(118\) 11.1598i 1.02734i
\(119\) 16.6900i 1.52997i
\(120\) −0.861605 −0.0786534
\(121\) 9.04918 0.822653
\(122\) −4.86648 −0.440590
\(123\) 6.98807 0.630093
\(124\) − 6.36328i − 0.571439i
\(125\) −4.82592 −0.431643
\(126\) − 0.104953i − 0.00934998i
\(127\) − 12.6929i − 1.12631i −0.826351 0.563155i \(-0.809587\pi\)
0.826351 0.563155i \(-0.190413\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −2.43263 −0.214181
\(130\) 2.82742i 0.247982i
\(131\) 14.7961i 1.29274i 0.763025 + 0.646369i \(0.223713\pi\)
−0.763025 + 0.646369i \(0.776287\pi\)
\(132\) −2.43263 −0.211733
\(133\) 15.5870i 1.35157i
\(134\) − 7.13840i − 0.616663i
\(135\) − 2.55600i − 0.219986i
\(136\) 5.31800 0.456014
\(137\) − 1.50925i − 0.128944i −0.997920 0.0644721i \(-0.979464\pi\)
0.997920 0.0644721i \(-0.0205363\pi\)
\(138\) −1.41705 −0.120627
\(139\) 8.75639 0.742707 0.371353 0.928492i \(-0.378894\pi\)
0.371353 + 0.928492i \(0.378894\pi\)
\(140\) −1.55256 −0.131215
\(141\) 17.9361 1.51049
\(142\) − 6.03736i − 0.506644i
\(143\) 7.98287i 0.667561i
\(144\) −0.0334417 −0.00278681
\(145\) 0 0
\(146\) 12.2792 1.01623
\(147\) − 4.96295i − 0.409337i
\(148\) 8.92766i 0.733849i
\(149\) 4.74072 0.388375 0.194187 0.980964i \(-0.437793\pi\)
0.194187 + 0.980964i \(0.437793\pi\)
\(150\) −8.28215 −0.676235
\(151\) 6.49415 0.528486 0.264243 0.964456i \(-0.414878\pi\)
0.264243 + 0.964456i \(0.414878\pi\)
\(152\) 4.96656 0.402841
\(153\) − 0.177843i − 0.0143777i
\(154\) −4.38345 −0.353228
\(155\) 3.14790i 0.252846i
\(156\) 9.95448i 0.796996i
\(157\) − 6.56139i − 0.523656i −0.965115 0.261828i \(-0.915675\pi\)
0.965115 0.261828i \(-0.0843253\pi\)
\(158\) 9.40223 0.748002
\(159\) − 7.39097i − 0.586142i
\(160\) 0.494698i 0.0391093i
\(161\) −2.55343 −0.201238
\(162\) − 9.09921i − 0.714901i
\(163\) − 5.65808i − 0.443175i −0.975140 0.221588i \(-0.928876\pi\)
0.975140 0.221588i \(-0.0711239\pi\)
\(164\) − 4.01226i − 0.313305i
\(165\) 1.20342 0.0936860
\(166\) 12.7094i 0.986442i
\(167\) 12.0891 0.935483 0.467742 0.883865i \(-0.345068\pi\)
0.467742 + 0.883865i \(0.345068\pi\)
\(168\) −5.46607 −0.421717
\(169\) 19.6664 1.51280
\(170\) −2.63080 −0.201773
\(171\) − 0.166090i − 0.0127012i
\(172\) 1.39672i 0.106499i
\(173\) −11.6405 −0.885008 −0.442504 0.896767i \(-0.645910\pi\)
−0.442504 + 0.896767i \(0.645910\pi\)
\(174\) 0 0
\(175\) −14.9239 −1.12814
\(176\) 1.39672i 0.105282i
\(177\) − 19.4367i − 1.46095i
\(178\) −1.79217 −0.134329
\(179\) 18.3551 1.37193 0.685963 0.727637i \(-0.259381\pi\)
0.685963 + 0.727637i \(0.259381\pi\)
\(180\) 0.0165436 0.00123308
\(181\) −9.89404 −0.735418 −0.367709 0.929941i \(-0.619858\pi\)
−0.367709 + 0.929941i \(0.619858\pi\)
\(182\) 17.9373i 1.32960i
\(183\) 8.47584 0.626552
\(184\) 0.813609i 0.0599801i
\(185\) − 4.41650i − 0.324707i
\(186\) 11.0828i 0.812629i
\(187\) −7.42774 −0.543170
\(188\) − 10.2982i − 0.751070i
\(189\) − 16.2154i − 1.17950i
\(190\) −2.45695 −0.178246
\(191\) 0.424259i 0.0306983i 0.999882 + 0.0153492i \(0.00488598\pi\)
−0.999882 + 0.0153492i \(0.995114\pi\)
\(192\) 1.74168i 0.125695i
\(193\) − 10.3248i − 0.743193i −0.928394 0.371597i \(-0.878810\pi\)
0.928394 0.371597i \(-0.121190\pi\)
\(194\) 3.79630 0.272558
\(195\) − 4.92446i − 0.352648i
\(196\) −2.84952 −0.203537
\(197\) −26.8428 −1.91247 −0.956234 0.292604i \(-0.905478\pi\)
−0.956234 + 0.292604i \(0.905478\pi\)
\(198\) 0.0467086 0.00331944
\(199\) −6.80294 −0.482248 −0.241124 0.970494i \(-0.577516\pi\)
−0.241124 + 0.970494i \(0.577516\pi\)
\(200\) 4.75527i 0.336249i
\(201\) 12.4328i 0.876941i
\(202\) 1.22182 0.0859671
\(203\) 0 0
\(204\) −9.26224 −0.648486
\(205\) 1.98486i 0.138629i
\(206\) 1.80814i 0.125979i
\(207\) 0.0272085 0.00189112
\(208\) 5.71545 0.396295
\(209\) −6.93688 −0.479834
\(210\) 2.70406 0.186598
\(211\) − 5.84061i − 0.402084i −0.979583 0.201042i \(-0.935567\pi\)
0.979583 0.201042i \(-0.0644328\pi\)
\(212\) −4.24359 −0.291451
\(213\) 10.5151i 0.720485i
\(214\) 4.15063i 0.283731i
\(215\) − 0.690954i − 0.0471226i
\(216\) −5.16679 −0.351555
\(217\) 19.9705i 1.35568i
\(218\) − 14.5046i − 0.982374i
\(219\) −21.3864 −1.44516
\(220\) − 0.690954i − 0.0465841i
\(221\) 30.3948i 2.04457i
\(222\) − 15.5491i − 1.04359i
\(223\) −21.9361 −1.46895 −0.734474 0.678637i \(-0.762571\pi\)
−0.734474 + 0.678637i \(0.762571\pi\)
\(224\) 3.13840i 0.209693i
\(225\) 0.159025 0.0106016
\(226\) 16.6834 1.10976
\(227\) −2.15542 −0.143060 −0.0715302 0.997438i \(-0.522788\pi\)
