Properties

Label 1682.2.b.i.1681.8
Level 16821682
Weight 22
Character 1682.1681
Analytic conductor 13.43113.431
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1681,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1681");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1682=2292 1682 = 2 \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1682.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.430837620013.4308376200
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+30x10+341x8+1897x6+5456x4+7680x2+4096 x^{12} + 30x^{10} + 341x^{8} + 1897x^{6} + 5456x^{4} + 7680x^{2} + 4096 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1681.8
Root 1.74168i-1.74168i of defining polynomial
Character χ\chi == 1682.1681
Dual form 1682.2.b.i.1681.5

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq21.74168iq31.00000q4+0.494698q5+1.74168q6+3.13840q71.00000iq80.0334417q9+0.494698iq10+1.39672iq11+1.74168iq12+5.71545q13+3.13840iq140.861605iq15+1.00000q16+5.31800iq170.0334417iq18+4.96656iq190.494698q205.46607iq211.39672q220.813609q231.74168q244.75527q25+5.71545iq265.16679iq273.13840q28+0.861605q30+6.36328iq31+1.00000iq32+2.43263q335.31800q34+1.55256q35+0.0334417q368.92766iq374.96656q389.95448iq390.494698iq40+4.01226iq41+5.46607q421.39672iq431.39672iq440.0165436q450.813609iq46+10.2982iq471.74168iq48+2.84952q494.75527iq50+9.26224q515.71545q52+4.24359q53+5.16679q54+0.690954iq553.13840iq56+8.65014q57+11.1598q59+0.861605iq60+4.86648iq616.36328q620.104953q631.00000q64+2.82742q65+2.43263iq667.13840q675.31800iq68+1.41705iq69+1.55256iq706.03736q71+0.0334417iq7212.2792iq73+8.92766q74+8.28215iq754.96656iq76+4.38345iq77+9.95448q789.40223iq79+0.494698q809.09921q814.01226q82+12.7094q83+5.46607iq84+2.63080iq85+1.39672q86+1.39672q88+1.79217iq890.0165436iq90+17.9373q91+0.813609q92+11.0828q9310.2982q94+2.45695iq95+1.74168q963.79630iq97+2.84952iq980.0467086iq99+O(q100)q+1.00000i q^{2} -1.74168i q^{3} -1.00000 q^{4} +0.494698 q^{5} +1.74168 q^{6} +3.13840 q^{7} -1.00000i q^{8} -0.0334417 q^{9} +0.494698i q^{10} +1.39672i q^{11} +1.74168i q^{12} +5.71545 q^{13} +3.13840i q^{14} -0.861605i q^{15} +1.00000 q^{16} +5.31800i q^{17} -0.0334417i q^{18} +4.96656i q^{19} -0.494698 q^{20} -5.46607i q^{21} -1.39672 q^{22} -0.813609 q^{23} -1.74168 q^{24} -4.75527 q^{25} +5.71545i q^{26} -5.16679i q^{27} -3.13840 q^{28} +0.861605 q^{30} +6.36328i q^{31} +1.00000i q^{32} +2.43263 q^{33} -5.31800 q^{34} +1.55256 q^{35} +0.0334417 q^{36} -8.92766i q^{37} -4.96656 q^{38} -9.95448i q^{39} -0.494698i q^{40} +4.01226i q^{41} +5.46607 q^{42} -1.39672i q^{43} -1.39672i q^{44} -0.0165436 q^{45} -0.813609i q^{46} +10.2982i q^{47} -1.74168i q^{48} +2.84952 q^{49} -4.75527i q^{50} +9.26224 q^{51} -5.71545 q^{52} +4.24359 q^{53} +5.16679 q^{54} +0.690954i q^{55} -3.13840i q^{56} +8.65014 q^{57} +11.1598 q^{59} +0.861605i q^{60} +4.86648i q^{61} -6.36328 q^{62} -0.104953 q^{63} -1.00000 q^{64} +2.82742 q^{65} +2.43263i q^{66} -7.13840 q^{67} -5.31800i q^{68} +1.41705i q^{69} +1.55256i q^{70} -6.03736 q^{71} +0.0334417i q^{72} -12.2792i q^{73} +8.92766 q^{74} +8.28215i q^{75} -4.96656i q^{76} +4.38345i q^{77} +9.95448 q^{78} -9.40223i q^{79} +0.494698 q^{80} -9.09921 q^{81} -4.01226 q^{82} +12.7094 q^{83} +5.46607i q^{84} +2.63080i q^{85} +1.39672 q^{86} +1.39672 q^{88} +1.79217i q^{89} -0.0165436i q^{90} +17.9373 q^{91} +0.813609 q^{92} +11.0828 q^{93} -10.2982 q^{94} +2.45695i q^{95} +1.74168 q^{96} -3.79630i q^{97} +2.84952i q^{98} -0.0467086i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q12q44q66q724q9+6q13+12q16+2q2228q23+4q24+8q25+6q28+54q3040q33+12q34+18q35+24q3636q38+20q42+4q96+O(q100) 12 q - 12 q^{4} - 4 q^{6} - 6 q^{7} - 24 q^{9} + 6 q^{13} + 12 q^{16} + 2 q^{22} - 28 q^{23} + 4 q^{24} + 8 q^{25} + 6 q^{28} + 54 q^{30} - 40 q^{33} + 12 q^{34} + 18 q^{35} + 24 q^{36} - 36 q^{38} + 20 q^{42}+ \cdots - 4 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1682Z)×\left(\mathbb{Z}/1682\mathbb{Z}\right)^\times.