−0.0715302 + 0.997438i \(0.522788\pi\)
\(228\) −8.65014 −0.572870
\(229\) − 9.29190i − 0.614026i −0.951705 0.307013i \(-0.900670\pi\)
0.951705 0.307013i \(-0.0993296\pi\)
\(230\) − 0.402491i − 0.0265395i
\(231\) 7.63456 0.502317
\(232\) 0 0
\(233\) −11.7848 −0.772045 −0.386022 0.922489i \(-0.626151\pi\)
−0.386022 + 0.922489i \(0.626151\pi\)
\(234\) − 0.191135i − 0.0124949i
\(235\) 5.09448i 0.332327i
\(236\) −11.1598 −0.726438
\(237\) −16.3757 −1.06371
\(238\) −16.6900 −1.08185
\(239\) −14.3692 −0.929465 −0.464732 0.885451i \(-0.653849\pi\)
−0.464732 + 0.885451i \(0.653849\pi\)
\(240\) − 0.861605i − 0.0556164i
\(241\) 9.20432 0.592902 0.296451 0.955048i \(-0.404197\pi\)
0.296451 + 0.955048i \(0.404197\pi\)
\(242\) 9.04918i 0.581703i
\(243\) 0.347520i 0.0222934i
\(244\) − 4.86648i − 0.311544i
\(245\) 1.40965 0.0900595
\(246\) 6.98807i 0.445543i
\(247\) 28.3861i 1.80617i
\(248\) 6.36328 0.404068
\(249\) − 22.1357i − 1.40279i
\(250\) − 4.82592i − 0.305218i
\(251\) 5.91599i 0.373414i 0.982416 + 0.186707i \(0.0597815\pi\)
−0.982416 + 0.186707i \(0.940219\pi\)
\(252\) 0.104953 0.00661144
\(253\) − 1.13638i − 0.0714437i
\(254\) 12.6929 0.796421
\(255\) 4.58201 0.286937
\(256\) 1.00000 0.0625000
\(257\) −26.7213 −1.66683 −0.833413 0.552650i \(-0.813617\pi\)
−0.833413 + 0.552650i \(0.813617\pi\)
\(258\) − 2.43263i − 0.151449i
\(259\) − 28.0185i − 1.74099i
\(260\) −2.82742 −0.175349
\(261\) 0 0
\(262\) −14.7961 −0.914104
\(263\) − 23.3544i − 1.44009i −0.693926 0.720047i \(-0.744120\pi\)
0.693926 0.720047i \(-0.255880\pi\)
\(264\) − 2.43263i − 0.149718i
\(265\) 2.09930 0.128959
\(266\) −15.5870 −0.955702
\(267\) 3.12138 0.191026
\(268\) 7.13840 0.436047
\(269\) − 15.6093i − 0.951714i −0.879523 0.475857i \(-0.842138\pi\)
0.879523 0.475857i \(-0.157862\pi\)
\(270\) 2.55600 0.155553
\(271\) − 0.219679i − 0.0133446i −0.999978 0.00667229i \(-0.997876\pi\)
0.999978 0.00667229i \(-0.00212387\pi\)
\(272\) 5.31800i 0.322451i
\(273\) − 31.2411i − 1.89080i
\(274\) 1.50925 0.0911773
\(275\) − 6.64177i − 0.400514i
\(276\) − 1.41705i − 0.0852961i
\(277\) 3.75191 0.225431 0.112715 0.993627i \(-0.464045\pi\)
0.112715 + 0.993627i \(0.464045\pi\)
\(278\) 8.75639i 0.525173i
\(279\) − 0.212799i − 0.0127399i
\(280\) − 1.55256i − 0.0927831i
\(281\) −24.4511 −1.45863 −0.729316 0.684177i \(-0.760161\pi\)
−0.729316 + 0.684177i \(0.760161\pi\)
\(282\) 17.9361i 1.06808i
\(283\) −7.59751 −0.451625 −0.225813 0.974171i \(-0.572504\pi\)
−0.225813 + 0.974171i \(0.572504\pi\)
\(284\) 6.03736 0.358251
\(285\) 4.27921 0.253479
\(286\) −7.98287 −0.472037
\(287\) 12.5921i 0.743286i
\(288\) − 0.0334417i − 0.00197057i
\(289\) −11.2811 −0.663593
\(290\) 0 0
\(291\) −6.61193 −0.387598
\(292\) 12.2792i 0.718585i
\(293\) − 25.7223i − 1.50271i −0.659896 0.751357i \(-0.729400\pi\)
0.659896 0.751357i \(-0.270600\pi\)
\(294\) 4.96295 0.289445
\(295\) 5.52071 0.321428
\(296\) −8.92766 −0.518910
\(297\) 7.21654 0.418746
\(298\) 4.74072i 0.274623i
\(299\) −4.65014 −0.268925
\(300\) − 8.28215i − 0.478170i
\(301\) − 4.38345i − 0.252658i
\(302\) 6.49415i 0.373696i
\(303\) −2.12802 −0.122252
\(304\) 4.96656i 0.284852i
\(305\) 2.40744i 0.137849i
\(306\) 0.177843 0.0101666
\(307\) 1.81399i 0.103530i 0.998659 + 0.0517649i \(0.0164847\pi\)
−0.998659 + 0.0517649i \(0.983515\pi\)
\(308\) − 4.38345i − 0.249770i
\(309\) − 3.14920i − 0.179152i
\(310\) −3.14790 −0.178789
\(311\) 19.4100i 1.10064i 0.834953 + 0.550321i \(0.185495\pi\)
−0.834953 + 0.550321i \(0.814505\pi\)
\(312\) −9.95448 −0.563561
\(313\) 33.8847 1.91528 0.957639 0.287972i \(-0.0929811\pi\)
0.957639 + 0.287972i \(0.0929811\pi\)
\(314\) 6.56139 0.370281
\(315\) −0.0519202 −0.00292537
\(316\) 9.40223i 0.528917i
\(317\) − 5.49761i − 0.308777i −0.988010 0.154388i \(-0.950659\pi\)
0.988010 0.154388i \(-0.0493407\pi\)
\(318\) 7.39097 0.414465
\(319\) 0 0
\(320\) −0.494698 −0.0276545
\(321\) − 7.22906i − 0.403487i
\(322\) − 2.55343i − 0.142297i
\(323\) −26.4121 −1.46961
\(324\) 9.09921 0.505511
\(325\) −27.1785 −1.50759
\(326\) 5.65808 0.313372
\(327\) 25.2623i 1.39701i
\(328\) 4.01226 0.221540
\(329\) 32.3197i 1.78184i
\(330\) 1.20342i 0.0662460i
\(331\) 13.6463i 0.750067i 0.927011 + 0.375034i \(0.122369\pi\)
−0.927011 + 0.375034i \(0.877631\pi\)
\(332\) −12.7094 −0.697520
\(333\) 0.298556i 0.0163608i
\(334\) 12.0891i 0.661487i
\(335\) −3.53135 −0.192938
\(336\) − 5.46607i − 0.298199i