nn 843843
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 0.707107i
33 − 1.74168i − 1.00556i −0.864415 0.502779i 0.832311π-0.832311\pi
0.864415 0.502779i 0.167689π-0.167689\pi
44 −1.00000 −0.500000
55 0.494698 0.221236 0.110618 0.993863i 0.464717π-0.464717\pi
0.110618 + 0.993863i 0.464717π0.464717\pi
66 1.74168 0.711037
77 3.13840 1.18620 0.593101 0.805128i 0.297904π-0.297904\pi
0.593101 + 0.805128i 0.297904π0.297904\pi
88 − 1.00000i − 0.353553i
99 −0.0334417 −0.0111472
1010 0.494698i 0.156437i
1111 1.39672i 0.421126i 0.977580 + 0.210563i 0.0675297π0.0675297\pi
−0.977580 + 0.210563i 0.932470π0.932470\pi
1212 1.74168i 0.502779i
1313 5.71545 1.58518 0.792591 0.609754i 0.208732π-0.208732\pi
0.792591 + 0.609754i 0.208732π0.208732\pi
1414 3.13840i 0.838771i
1515 − 0.861605i − 0.222465i
1616 1.00000 0.250000
1717 5.31800i 1.28980i 0.764265 + 0.644902i 0.223102π0.223102\pi
−0.764265 + 0.644902i 0.776898π0.776898\pi
1818 − 0.0334417i − 0.00788229i
1919 4.96656i 1.13941i 0.821850 + 0.569703i 0.192942π0.192942\pi
−0.821850 + 0.569703i 0.807058π0.807058\pi
2020 −0.494698 −0.110618
2121 − 5.46607i − 1.19279i
2222 −1.39672 −0.297781
2323 −0.813609 −0.169649 −0.0848246 0.996396i 0.527033π-0.527033\pi
−0.0848246 + 0.996396i 0.527033π0.527033\pi
2424 −1.74168 −0.355519
2525 −4.75527 −0.951055
2626 5.71545i 1.12089i
2727 − 5.16679i − 0.994349i
2828 −3.13840 −0.593101
2929 0 0
3030 0.861605 0.157307
3131 6.36328i 1.14288i 0.820645 + 0.571439i 0.193615π0.193615\pi
−0.820645 + 0.571439i 0.806385π0.806385\pi
3232 1.00000i 0.176777i
3333 2.43263 0.423467
3434 −5.31800 −0.912029
3535 1.55256 0.262430
3636 0.0334417 0.00557362
3737 − 8.92766i − 1.46770i −0.679313 0.733849i 0.737722π-0.737722\pi
0.679313 0.733849i 0.262278π-0.262278\pi
3838 −4.96656 −0.805682
3939 − 9.95448i − 1.59399i
4040 − 0.494698i − 0.0782187i
4141 4.01226i 0.626610i 0.949652 + 0.313305i 0.101436π0.101436\pi
−0.949652 + 0.313305i 0.898564π0.898564\pi
4242 5.46607 0.843433
4343 − 1.39672i − 0.212997i −0.994313 0.106499i 0.966036π-0.966036\pi
0.994313 0.106499i 0.0339640π-0.0339640\pi
4444 − 1.39672i − 0.210563i
4545 −0.0165436 −0.00246617
4646 − 0.813609i − 0.119960i
4747 10.2982i 1.50214i 0.660223 + 0.751070i 0.270462π0.270462\pi
−0.660223 + 0.751070i 0.729538π0.729538\pi
4848 − 1.74168i − 0.251390i
4949 2.84952 0.407075
5050 − 4.75527i − 0.672497i
5151 9.26224 1.29697
5252 −5.71545 −0.792591
5353 4.24359 0.582902 0.291451 0.956586i 0.405862π-0.405862\pi
0.291451 + 0.956586i 0.405862π0.405862\pi
5454 5.16679 0.703111
5555 0.690954i 0.0931682i
5656 − 3.13840i − 0.419386i
5757 8.65014 1.14574
5858 0 0
5959 11.1598 1.45288 0.726438 0.687232i 0.241174π-0.241174\pi
0.726438 + 0.687232i 0.241174π0.241174\pi
6060 0.861605i 0.111233i
6161 4.86648i 0.623089i 0.950232 + 0.311544i 0.100846π0.100846\pi
−0.950232 + 0.311544i 0.899154π0.899154\pi
6262 −6.36328 −0.808137
6363 −0.104953 −0.0132229
6464 −1.00000 −0.125000
6565 2.82742 0.350699
6666 2.43263i 0.299436i
6767 −7.13840 −0.872094 −0.436047 0.899924i 0.643622π-0.643622\pi
−0.436047 + 0.899924i 0.643622π0.643622\pi
6868 − 5.31800i − 0.644902i
6969 1.41705i 0.170592i
7070 1.55256i 0.185566i
7171 −6.03736 −0.716502 −0.358251 0.933625i 0.616627π-0.616627\pi
−0.358251 + 0.933625i 0.616627π0.616627\pi
7272 0.0334417i 0.00394114i
7373 − 12.2792i − 1.43717i −0.695439 0.718585i 0.744790π-0.744790\pi