\(337\) − 22.5673i − 1.22932i −0.788792 0.614660i \(-0.789293\pi\)
0.788792 0.614660i \(-0.210707\pi\)
\(338\) 19.6664i 1.06971i
\(339\) −29.0571 −1.57816
\(340\) − 2.63080i − 0.142675i
\(341\) −8.88770 −0.481296
\(342\) 0.166090 0.00898113
\(343\) −13.0258 −0.703329
\(344\) −1.39672 −0.0753059
\(345\) 0.701010i 0.0377411i
\(346\) − 11.6405i − 0.625795i
\(347\) 2.97305 0.159602 0.0798008 0.996811i \(-0.474572\pi\)
0.0798008 + 0.996811i \(0.474572\pi\)
\(348\) 0 0
\(349\) −5.73913 −0.307208 −0.153604 0.988132i \(-0.549088\pi\)
−0.153604 + 0.988132i \(0.549088\pi\)
\(350\) − 14.9239i − 0.797717i
\(351\) − 29.5305i − 1.57622i
\(352\) −1.39672 −0.0744453
\(353\) 6.47216 0.344478 0.172239 0.985055i \(-0.444900\pi\)
0.172239 + 0.985055i \(0.444900\pi\)
\(354\) 19.4367 1.03305
\(355\) −2.98667 −0.158516
\(356\) − 1.79217i − 0.0949849i
\(357\) 29.0686 1.53847
\(358\) 18.3551i 0.970098i
\(359\) 10.7414i 0.566911i 0.958985 + 0.283455i \(0.0914808\pi\)
−0.958985 + 0.283455i \(0.908519\pi\)
\(360\) 0.0165436i 0 0.000871922i
\(361\) −5.66670 −0.298247
\(362\) − 9.89404i − 0.520019i
\(363\) − 15.7608i − 0.827225i
\(364\) −17.9373 −0.940172
\(365\) − 6.07449i − 0.317954i
\(366\) 8.47584i 0.443039i
\(367\) 18.9393i 0.988625i 0.869284 + 0.494313i \(0.164580\pi\)
−0.869284 + 0.494313i \(0.835420\pi\)
\(368\) −0.813609 −0.0424123
\(369\) − 0.134177i − 0.00698498i
\(370\) 4.41650 0.229603
\(371\) 13.3181 0.691440
\(372\) −11.0828 −0.574615
\(373\) 2.43402 0.126029 0.0630145 0.998013i \(-0.479929\pi\)
0.0630145 + 0.998013i \(0.479929\pi\)
\(374\) − 7.42774i − 0.384079i
\(375\) 8.40519i 0.434042i
\(376\) 10.2982 0.531087
\(377\) 0 0
\(378\) 16.2154 0.834031
\(379\) − 17.1415i − 0.880498i −0.897876 0.440249i \(-0.854890\pi\)
0.897876 0.440249i \(-0.145110\pi\)
\(380\) − 2.45695i − 0.126039i
\(381\) −22.1069 −1.13257
\(382\) −0.424259 −0.0217070
\(383\) 23.7774 1.21497 0.607483 0.794332i \(-0.292179\pi\)
0.607483 + 0.794332i \(0.292179\pi\)
\(384\) −1.74168 −0.0888796
\(385\) 2.16849i 0.110516i
\(386\) 10.3248 0.525517
\(387\) 0.0467086i 0.00237433i
\(388\) 3.79630i 0.192728i
\(389\) 11.5272i 0.584453i 0.956349 + 0.292227i \(0.0943962\pi\)
−0.956349 + 0.292227i \(0.905604\pi\)
\(390\) 4.92446 0.249360
\(391\) − 4.32677i − 0.218814i
\(392\) − 2.84952i − 0.143923i
\(393\) 25.7700 1.29992
\(394\) − 26.8428i − 1.35232i
\(395\) − 4.65127i − 0.234031i
\(396\) 0.0467086i 0.00234720i
\(397\) 28.9833 1.45463 0.727316 0.686303i \(-0.240767\pi\)
0.727316 + 0.686303i \(0.240767\pi\)
\(398\) − 6.80294i − 0.341001i
\(399\) 27.1476 1.35908
\(400\) −4.75527 −0.237764
\(401\) 10.3297 0.515838 0.257919 0.966167i \(-0.416963\pi\)
0.257919 + 0.966167i \(0.416963\pi\)
\(402\) −12.4328 −0.620091
\(403\) 36.3690i 1.81167i
\(404\) 1.22182i 0.0607879i
\(405\) −4.50136 −0.223674
\(406\) 0 0
\(407\) 12.4694 0.618086
\(408\) − 9.26224i − 0.458549i
\(409\) 9.96171i 0.492575i 0.969197 + 0.246287i \(0.0792107\pi\)
−0.969197 + 0.246287i \(0.920789\pi\)
\(410\) −1.98486 −0.0980252
\(411\) −2.62863 −0.129661
\(412\) −1.80814 −0.0890807
\(413\) 35.0237 1.72340
\(414\) 0.0272085i 0.00133722i
\(415\) 6.28733 0.308633
\(416\) 5.71545i 0.280223i
\(417\) − 15.2508i − 0.746835i
\(418\) − 6.93688i − 0.339294i
\(419\) −28.3523 −1.38510 −0.692549 0.721371i \(-0.743512\pi\)
−0.692549 + 0.721371i \(0.743512\pi\)
\(420\) 2.70406i 0.131944i
\(421\) 9.51999i 0.463976i 0.972719 + 0.231988i \(0.0745230\pi\)
−0.972719 + 0.231988i \(0.925477\pi\)
\(422\) 5.84061 0.284317
\(423\) − 0.344388i − 0.0167447i
\(424\) − 4.24359i − 0.206087i
\(425\) − 25.2885i − 1.22667i
\(426\) −10.5151 −0.509460
\(427\) 15.2729i 0.739109i
\(428\) −4.15063 −0.200628
\(429\) 13.9036 0.671272
\(430\) 0.690954 0.0333207
\(431\) −18.9749 −0.913990 −0.456995 0.889469i \(-0.651074\pi\)
−0.456995 + 0.889469i \(0.651074\pi\)
\(432\) − 5.16679i − 0.248587i
\(433\) − 28.3148i − 1.36072i −0.732877 0.680361i \(-0.761823\pi\)
0.732877 0.680361i \(-0.238177\pi\)
\(434\) −19.9705 −0.958613
\(435\) 0 0
\(436\) 14.5046 0.694644
\(437\) − 4.04084i − 0.193299i
\(438\) − 21.3864i − 1.02188i
\(439\) 19.8958 0.949577 0.474788 0.880100i \(-0.342525\pi\)
0.474788 + 0.880100i \(0.342525\pi\)
\(440\) 0.690954 0.0329399
\(441\) −0.0952930 −0.00453776
\(442\) −30.3948 −1.44573
\(443\) 35.5600i 1.68951i 0.535157 + 0.844753i \(0.320253\pi\)
−0.535157 + 0.844753i \(0.679747\pi\)
\(444\) 15.5491 0.737928
\(445\) 0.886584i 0.0420281i