0.695439 0.718585i 0.255210π-0.255210\pi
7474 8.92766 1.03782
7575 8.28215i 0.956341i
7676 − 4.96656i − 0.569703i
7777 4.38345i 0.499541i
7878 9.95448 1.12712
7979 − 9.40223i − 1.05783i −0.848674 0.528917i 0.822598π-0.822598\pi
0.848674 0.528917i 0.177402π-0.177402\pi
8080 0.494698 0.0553089
8181 −9.09921 −1.01102
8282 −4.01226 −0.443080
8383 12.7094 1.39504 0.697520 0.716565i 0.254287π-0.254287\pi
0.697520 + 0.716565i 0.254287π0.254287\pi
8484 5.46607i 0.596397i
8585 2.63080i 0.285351i
8686 1.39672 0.150612
8787 0 0
8888 1.39672 0.148891
8989 1.79217i 0.189970i 0.995479 + 0.0949849i 0.0302803π0.0302803\pi
−0.995479 + 0.0949849i 0.969720π0.969720\pi
9090 − 0.0165436i − 0.00174384i
9191 17.9373 1.88034
9292 0.813609 0.0848246
9393 11.0828 1.14923
9494 −10.2982 −1.06217
9595 2.45695i 0.252078i
9696 1.74168 0.177759
9797 − 3.79630i − 0.385456i −0.981252 0.192728i 0.938267π-0.938267\pi
0.981252 0.192728i 0.0617334π-0.0617334\pi
9898 2.84952i 0.287845i
9999 − 0.0467086i − 0.00469439i
100100 4.75527 0.475527
101101 − 1.22182i − 0.121576i −0.998151 0.0607879i 0.980639π-0.980639\pi
0.998151 0.0607879i 0.0193613π-0.0193613\pi
102102 9.26224i 0.917098i
103103 1.80814 0.178161 0.0890807 0.996024i 0.471607π-0.471607\pi
0.0890807 + 0.996024i 0.471607π0.471607\pi
104104 − 5.71545i − 0.560446i
105105 − 2.70406i − 0.263889i
106106 4.24359i 0.412174i
107107 4.15063 0.401257 0.200628 0.979667i 0.435702π-0.435702\pi
0.200628 + 0.979667i 0.435702π0.435702\pi
108108 5.16679i 0.497174i
109109 −14.5046 −1.38929 −0.694644 0.719354i 0.744438π-0.744438\pi
−0.694644 + 0.719354i 0.744438π0.744438\pi
110110 −0.690954 −0.0658798
111111 −15.5491 −1.47586
112112 3.13840 0.296550
113113 − 16.6834i − 1.56944i −0.619851 0.784720i 0.712807π-0.712807\pi
0.619851 0.784720i 0.287193π-0.287193\pi
114114 8.65014i 0.810160i
115115 −0.402491 −0.0375325
116116 0 0
117117 −0.191135 −0.0176704
118118 11.1598i 1.02734i
119119 16.6900i 1.52997i
120120 −0.861605 −0.0786534
121121 9.04918 0.822653
122122 −4.86648 −0.440590
123123 6.98807 0.630093
124124 − 6.36328i − 0.571439i
125125 −4.82592 −0.431643
126126 − 0.104953i − 0.00934998i
127127 − 12.6929i − 1.12631i −0.826351 0.563155i 0.809587π-0.809587\pi
0.826351 0.563155i 0.190413π-0.190413\pi
128128 − 1.00000i − 0.0883883i
129129 −2.43263 −0.214181
130130 2.82742i 0.247982i
131131 14.7961i 1.29274i 0.763025 + 0.646369i 0.223713π0.223713\pi
−0.763025 + 0.646369i 0.776287π0.776287\pi
132132 −2.43263 −0.211733
133133 15.5870i 1.35157i
134134 − 7.13840i − 0.616663i
135135 − 2.55600i − 0.219986i
136136 5.31800 0.456014
137137 − 1.50925i − 0.128944i −0.997920 0.0644721i 0.979464π-0.979464\pi
0.997920 0.0644721i 0.0205363π-0.0205363\pi
138138 −1.41705 −0.120627
139139 8.75639 0.742707 0.371353 0.928492i 0.378894π-0.378894\pi
0.371353 + 0.928492i 0.378894π0.378894\pi
140140 −1.55256 −0.131215
141141 17.9361 1.51049
142142 − 6.03736i − 0.506644i
143143 7.98287i 0.667561i
144144 −0.0334417 −0.00278681
145145 0 0
146146 12.2792 1.01623
147147 − 4.96295i − 0.409337i
148148 8.92766i 0.733849i
149149 4.74072 0.388375 0.194187 0.980964i 0.437793π-0.437793\pi
0.194187 + 0.980964i 0.437793π0.437793\pi
150150 −8.28215 −0.676235
151151 6.49415 0.528486 0.264243 0.964456i 0.414878π-0.414878\pi
0.264243 + 0.964456i 0.414878π0.414878\pi
152152 4.96656 0.402841
153153 − 0.177843i − 0.0143777i
154154 −4.38345 −0.353228