\(446\) − 21.9361i − 1.03870i
\(447\) − 8.25681i − 0.390534i
\(448\) −3.13840 −0.148275
\(449\) 10.8511i 0.512095i 0.966664 + 0.256048i \(0.0824204\pi\)
−0.966664 + 0.256048i \(0.917580\pi\)
\(450\) 0.159025i 0.00749649i
\(451\) −5.60400 −0.263882
\(452\) 16.6834i 0.784720i
\(453\) − 11.3107i − 0.531424i
\(454\) − 2.15542i − 0.101159i
\(455\) 8.87357 0.416000
\(456\) − 8.65014i − 0.405080i
\(457\) −32.3358 −1.51261 −0.756304 0.654221i \(-0.772997\pi\)
−0.756304 + 0.654221i \(0.772997\pi\)
\(458\) 9.29190 0.434182
\(459\) 27.4770 1.28251
\(460\) 0.402491 0.0187662
\(461\) − 25.4047i − 1.18321i −0.806227 0.591607i \(-0.798494\pi\)
0.806227 0.591607i \(-0.201506\pi\)
\(462\) 7.63456i 0.355192i
\(463\) −3.22072 −0.149680 −0.0748398 0.997196i \(-0.523845\pi\)
−0.0748398 + 0.997196i \(0.523845\pi\)
\(464\) 0 0
\(465\) 5.48263 0.254251
\(466\) − 11.7848i − 0.545918i
\(467\) 22.8565i 1.05767i 0.848724 + 0.528836i \(0.177371\pi\)
−0.848724 + 0.528836i \(0.822629\pi\)
\(468\) 0.191135 0.00883520
\(469\) −22.4031 −1.03448
\(470\) −5.09448 −0.234991
\(471\) −11.4278 −0.526567
\(472\) − 11.1598i − 0.513669i
\(473\) 1.95082 0.0896987
\(474\) − 16.3757i − 0.752159i
\(475\) − 23.6173i − 1.08364i
\(476\) − 16.6900i − 0.764984i
\(477\) −0.141913 −0.00649775
\(478\) − 14.3692i − 0.657231i
\(479\) − 2.14546i − 0.0980284i −0.998798 0.0490142i \(-0.984392\pi\)
0.998798 0.0490142i \(-0.0156080\pi\)
\(480\) 0.861605 0.0393267
\(481\) − 51.0256i − 2.32657i
\(482\) 9.20432i 0.419245i
\(483\) 4.44725i 0.202357i
\(484\) −9.04918 −0.411326
\(485\) − 1.87802i − 0.0852766i
\(486\) −0.347520 −0.0157638
\(487\) 21.7759 0.986761 0.493381 0.869814i \(-0.335761\pi\)
0.493381 + 0.869814i \(0.335761\pi\)
\(488\) 4.86648 0.220295
\(489\) −9.85456 −0.445639
\(490\) 1.40965i 0.0636817i
\(491\) 38.8631i 1.75387i 0.480610 + 0.876935i \(0.340415\pi\)
−0.480610 + 0.876935i \(0.659585\pi\)
\(492\) −6.98807 −0.315047
\(493\) 0 0
\(494\) −28.3861 −1.27715
\(495\) − 0.0231067i − 0.00103857i
\(496\) 6.36328i 0.285720i
\(497\) −18.9476 −0.849916
\(498\) 22.1357 0.991925
\(499\) −39.2992 −1.75928 −0.879638 0.475644i \(-0.842215\pi\)
−0.879638 + 0.475644i \(0.842215\pi\)
\(500\) 4.82592 0.215822
\(501\) − 21.0553i − 0.940683i
\(502\) −5.91599 −0.264043
\(503\) − 28.0514i − 1.25075i −0.780324 0.625375i \(-0.784946\pi\)
0.780324 0.625375i \(-0.215054\pi\)
\(504\) 0.104953i 0.00467499i
\(505\) − 0.604433i − 0.0268969i
\(506\) 1.13638 0.0505183
\(507\) − 34.2525i − 1.52121i
\(508\) 12.6929i 0.563155i
\(509\) 1.70457 0.0755535 0.0377768 0.999286i \(-0.487972\pi\)
0.0377768 + 0.999286i \(0.487972\pi\)
\(510\) 4.58201i 0.202895i
\(511\) − 38.5369i − 1.70477i
\(512\) 1.00000i 0.0441942i
\(513\) 25.6612 1.13297
\(514\) − 26.7213i − 1.17862i
\(515\) 0.894484 0.0394157
\(516\) 2.43263 0.107091
\(517\) −14.3836 −0.632590
\(518\) 28.0185 1.23106
\(519\) 20.2739i 0.889927i
\(520\) − 2.82742i − 0.123991i
\(521\) 21.0834 0.923678 0.461839 0.886964i \(-0.347190\pi\)
0.461839 + 0.886964i \(0.347190\pi\)
\(522\) 0 0
\(523\) −8.93606 −0.390747 −0.195373 0.980729i \(-0.562592\pi\)
−0.195373 + 0.980729i \(0.562592\pi\)
\(524\) − 14.7961i − 0.646369i
\(525\) 25.9927i 1.13441i
\(526\) 23.3544 1.01830
\(527\) −33.8399 −1.47409
\(528\) 2.43263 0.105867
\(529\) −22.3380 −0.971219
\(530\) 2.09930i 0.0911877i
\(531\) −0.373201 −0.0161956
\(532\) − 15.5870i − 0.675783i
\(533\) 22.9319i 0.993291i
\(534\) 3.12138i 0.135076i
\(535\) 2.05331 0.0887723
\(536\) 7.13840i 0.308332i
\(537\) − 31.9687i − 1.37955i
\(538\) 15.6093 0.672964
\(539\) 3.97998i 0.171430i
\(540\) 2.55600i 0.109993i
\(541\) − 11.9679i − 0.514541i −0.966339 0.257271i \(-0.917177\pi\)
0.966339 0.257271i \(-0.0828232\pi\)
\(542\) 0.219679 0.00943604
\(543\) 17.2322i 0.739506i
\(544\) −5.31800 −0.228007
\(545\) −7.17539 −0.307360
\(546\) 31.2411 1.33699
\(547\) −24.1219 −1.03138 −0.515689 0.856776i \(-0.672464\pi\)
−0.515689 + 0.856776i \(0.672464\pi\)
\(548\) 1.50925i 0.0644721i
\(549\) − 0.162743i − 0.00694572i
\(550\) 6.64177 0.283206
\(551\) 0 0
\(552\) 1.41705 0.0603134
\(553\) − 29.5079i − 1.25480i
\(554\) 3.75191i 0.159404i
\(555\) −7.69211 −0.326512
\(556\) −8.75639 −0.371353
\(557\) 18.2020 0.771243 0.385622 0.922657i \(-0.373987\pi\)
0.385622 + 0.922657i \(0.373987\pi\)
\(558\) 0.212799 0.00900849
\(559\) − 7.98287i − 0.337639i
\(560\) 1.55256 0.0656076
\(561\) 12.9367i 0.546189i
\(562\) − 24.4511i − 1.03141i
\(563\) 31.5149i 1.32820i 0.747646 + 0.664098i \(0.231184\pi\)
−0.747646 + 0.664098i \(0.768816\pi\)
\(564\) −17.9361 −0.755244
\(565\) − 8.25323i − 0.347216i
\(566\) − 7.59751i − 0.319347i
\(567\) −28.5569 −1.19928
\(568\) 6.03736i 0.253322i
\(569\) 28.4651i 1.19332i 0.802494 + 0.596660i \(0.203506\pi\)
−0.802494 + 0.596660i \(0.796494\pi\)
\(570\) 4.27921i 0.179236i
\(571\) −4.26294 −0.178399 −0.0891993 0.996014i \(-0.528431\pi\)
−0.0891993 + 0.996014i \(0.528431\pi\)
\(572\) − 7.98287i − 0.333781i
\(573\) 0.738923 0.0308690
\(574\) −12.5921 −0.525583
\(575\) 3.86893 0.161346
\(576\) 0.0334417 0.00139340
\(577\) − 22.5839i − 0.940179i −0.882619 0.470090i \(-0.844222\pi\)
0.882619 0.470090i \(-0.155778\pi\)
\(578\) − 11.2811i − 0.469231i
\(579\) −17.9824 −0.747324
\(580\) 0 0
\(581\) 39.8872 1.65480
\(582\) − 6.61193i − 0.274073i
\(583\) 5.92710i 0.245475i
\(584\) −12.2792 −0.508116
\(585\) −0.0945539 −0.00390932
\(586\) 25.7223 1.06258
\(587\) −33.5049 −1.38289 −0.691447 0.722427i \(-0.743026\pi\)
−0.691447 + 0.722427i \(0.743026\pi\)
\(588\) 4.96295i 0.204669i
\(589\) −31.6036 −1.30220
\(590\) 5.52071i 0.227284i
\(591\) 46.7514i 1.92310i
\(592\) − 8.92766i − 0.366925i
\(593\) −13.3565 −0.548488 −0.274244 0.961660i \(-0.588428\pi\)
−0.274244 + 0.961660i \(0.588428\pi\)
\(594\) 7.21654i 0.296098i
\(595\) 8.25650i 0.338484i
\(596\) −4.74072 −0.194187
\(597\) 11.8485i 0.484928i
\(598\) − 4.65014i − 0.190159i
\(599\) 0.915670i 0.0374133i 0.999825 + 0.0187066i \(0.00595485\pi\)
−0.999825 + 0.0187066i \(0.994045\pi\)
\(600\) 8.28215 0.338118
\(601\) 5.77455i 0.235549i 0.993040 + 0.117774i \(0.0375760\pi\)
−0.993040 + 0.117774i \(0.962424\pi\)
\(602\) 4.38345 0.178656
\(603\) 0.238720 0.00972144
\(604\) −6.49415 −0.264243
\(605\) 4.47661 0.182000
\(606\) − 2.12802i − 0.0864449i
\(607\) 14.9822i 0.608108i 0.952655 + 0.304054i \(0.0983403\pi\)
−0.952655 + 0.304054i \(0.901660\pi\)
\(608\) −4.96656 −0.201421
\(609\) 0 0
\(610\) −2.40744 −0.0974743
\(611\) 58.8586i 2.38116i
\(612\) 0.177843i 0.00718887i
\(613\) 23.9141 0.965881 0.482940 0.875653i \(-0.339569\pi\)
0.482940 + 0.875653i \(0.339569\pi\)
\(614\) −1.81399 −0.0732067
\(615\) 3.45699 0.139399
\(616\) 4.38345 0.176614
\(617\) 14.7070i 0.592080i 0.955176 + 0.296040i \(0.0956661\pi\)
−0.955176 + 0.296040i \(0.904334\pi\)
\(618\) 3.14920 0.126679
\(619\) − 22.9142i − 0.920998i −0.887660 0.460499i \(-0.847671\pi\)
0.887660 0.460499i \(-0.152329\pi\)
\(620\) − 3.14790i − 0.126423i
\(621\) 4.20375i 0.168691i
\(622\) −19.4100 −0.778271
\(623\) 5.62454i 0.225342i
\(624\) − 9.95448i − 0.398498i
\(625\) 21.3890 0.855560
\(626\) 33.8847i 1.35431i
\(627\) 12.0818i 0.482501i
\(628\) 6.56139i 0.261828i
\(629\) 47.4773 1.89304
\(630\) − 0.0519202i − 0.00206855i
\(631\) −13.1112 −0.521947 −0.260974 0.965346i \(-0.584044\pi\)
−0.260974 + 0.965346i \(0.584044\pi\)
\(632\) −9.40223 −0.374001
\(633\) −10.1725 −0.404319
\(634\) 5.49761 0.218338
\(635\) − 6.27914i − 0.249180i
\(636\) 7.39097i 0.293071i
\(637\) 16.2863 0.645287
\(638\) 0 0
\(639\) 0.201900 0.00798702
\(640\) − 0.494698i − 0.0195547i
\(641\) − 43.0960i − 1.70219i −0.525011 0.851096i \(-0.675939\pi\)
0.525011 0.851096i \(-0.324061\pi\)
\(642\) 7.22906 0.285308
\(643\) 8.64296 0.340845 0.170422 0.985371i \(-0.445487\pi\)
0.170422 + 0.985371i \(0.445487\pi\)
\(644\) 2.55343 0.100619
\(645\) −1.20342 −0.0473846
\(646\) − 26.4121i − 1.03917i
\(647\) 4.79078 0.188345 0.0941725 0.995556i \(-0.469979\pi\)
0.0941725 + 0.995556i \(0.469979\pi\)
\(648\) 9.09921i 0.357451i
\(649\) 15.5870i 0.611844i
\(650\) − 27.1785i − 1.06603i
\(651\) 34.7821 1.36322
\(652\) 5.65808i 0.221588i
\(653\) − 5.51910i − 0.215979i −0.994152 0.107990i \(-0.965559\pi\)
0.994152 0.107990i \(-0.0344413\pi\)
\(654\) −25.2623 −0.987835
\(655\) 7.31958i 0.286000i
\(656\) 4.01226i 0.156653i
\(657\) 0.410637i 0.0160205i
\(658\) −32.3197 −1.25995
\(659\) − 1.84337i − 0.0718075i −0.999355 0.0359037i \(-0.988569\pi\)
0.999355 0.0359037i \(-0.0114310\pi\)
\(660\) −1.20342 −0.0468430
\(661\) −26.0980 −1.01509 −0.507547 0.861624i \(-0.669448\pi\)
−0.507547 + 0.861624i \(0.669448\pi\)
\(662\) −13.6463 −0.530378
\(663\) 52.9379 2.05594
\(664\) − 12.7094i − 0.493221i
\(665\) 7.71087i 0.299015i
\(666\) −0.298556 −0.0115688
\(667\) 0 0
\(668\) −12.0891 −0.467742
\(669\) 38.2055i 1.47711i
\(670\) − 3.53135i − 0.136428i
\(671\) −6.79709 −0.262399
\(672\) 5.46607 0.210858