155155 3.14790i 0.252846i
156156 9.95448i 0.796996i
157157 − 6.56139i − 0.523656i −0.965115 0.261828i 0.915675π-0.915675\pi
0.965115 0.261828i 0.0843253π-0.0843253\pi
158158 9.40223 0.748002
159159 − 7.39097i − 0.586142i
160160 0.494698i 0.0391093i
161161 −2.55343 −0.201238
162162 − 9.09921i − 0.714901i
163163 − 5.65808i − 0.443175i −0.975140 0.221588i 0.928876π-0.928876\pi
0.975140 0.221588i 0.0711239π-0.0711239\pi
164164 − 4.01226i − 0.313305i
165165 1.20342 0.0936860
166166 12.7094i 0.986442i
167167 12.0891 0.935483 0.467742 0.883865i 0.345068π-0.345068\pi
0.467742 + 0.883865i 0.345068π0.345068\pi
168168 −5.46607 −0.421717
169169 19.6664 1.51280
170170 −2.63080 −0.201773
171171 − 0.166090i − 0.0127012i
172172 1.39672i 0.106499i
173173 −11.6405 −0.885008 −0.442504 0.896767i 0.645910π-0.645910\pi
−0.442504 + 0.896767i 0.645910π0.645910\pi
174174 0 0
175175 −14.9239 −1.12814
176176 1.39672i 0.105282i
177177 − 19.4367i − 1.46095i
178178 −1.79217 −0.134329
179179 18.3551 1.37193 0.685963 0.727637i 0.259381π-0.259381\pi
0.685963 + 0.727637i 0.259381π0.259381\pi
180180 0.0165436 0.00123308
181181 −9.89404 −0.735418 −0.367709 0.929941i 0.619858π-0.619858\pi
−0.367709 + 0.929941i 0.619858π0.619858\pi
182182 17.9373i 1.32960i
183183 8.47584 0.626552
184184 0.813609i 0.0599801i
185185 − 4.41650i − 0.324707i
186186 11.0828i 0.812629i
187187 −7.42774 −0.543170
188188 − 10.2982i − 0.751070i
189189 − 16.2154i − 1.17950i
190190 −2.45695 −0.178246
191191 0.424259i 0.0306983i 0.999882 + 0.0153492i 0.00488598π0.00488598\pi
−0.999882 + 0.0153492i 0.995114π0.995114\pi
192192 1.74168i 0.125695i
193193 − 10.3248i − 0.743193i −0.928394 0.371597i 0.878810π-0.878810\pi
0.928394 0.371597i 0.121190π-0.121190\pi
194194 3.79630 0.272558
195195 − 4.92446i − 0.352648i
196196 −2.84952 −0.203537
197197 −26.8428 −1.91247 −0.956234 0.292604i 0.905478π-0.905478\pi
−0.956234 + 0.292604i 0.905478π0.905478\pi
198198 0.0467086 0.00331944
199199 −6.80294 −0.482248 −0.241124 0.970494i 0.577516π-0.577516\pi
−0.241124 + 0.970494i 0.577516π0.577516\pi
200200 4.75527i 0.336249i
201201 12.4328i 0.876941i
202202 1.22182 0.0859671
203203 0 0
204204 −9.26224 −0.648486
205205 1.98486i 0.138629i
206206 1.80814i 0.125979i
207207 0.0272085 0.00189112
208208 5.71545 0.396295
209209 −6.93688 −0.479834
210210 2.70406 0.186598
211211 − 5.84061i − 0.402084i −0.979583 0.201042i 0.935567π-0.935567\pi
0.979583 0.201042i 0.0644328π-0.0644328\pi
212212 −4.24359 −0.291451
213213 10.5151i 0.720485i
214214 4.15063i 0.283731i
215215 − 0.690954i − 0.0471226i
216216 −5.16679 −0.351555
217217 19.9705i 1.35568i
218218 − 14.5046i − 0.982374i
219219 −21.3864 −1.44516
220220 − 0.690954i − 0.0465841i
221221 30.3948i 2.04457i
222222 − 15.5491i − 1.04359i
223223 −21.9361 −1.46895 −0.734474 0.678637i 0.762571π-0.762571\pi
−0.734474 + 0.678637i 0.762571π0.762571\pi
224224 3.13840i 0.209693i
225225 0.159025 0.0106016
226226 16.6834 1.10976
227227 −2.15542 −0.143060 −0.0715302 0.997438i 0.522788π-0.522788\pi
−0.0715302 + 0.997438i 0.522788π0.522788\pi
228228 −8.65014 −0.572870
229229 − 9.29190i − 0.614026i −0.951705 0.307013i 0.900670π-0.900670\pi
0.951705 0.307013i 0.0993296π-0.0993296\pi
230230 − 0.402491i − 0.0265395i
231231 7.63456 0.502317
232232 0 0
233233 −11.7848 −0.772045 −0.386022 0.922489i 0.626151π-0.626151\pi
−0.386022 + 0.922489i 0.626151π0.626151\pi
234234 − 0.191135i − 0.0124949i
235235 5.09448i 0.332327i
236236 −11.1598 −0.726438
237237 −16.3757 −1.06371
238238 −16.6900 −1.08185
239239 −14.3692 −0.929465 −0.464732 0.885451i 0.653849π-0.653849\pi
−0.464732 + 0.885451i 0.653849π0.653849\pi
240240 − 0.861605i − 0.0556164i
241241 9.20432 0.592902 0.296451 0.955048i 0.404197π-0.404197\pi
0.296451 + 0.955048i 0.404197π0.404197\pi
242242 9.04918i 0.581703i
243243 0.347520i 0.0222934i
244244 − 4.86648i − 0.311544i
245245 1.40965 0.0900595
246246 6.98807i 0.445543i
247247 28.3861i 1.80617i
248248 6.36328 0.404068
249249 − 22.1357i − 1.40279i
250250 − 4.82592i − 0.305218i
251251 5.91599i 0.373414i 0.982416 + 0.186707i 0.0597815π0.0597815\pi
−0.982416 + 0.186707i 0.940219π0.940219\pi
252252 0.104953 0.00661144
253253 − 1.13638i − 0.0714437i
254254 12.6929 0.796421
255255 4.58201 0.286937
256256 1.00000 0.0625000
257257 −26.7213 −1.66683 −0.833413 0.552650i 0.813617π-0.813617\pi
−0.833413 + 0.552650i 0.813617π0.813617\pi
258258 − 2.43263i − 0.151449i
259259 − 28.0185i − 1.74099i
260260 −2.82742 −0.175349
261261 0 0
262262 −14.7961 −0.914104
263263 − 23.3544i − 1.44009i −0.693926 0.720047i 0.744120π-0.744120\pi
0.693926 0.720047i 0.255880π-0.255880\pi
264264 − 2.43263i − 0.149718i
265265 2.09930 0.128959
266266 −15.5870 −0.955702
267267 3.12138 0.191026
268268 7.13840 0.436047
269269 − 15.6093i − 0.951714i −0.879523 0.475857i 0.842138π-0.842138\pi
0.879523 0.475857i 0.157862π-0.157862\pi
270270 2.55600 0.155553
271271 − 0.219679i − 0.0133446i −0.999978 0.00667229i 0.997876π-0.997876\pi
0.999978 0.00667229i 0.00212387π-0.00212387\pi
272272 5.31800i 0.322451i
273273 − 31.2411i − 1.89080i
274274 1.50925 0.0911773
275275 − 6.64177i − 0.400514i
276276 − 1.41705i − 0.0852961i
277277 3.75191 0.225431 0.112715 0.993627i 0.464045π-0.464045\pi
0.112715 + 0.993627i 0.464045π0.464045\pi
278278 8.75639i 0.525173i
279279 − 0.212799i − 0.0127399i
280280 − 1.55256i − 0.0927831i
281281 −24.4511 −1.45863 −0.729316 0.684177i 0.760161π-0.760161\pi
−0.729316 + 0.684177i 0.760161π0.760161\pi
282282 17.9361i 1.06808i
283283 −7.59751 −0.451625 −0.225813 0.974171i 0.572504π-0.572504\pi
−0.225813 + 0.974171i 0.572504π0.572504\pi
284284 6.03736 0.358251
285285 4.27921 0.253479
286286 −7.98287 −0.472037
287287 12.5921i 0.743286i
288288 − 0.0334417i − 0.00197057i
289289 −11.2811 −0.663593
290290 0 0
291291 −6.61193 −0.387598
292292 12.2792i 0.718585i
293293 − 25.7223i − 1.50271i −0.659896 0.751357i 0.729400π-0.729400\pi
0.659896 0.751357i 0.270600π-0.270600\pi
294294 4.96295 0.289445
295295 5.52071 0.321428
296296 −8.92766 −0.518910
297297 7.21654 0.418746
298298 4.74072i 0.274623i
299299 −4.65014 −0.268925
300300 − 8.28215i − 0.478170i
301301 − 4.38345i − 0.252658i
302302 6.49415i 0.373696i
303303 −2.12802 −0.122252
304304 4.96656i 0.284852i
305305 2.40744i 0.137849i
306306 0.177843 0.0101666
307307 1.81399i 0.103530i 0.998659 + 0.0517649i 0.0164847π0.0164847\pi
−0.998659 + 0.0517649i 0.983515π0.983515\pi
308308 − 4.38345i − 0.249770i
309309 − 3.14920i − 0.179152i
310310 −3.14790 −0.178789
311311 19.4100i 1.10064i 0.834953 + 0.550321i 0.185495π0.185495\pi
−0.834953 + 0.550321i 0.814505π0.814505\pi
312312 −9.95448 −0.563561
313313 33.8847 1.91528 0.957639 0.287972i 0.0929811π-0.0929811\pi
0.957639 + 0.287972i 0.0929811π0.0929811\pi
314314 6.56139 0.370281
315315 −0.0519202 −0.00292537
316316 9.40223i 0.528917i