\(673\) −21.9315 −0.845396 −0.422698 0.906271i \(-0.638917\pi\)
−0.422698 + 0.906271i \(0.638917\pi\)
\(674\) 22.5673 0.869261
\(675\) 24.5695i 0.945680i
\(676\) −19.6664 −0.756400
\(677\) − 10.1655i − 0.390694i −0.980734 0.195347i \(-0.937417\pi\)
0.980734 0.195347i \(-0.0625832\pi\)
\(678\) − 29.0571i − 1.11593i
\(679\) − 11.9143i − 0.457228i
\(680\) 2.63080 0.100887
\(681\) 3.75405i 0.143856i
\(682\) − 8.88770i − 0.340327i
\(683\) 20.4869 0.783910 0.391955 0.919984i \(-0.371799\pi\)
0.391955 + 0.919984i \(0.371799\pi\)
\(684\) 0.166090i 0.00635062i
\(685\) − 0.746624i − 0.0285271i
\(686\) − 13.0258i − 0.497329i
\(687\) −16.1835 −0.617439
\(688\) − 1.39672i − 0.0532493i
\(689\) 24.2540 0.924006
\(690\) −0.701010 −0.0266870
\(691\) −30.8462 −1.17345 −0.586723 0.809788i \(-0.699582\pi\)
−0.586723 + 0.809788i \(0.699582\pi\)
\(692\) 11.6405 0.442504
\(693\) − 0.146590i − 0.00556850i
\(694\) 2.97305i 0.112855i
\(695\) 4.33177 0.164313
\(696\) 0 0
\(697\) −21.3372 −0.808204
\(698\) − 5.73913i − 0.217229i
\(699\) 20.5252i 0.776336i
\(700\) 14.9239 0.564071
\(701\) 20.6761 0.780927 0.390463 0.920619i \(-0.372315\pi\)
0.390463 + 0.920619i \(0.372315\pi\)
\(702\) 29.5305 1.11456
\(703\) 44.3397 1.67230
\(704\) − 1.39672i − 0.0526408i
\(705\) 8.87294 0.334174
\(706\) 6.47216i 0.243583i
\(707\) − 3.83456i − 0.144213i
\(708\) 19.4367i 0.730476i
\(709\) 45.0200 1.69076 0.845382 0.534163i \(-0.179373\pi\)
0.845382 + 0.534163i \(0.179373\pi\)
\(710\) − 2.98667i − 0.112088i
\(711\) 0.314427i 0.0117919i
\(712\) 1.79217 0.0671644
\(713\) − 5.17722i − 0.193888i
\(714\) 29.0686i 1.08786i
\(715\) 3.94911i 0.147688i
\(716\) −18.3551 −0.685963
\(717\) 25.0265i 0.934631i
\(718\) −10.7414 −0.400866
\(719\) −10.0777 −0.375834 −0.187917 0.982185i \(-0.560174\pi\)
−0.187917 + 0.982185i \(0.560174\pi\)
\(720\) −0.0165436 −0.000616542 0
\(721\) 5.67466 0.211335
\(722\) − 5.66670i − 0.210893i
\(723\) − 16.0310i − 0.596198i
\(724\) 9.89404 0.367709
\(725\) 0 0
\(726\) 15.7608 0.584937
\(727\) 22.4140i 0.831289i 0.909527 + 0.415644i \(0.136444\pi\)
−0.909527 + 0.415644i \(0.863556\pi\)
\(728\) − 17.9373i − 0.664802i
\(729\) −26.6924 −0.988606
\(730\) 6.07449 0.224827
\(731\) 7.42774 0.274725
\(732\) −8.47584 −0.313276
\(733\) − 3.94609i − 0.145752i −0.997341 0.0728760i \(-0.976782\pi\)
0.997341 0.0728760i \(-0.0232177\pi\)
\(734\) −18.9393 −0.699064
\(735\) − 2.45516i − 0.0905601i
\(736\) − 0.813609i − 0.0299900i
\(737\) − 9.97032i − 0.367261i
\(738\) 0.134177 0.00493912
\(739\) 6.20181i 0.228137i 0.993473 + 0.114069i \(0.0363884\pi\)
−0.993473 + 0.114069i \(0.963612\pi\)
\(740\) 4.41650i 0.162354i
\(741\) 49.4395 1.81620
\(742\) 13.3181i 0.488922i
\(743\) − 48.6919i − 1.78633i −0.449725 0.893167i \(-0.648478\pi\)
0.449725 0.893167i \(-0.351522\pi\)
\(744\) − 11.0828i − 0.406314i
\(745\) 2.34523 0.0859224
\(746\) 2.43402i 0.0891160i
\(747\) −0.425025 −0.0155508
\(748\) 7.42774 0.271585
\(749\) 13.0263 0.475971
\(750\) −8.40519 −0.306914
\(751\) − 26.3802i − 0.962626i −0.876549 0.481313i \(-0.840160\pi\)
0.876549 0.481313i \(-0.159840\pi\)
\(752\) 10.2982i 0.375535i
\(753\) 10.3037 0.375489
\(754\) 0 0
\(755\) 3.21264 0.116920
\(756\) 16.2154i 0.589749i
\(757\) 38.1907i 1.38806i 0.719944 + 0.694032i \(0.244168\pi\)
−0.719944 + 0.694032i \(0.755832\pi\)
\(758\) 17.1415 0.622606
\(759\) −1.97921 −0.0718408
\(760\) 2.45695 0.0891229
\(761\) 6.23834 0.226140 0.113070 0.993587i \(-0.463932\pi\)
0.113070 + 0.993587i \(0.463932\pi\)
\(762\) − 22.1069i − 0.800848i
\(763\) −45.5211 −1.64798
\(764\) − 0.424259i − 0.0153492i
\(765\) − 0.0879786i − 0.00318087i
\(766\) 23.7774i 0.859111i
\(767\) 63.7830 2.30307
\(768\) − 1.74168i − 0.0628474i
\(769\) 28.1561i 1.01534i 0.861553 + 0.507668i \(0.169492\pi\)
−0.861553 + 0.507668i \(0.830508\pi\)
\(770\) −2.16849 −0.0781468
\(771\) 46.5398i 1.67609i
\(772\) 10.3248i 0.371597i
\(773\) 35.0724i 1.26146i 0.776000 + 0.630732i \(0.217245\pi\)
−0.776000 + 0.630732i \(0.782755\pi\)
\(774\) −0.0467086 −0.00167891
\(775\) − 30.2591i − 1.08694i
\(776\) −3.79630 −0.136279
\(777\) −48.7992 −1.75066
\(778\) −11.5272 −0.413271
\(779\) −19.9271 −0.713964
\(780\) 4.92446i 0.176324i
\(781\) − 8.43248i − 0.301738i
\(782\) 4.32677 0.154725
\(783\) 0 0
\(784\) 2.84952 0.101769
\(785\) − 3.24591i − 0.115851i
\(786\) 25.7700i 0.919184i
\(787\) 27.3021 0.973216 0.486608 0.873621i \(-0.338234\pi\)