317317 − 5.49761i − 0.308777i −0.988010 0.154388i 0.950659π-0.950659\pi
0.988010 0.154388i 0.0493407π-0.0493407\pi
318318 7.39097 0.414465
319319 0 0
320320 −0.494698 −0.0276545
321321 − 7.22906i − 0.403487i
322322 − 2.55343i − 0.142297i
323323 −26.4121 −1.46961
324324 9.09921 0.505511
325325 −27.1785 −1.50759
326326 5.65808 0.313372
327327 25.2623i 1.39701i
328328 4.01226 0.221540
329329 32.3197i 1.78184i
330330 1.20342i 0.0662460i
331331 13.6463i 0.750067i 0.927011 + 0.375034i 0.122369π0.122369\pi
−0.927011 + 0.375034i 0.877631π0.877631\pi
332332 −12.7094 −0.697520
333333 0.298556i 0.0163608i
334334 12.0891i 0.661487i
335335 −3.53135 −0.192938
336336 − 5.46607i − 0.298199i
337337 − 22.5673i − 1.22932i −0.788792 0.614660i 0.789293π-0.789293\pi
0.788792 0.614660i 0.210707π-0.210707\pi
338338 19.6664i 1.06971i
339339 −29.0571 −1.57816
340340 − 2.63080i − 0.142675i
341341 −8.88770 −0.481296
342342 0.166090 0.00898113
343343 −13.0258 −0.703329
344344 −1.39672 −0.0753059
345345 0.701010i 0.0377411i
346346 − 11.6405i − 0.625795i
347347 2.97305 0.159602 0.0798008 0.996811i 0.474572π-0.474572\pi
0.0798008 + 0.996811i 0.474572π0.474572\pi
348348 0 0
349349 −5.73913 −0.307208 −0.153604 0.988132i 0.549088π-0.549088\pi
−0.153604 + 0.988132i 0.549088π0.549088\pi
350350 − 14.9239i − 0.797717i
351351 − 29.5305i − 1.57622i
352352 −1.39672 −0.0744453
353353 6.47216 0.344478 0.172239 0.985055i 0.444900π-0.444900\pi
0.172239 + 0.985055i 0.444900π0.444900\pi
354354 19.4367 1.03305
355355 −2.98667 −0.158516
356356 − 1.79217i − 0.0949849i
357357 29.0686 1.53847
358358 18.3551i 0.970098i
359359 10.7414i 0.566911i 0.958985 + 0.283455i 0.0914808π0.0914808\pi
−0.958985 + 0.283455i 0.908519π0.908519\pi
360360 0.0165436i 0 0.000871922i
361361 −5.66670 −0.298247
362362 − 9.89404i − 0.520019i
363363 − 15.7608i − 0.827225i
364364 −17.9373 −0.940172
365365 − 6.07449i − 0.317954i
366366 8.47584i 0.443039i
367367 18.9393i 0.988625i 0.869284 + 0.494313i 0.164580π0.164580\pi
−0.869284 + 0.494313i 0.835420π0.835420\pi
368368 −0.813609 −0.0424123
369369 − 0.134177i − 0.00698498i
370370 4.41650 0.229603
371371 13.3181 0.691440
372372 −11.0828 −0.574615
373373 2.43402 0.126029 0.0630145 0.998013i 0.479929π-0.479929\pi
0.0630145 + 0.998013i 0.479929π0.479929\pi
374374 − 7.42774i − 0.384079i
375375 8.40519i 0.434042i
376376 10.2982 0.531087
377377 0 0
378378 16.2154 0.834031
379379 − 17.1415i − 0.880498i −0.897876 0.440249i 0.854890π-0.854890\pi
0.897876 0.440249i 0.145110π-0.145110\pi
380380 − 2.45695i − 0.126039i
381381 −22.1069 −1.13257
382382 −0.424259 −0.0217070
383383 23.7774 1.21497 0.607483 0.794332i 0.292179π-0.292179\pi
0.607483 + 0.794332i 0.292179π0.292179\pi
384384 −1.74168 −0.0888796
385385 2.16849i 0.110516i
386386 10.3248 0.525517
387387 0.0467086i 0.00237433i
388388 3.79630i 0.192728i
389389 11.5272i 0.584453i 0.956349 + 0.292227i 0.0943962π0.0943962\pi
−0.956349 + 0.292227i 0.905604π0.905604\pi
390390 4.92446 0.249360
391391 − 4.32677i − 0.218814i
392392 − 2.84952i − 0.143923i
393393 25.7700 1.29992
394394 − 26.8428i − 1.35232i
395395 − 4.65127i − 0.234031i
396396 0.0467086i 0.00234720i
397397 28.9833 1.45463 0.727316 0.686303i 0.240767π-0.240767\pi
0.727316 + 0.686303i 0.240767π0.240767\pi
398398 − 6.80294i − 0.341001i
399399 27.1476 1.35908
400400 −4.75527 −0.237764
401401 10.3297 0.515838 0.257919 0.966167i 0.416963π-0.416963\pi
0.257919 + 0.966167i 0.416963π0.416963\pi
402402 −12.4328 −0.620091
403403 36.3690i 1.81167i
404404 1.22182i 0.0607879i
405405 −4.50136 −0.223674
406406 0 0
407407 12.4694 0.618086
408408 − 9.26224i − 0.458549i
409409 9.96171i 0.492575i 0.969197 + 0.246287i 0.0792107π0.0792107\pi
−0.969197 + 0.246287i 0.920789π0.920789\pi
410410 −1.98486 −0.0980252
411411 −2.62863 −0.129661
412412 −1.80814 −0.0890807
413413 35.0237 1.72340
414414 0.0272085i 0.00133722i
415415 6.28733 0.308633
416416 5.71545i 0.280223i
417417 − 15.2508i − 0.746835i
418418 − 6.93688i − 0.339294i
419419 −28.3523 −1.38510 −0.692549 0.721371i 0.743512π-0.743512\pi
−0.692549 + 0.721371i 0.743512π0.743512\pi
420420 2.70406i 0.131944i
421421 9.51999i 0.463976i 0.972719 + 0.231988i 0.0745230π0.0745230\pi
−0.972719 + 0.231988i 0.925477π0.925477\pi
422422 5.84061 0.284317
423423 − 0.344388i − 0.0167447i
424424 − 4.24359i − 0.206087i
425425 − 25.2885i − 1.22667i
426426 −10.5151 −0.509460
427427 15.2729i 0.739109i
428428 −4.15063 −0.200628
429429 13.9036 0.671272
430430 0.690954 0.0333207
431431 −18.9749 −0.913990 −0.456995 0.889469i 0.651074π-0.651074\pi
−0.456995 + 0.889469i 0.651074π0.651074\pi
432432 − 5.16679i − 0.248587i
433433 − 28.3148i − 1.36072i −0.732877 0.680361i 0.761823π-0.761823\pi
0.732877 0.680361i 0.238177π-0.238177\pi
434434 −19.9705 −0.958613
435435 0 0
436436 14.5046 0.694644
437437 − 4.04084i − 0.193299i
438438 − 21.3864i − 1.02188i
439439 19.8958 0.949577 0.474788 0.880100i 0.342525π-0.342525\pi
0.474788 + 0.880100i 0.342525π0.342525\pi
440440 0.690954 0.0329399
441441 −0.0952930 −0.00453776
442442 −30.3948 −1.44573
443443 35.5600i 1.68951i 0.535157 + 0.844753i 0.320253π0.320253\pi
−0.535157 + 0.844753i 0.679747π0.679747\pi
444444 15.5491 0.737928
445445 0.886584i 0.0420281i
446446 − 21.9361i − 1.03870i
447447 − 8.25681i − 0.390534i
448448 −3.13840 −0.148275
449449 10.8511i 0.512095i 0.966664 + 0.256048i 0.0824204π0.0824204\pi
−0.966664 + 0.256048i 0.917580π0.917580\pi
450450 0.159025i 0.00749649i
451451 −5.60400 −0.263882
452452 16.6834i 0.784720i
453453 − 11.3107i − 0.531424i
454454 − 2.15542i − 0.101159i
455455 8.87357 0.416000
456456 − 8.65014i − 0.405080i
457457 −32.3358 −1.51261 −0.756304 0.654221i 0.772997π-0.772997\pi
−0.756304 + 0.654221i 0.772997π0.772997\pi
458458 9.29190 0.434182
459459 27.4770 1.28251
460460 0.402491 0.0187662
461461 − 25.4047i − 1.18321i −0.806227 0.591607i 0.798494π-0.798494\pi
0.806227 0.591607i 0.201506π-0.201506\pi
462462 7.63456i 0.355192i
463463 −3.22072 −0.149680 −0.0748398 0.997196i 0.523845π-0.523845\pi
−0.0748398 + 0.997196i 0.523845π0.523845\pi
464464 0 0
465465 5.48263 0.254251
466466 − 11.7848i − 0.545918i
467467 22.8565i 1.05767i 0.848724 + 0.528836i 0.177371π0.177371\pi
−0.848724 + 0.528836i 0.822629π0.822629\pi
468468 0.191135 0.00883520
469469 −22.4031 −1.03448
470470 −5.09448 −0.234991
471471 −11.4278 −0.526567
472472 − 11.1598i − 0.513669i
473473 1.95082 0.0896987
474474 − 16.3757i − 0.752159i
475475 − 23.6173i − 1.08364i
476476 − 16.6900i − 0.764984i
477477 −0.141913 −0.00649775
478478 − 14.3692i − 0.657231i
479479 − 2.14546i − 0.0980284i −0.998798 0.0490142i 0.984392π-0.984392\pi
0.998798 0.0490142i 0.0156080π-0.0156080\pi
480480 0.861605 0.0393267
481481 − 51.0256i − 2.32657i
482482 9.20432i 0.419245i
483483 4.44725i 0.202357i
484484 −9.04918 −0.411326