0.486608 + 0.873621i \(0.338234\pi\)
\(788\) 26.8428 0.956234
\(789\) −40.6758 −1.44810
\(790\) 4.65127 0.165485
\(791\) − 52.3590i − 1.86167i
\(792\) −0.0467086 −0.00165972
\(793\) 27.8141i 0.987708i
\(794\) 28.9833i 1.02858i
\(795\) − 3.65630i − 0.129676i
\(796\) 6.80294 0.241124
\(797\) 40.9620i 1.45095i 0.688249 + 0.725475i \(0.258380\pi\)
−0.688249 + 0.725475i \(0.741620\pi\)
\(798\) 27.1476i 0.961014i
\(799\) −54.7655 −1.93746
\(800\) − 4.75527i − 0.168124i
\(801\) − 0.0599333i − 0.00211764i
\(802\) 10.3297i 0.364753i
\(803\) 17.1506 0.605230
\(804\) − 12.4328i − 0.438471i
\(805\) −1.26318 −0.0445211
\(806\) −36.3690 −1.28104
\(807\) −27.1863 −0.957004
\(808\) −1.22182 −0.0429835
\(809\) 43.1355i 1.51656i 0.651927 + 0.758282i \(0.273961\pi\)
−0.651927 + 0.758282i \(0.726039\pi\)
\(810\) − 4.50136i − 0.158162i
\(811\) −38.0001 −1.33436 −0.667182 0.744894i \(-0.732500\pi\)
−0.667182 + 0.744894i \(0.732500\pi\)
\(812\) 0 0
\(813\) −0.382611 −0.0134187
\(814\) 12.4694i 0.437053i
\(815\) − 2.79904i − 0.0980463i
\(816\) 9.26224 0.324243
\(817\) 6.93688 0.242691
\(818\) −9.96171 −0.348303
\(819\) −0.599856 −0.0209607
\(820\) − 1.98486i − 0.0693143i
\(821\) 12.2176 0.426396 0.213198 0.977009i \(-0.431612\pi\)
0.213198 + 0.977009i \(0.431612\pi\)
\(822\) − 2.62863i − 0.0916840i
\(823\) 36.6269i 1.27673i 0.769733 + 0.638367i \(0.220390\pi\)
−0.769733 + 0.638367i \(0.779610\pi\)
\(824\) − 1.80814i − 0.0629896i
\(825\) −11.5678 −0.402740
\(826\) 35.0237i 1.21863i
\(827\) 25.8144i 0.897655i 0.893618 + 0.448828i \(0.148158\pi\)
−0.893618 + 0.448828i \(0.851842\pi\)
\(828\) −0.0272085 −0.000945560 0
\(829\) − 15.7732i − 0.547825i −0.961755 0.273913i \(-0.911682\pi\)
0.961755 0.273913i \(-0.0883179\pi\)
\(830\) 6.28733i 0.218236i
\(831\) − 6.53463i − 0.226684i
\(832\) −5.71545 −0.198148
\(833\) 15.1538i 0.525046i
\(834\) 15.2508 0.528092
\(835\) 5.98046 0.206962
\(836\) 6.93688 0.239917
\(837\) 32.8777 1.13642
\(838\) − 28.3523i − 0.979412i
\(839\) − 2.15662i − 0.0744547i −0.999307 0.0372274i \(-0.988147\pi\)
0.999307 0.0372274i \(-0.0118526\pi\)
\(840\) −2.70406 −0.0932988
\(841\) 0 0
\(842\) −9.51999 −0.328080
\(843\) 42.5860i 1.46674i
\(844\) 5.84061i 0.201042i
\(845\) 9.72893 0.334685
\(846\) 0.344388 0.0118403
\(847\) 28.3999 0.975832
\(848\) 4.24359 0.145726
\(849\) 13.2324i 0.454135i
\(850\) 25.2885 0.867389
\(851\) 7.26363i 0.248994i
\(852\) − 10.5151i − 0.360242i
\(853\) 21.6578i 0.741548i 0.928723 + 0.370774i \(0.120908\pi\)
−0.928723 + 0.370774i \(0.879092\pi\)
\(854\) −15.2729 −0.522629
\(855\) − 0.0821645i − 0.00280997i
\(856\) − 4.15063i − 0.141866i
\(857\) −12.6208 −0.431117 −0.215559 0.976491i \(-0.569157\pi\)
−0.215559 + 0.976491i \(0.569157\pi\)
\(858\) 13.9036i 0.474661i
\(859\) 19.4272i 0.662849i 0.943482 + 0.331424i \(0.107529\pi\)
−0.943482 + 0.331424i \(0.892471\pi\)
\(860\) 0.690954i 0.0235613i
\(861\) 21.9313 0.747418
\(862\) − 18.9749i − 0.646289i
\(863\) 45.9285 1.56342 0.781712 0.623640i \(-0.214347\pi\)
0.781712 + 0.623640i \(0.214347\pi\)
\(864\) 5.16679 0.175778
\(865\) −5.75852 −0.195795
\(866\) 28.3148 0.962175
\(867\) 19.6480i 0.667281i
\(868\) − 19.9705i − 0.677842i
\(869\) 13.1323 0.445482
\(870\) 0 0
\(871\) −40.7992 −1.38243
\(872\) 14.5046i 0.491187i
\(873\) 0.126955i 0.00429677i
\(874\) 4.04084 0.136683
\(875\) −15.1456 −0.512016
\(876\) 21.3864 0.722579
\(877\) 8.09527 0.273358 0.136679 0.990615i \(-0.456357\pi\)
0.136679 + 0.990615i \(0.456357\pi\)
\(878\) 19.8958i 0.671452i
\(879\) −44.8000 −1.51107
\(880\) 0.690954i 0.0232920i
\(881\) 3.00187i 0.101135i 0.998721 + 0.0505677i \(0.0161031\pi\)
−0.998721 + 0.0505677i \(0.983897\pi\)
\(882\) − 0.0952930i − 0.00320868i
\(883\) 38.6155 1.29952 0.649758 0.760141i \(-0.274870\pi\)
0.649758 + 0.760141i \(0.274870\pi\)
\(884\) − 30.3948i − 1.02229i
\(885\) − 9.61530i − 0.323215i
\(886\) −35.5600 −1.19466
\(887\) − 29.4281i − 0.988100i −0.869433 0.494050i \(-0.835516\pi\)
0.869433 0.494050i \(-0.164484\pi\)
\(888\) 15.5491i 0.521794i
\(889\) − 39.8352i − 1.33603i
\(890\) −0.886584 −0.0297184
\(891\) − 12.7090i − 0.425768i
\(892\) 21.9361 0.734474
\(893\) −51.1464 −1.71155
\(894\) 8.25681 0.276149
\(895\) 9.08024 0.303519
\(896\) − 3.13840i − 0.104846i
\(897\) 8.09905i 0.270420i
\(898\) −10.8511 −0.362106
\(899\) 0 0
\(900\) −0.159025 −0.00530082
\(901\) 22.5674i 0.751829i
\(902\) − 5.60400i − 0.186593i
\(903\) −7.63456 −0.254062
\(904\) −16.6834 −0.554881
\(905\) −4.89456 −0.162701
\(906\) 11.3107 0.375773
\(907\) − 4.66629i − 0.154942i −0.996995 0.0774709i \(-0.975316\pi\)
0.996995 0.0774709i \(-0.0246845\pi\)
\(908\) 2.15542 0.0715302
\(909\) 0.0408598i 0.00135523i
\(910\) 8.87357i 0.294156i
\(911\) 37.9571i 1.25758i 0.777577 + 0.628788i \(0.216449\pi\)
−0.777577 + 0.628788i \(0.783551\pi\)
\(912\) 8.65014 0.286435
\(913\) 17.7515i 0.587488i
\(914\) − 32.3358i − 1.06957i
\(915\) 4.19298 0.138616
\(916\) 9.29190i 0.307013i
\(917\) 46.4359i 1.53345i
\(918\) 27.4770i 0.906875i
\(919\) 25.3594 0.836530 0.418265 0.908325i \(-0.362638\pi\)
0.418265 + 0.908325i \(0.362638\pi\)
\(920\) 0.402491i 0.0132697i
\(921\) 3.15939 0.104105
\(922\) 25.4047 0.836659
\(923\) −34.5062 −1.13579
\(924\) −7.63456 −0.251159
\(925\) 42.4535i 1.39586i
\(926\) − 3.22072i − 0.105839i
\(927\) −0.0604674 −0.00198601
\(928\) 0 0
\(929\) 36.8642 1.20947 0.604737 0.796425i \(-0.293278\pi\)
0.604737 + 0.796425i \(0.293278\pi\)
\(930\) 5.48263i 0.179783i
\(931\) 14.1523i 0.463824i
\(932\) 11.7848 0.386022
\(933\) 33.8060 1.10676
\(934\) −22.8565 −0.747887
\(935\) −3.67449 −0.120169
\(936\) 0.191135i 0.00624743i
\(937\) 2.33445 0.0762631 0.0381316 0.999273i \(-0.487859\pi\)
0.0381316 + 0.999273i \(0.487859\pi\)
\(938\) − 22.4031i − 0.731487i
\(939\) − 59.0163i − 1.92592i
\(940\) − 5.09448i − 0.166164i
\(941\) −8.78880 −0.286507 −0.143253 0.989686i \(-0.545756\pi\)
−0.143253 + 0.989686i \(0.545756\pi\)
\(942\) − 11.4278i − 0.372339i
\(943\) − 3.26441i − 0.106304i
\(944\) 11.1598 0.363219
\(945\) − 8.02174i − 0.260947i
\(946\) 1.95082i 0.0634266i
\(947\) − 12.6976i − 0.412618i −0.978487 0.206309i \(-0.933855\pi\)
0.978487 0.206309i \(-0.0661452\pi\)
\(948\) 16.3757 0.531857
\(949\) − 70.1811i − 2.27818i
\(950\) 23.6173 0.766248
\(951\) −9.57506 −0.310493
\(952\) 16.6900 0.540925
\(953\) 54.4562 1.76401 0.882005 0.471240i \(-0.156194\pi\)
0.882005 + 0.471240i \(0.156194\pi\)
\(954\) − 0.141913i − 0.00459460i
\(955\) 0.209880i 0.00679157i
\(956\) 14.3692 0.464732
\(957\) 0 0
\(958\) 2.14546 0.0693165
\(959\) − 4.73663i − 0.152954i
\(960\) 0.861605i 0.0278082i
\(961\) −9.49127 −0.306170
\(962\) 51.0256 1.64513
\(963\) −0.138804 −0.00447290
\(964\) −9.20432 −0.296451
\(965\) − 5.10765i − 0.164421i
\(966\) −4.44725 −0.143088
\(967\) − 49.5652i − 1.59391i −0.604038 0.796955i \(-0.706443\pi\)
0.604038 0.796955i \(-0.293557\pi\)
\(968\) − 9.04918i − 0.290852i
\(969\) 46.0014i 1.47778i
\(970\) 1.87802 0.0602996
\(971\) − 27.5824i − 0.885162i −0.896729 0.442581i \(-0.854063\pi\)
0.896729 0.442581i \(-0.145937\pi\)
\(972\) − 0.347520i − 0.0111467i
\(973\) 27.4810 0.881000
\(974\) 21.7759i 0.697746i
\(975\) 47.3363i 1.51597i
\(976\) 4.86648i 0.155772i
\(977\) −44.5323 −1.42471 −0.712357 0.701818i \(-0.752372\pi\)
−0.712357 + 0.701818i \(0.752372\pi\)
\(978\) − 9.85456i − 0.315114i
\(979\) −2.50316 −0.0800012
\(980\) −1.40965 −0.0450298
\(981\) 0.485058 0.0154867
\(982\) −38.8631 −1.24017
\(983\) 1.19667i 0.0381680i 0.999818 + 0.0190840i \(0.00607499\pi\)
−0.999818 + 0.0190840i \(0.993925\pi\)
\(984\) − 6.98807i − 0.222772i
\(985\) −13.2791 −0.423106
\(986\) 0 0
\(987\) 56.2904 1.79174
\(988\) − 28.3861i − 0.903083i
\(989\) 1.13638i 0.0361348i
\(990\) 0.0231067 0.000734378 0
\(991\) −35.0275 −1.11269 −0.556343 0.830953i \(-0.687796\pi\)
−0.556343 + 0.830953i \(0.687796\pi\)
\(992\) −6.36328 −0.202034
\(993\) 23.7674 0.754236
\(994\) − 18.9476i − 0.600982i
\(995\) −3.36540 −0.106690
\(996\) 22.1357i 0.701397i
\(997\) 31.1728i 0.987254i 0.869674 + 0.493627i \(0.164329\pi\)
−0.869674 + 0.493627i \(0.835671\pi\)
\(998\) − 39.2992i − 1.24400i
\(999\) −46.1273 −1.45940
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.b.i.1681.8 12
29.2 odd 28 58.2.d.b.25.2 yes 12
29.12 odd 4 1682.2.a.q.1.5 6
29.14 odd 28 58.2.d.b.7.2 12
29.17 odd 4 1682.2.a.t.1.2 6
29.28 even 2 inner 1682.2.b.i.1681.5 12
87.2 even 28 522.2.k.h.199.1 12
87.14 even 28 522.2.k.h.181.1 12
116.31 even 28 464.2.u.h.257.1 12
116.43 even 28 464.2.u.h.65.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.b.7.2 12 29.14 odd 28
58.2.d.b.25.2 yes 12 29.2 odd 28
464.2.u.h.65.1 12 116.43 even 28
464.2.u.h.257.1 12 116.31 even 28
522.2.k.h.181.1 12 87.14 even 28
522.2.k.h.199.1 12 87.2 even 28
1682.2.a.q.1.5 6 29.12 odd 4
1682.2.a.t.1.2 6 29.17 odd 4
1682.2.b.i.1681.5 12 29.28 even 2 inner
1682.2.b.i.1681.8 12 1.1 even 1 trivial