485485 − 1.87802i − 0.0852766i
486486 −0.347520 −0.0157638
487487 21.7759 0.986761 0.493381 0.869814i 0.335761π-0.335761\pi
0.493381 + 0.869814i 0.335761π0.335761\pi
488488 4.86648 0.220295
489489 −9.85456 −0.445639
490490 1.40965i 0.0636817i
491491 38.8631i 1.75387i 0.480610 + 0.876935i 0.340415π0.340415\pi
−0.480610 + 0.876935i 0.659585π0.659585\pi
492492 −6.98807 −0.315047
493493 0 0
494494 −28.3861 −1.27715
495495 − 0.0231067i − 0.00103857i
496496 6.36328i 0.285720i
497497 −18.9476 −0.849916
498498 22.1357 0.991925
499499 −39.2992 −1.75928 −0.879638 0.475644i 0.842215π-0.842215\pi
−0.879638 + 0.475644i 0.842215π0.842215\pi
500500 4.82592 0.215822
501501 − 21.0553i − 0.940683i
502502 −5.91599 −0.264043
503503 − 28.0514i − 1.25075i −0.780324 0.625375i 0.784946π-0.784946\pi
0.780324 0.625375i 0.215054π-0.215054\pi
504504 0.104953i 0.00467499i
505505 − 0.604433i − 0.0268969i
506506 1.13638 0.0505183
507507 − 34.2525i − 1.52121i
508508 12.6929i 0.563155i
509509 1.70457 0.0755535 0.0377768 0.999286i 0.487972π-0.487972\pi
0.0377768 + 0.999286i 0.487972π0.487972\pi
510510 4.58201i 0.202895i
511511 − 38.5369i − 1.70477i
512512 1.00000i 0.0441942i
513513 25.6612 1.13297
514514 − 26.7213i − 1.17862i
515515 0.894484 0.0394157
516516 2.43263 0.107091
517517 −14.3836 −0.632590
518518 28.0185 1.23106
519519 20.2739i 0.889927i
520520 − 2.82742i − 0.123991i
521521 21.0834 0.923678 0.461839 0.886964i 0.347190π-0.347190\pi
0.461839 + 0.886964i 0.347190π0.347190\pi
522522 0 0
523523 −8.93606 −0.390747 −0.195373 0.980729i 0.562592π-0.562592\pi
−0.195373 + 0.980729i 0.562592π0.562592\pi
524524 − 14.7961i − 0.646369i
525525 25.9927i 1.13441i
526526 23.3544 1.01830
527527 −33.8399 −1.47409
528528 2.43263 0.105867
529529 −22.3380 −0.971219
530530 2.09930i 0.0911877i
531531 −0.373201 −0.0161956
532532 − 15.5870i − 0.675783i
533533 22.9319i 0.993291i
534534 3.12138i 0.135076i
535535 2.05331 0.0887723
536536 7.13840i 0.308332i
537537 − 31.9687i − 1.37955i
538538 15.6093 0.672964
539539 3.97998i 0.171430i
540540 2.55600i 0.109993i
541541 − 11.9679i − 0.514541i −0.966339 0.257271i 0.917177π-0.917177\pi
0.966339 0.257271i 0.0828232π-0.0828232\pi
542542 0.219679 0.00943604
543543 17.2322i 0.739506i
544544 −5.31800 −0.228007
545545 −7.17539 −0.307360
546546 31.2411 1.33699
547547 −24.1219 −1.03138 −0.515689 0.856776i 0.672464π-0.672464\pi
−0.515689 + 0.856776i 0.672464π0.672464\pi
548548 1.50925i 0.0644721i
549549 − 0.162743i − 0.00694572i
550550 6.64177 0.283206
551551 0 0
552552 1.41705 0.0603134
553553 − 29.5079i − 1.25480i
554554 3.75191i 0.159404i
555555 −7.69211 −0.326512
556556 −8.75639 −0.371353
557557 18.2020 0.771243 0.385622 0.922657i 0.373987π-0.373987\pi
0.385622 + 0.922657i 0.373987π0.373987\pi
558558 0.212799 0.00900849
559559 − 7.98287i − 0.337639i
560560 1.55256 0.0656076
561561 12.9367i 0.546189i
562562 − 24.4511i − 1.03141i
563563 31.5149i 1.32820i 0.747646 + 0.664098i 0.231184π0.231184\pi
−0.747646 + 0.664098i 0.768816π0.768816\pi
564564 −17.9361 −0.755244
565565 − 8.25323i − 0.347216i
566566 − 7.59751i − 0.319347i
567567 −28.5569 −1.19928
568568 6.03736i 0.253322i
569569 28.4651i 1.19332i 0.802494 + 0.596660i 0.203506π0.203506\pi
−0.802494 + 0.596660i 0.796494π0.796494\pi
570570 4.27921i 0.179236i
571571 −4.26294 −0.178399 −0.0891993 0.996014i 0.528431π-0.528431\pi
−0.0891993 + 0.996014i 0.528431π0.528431\pi
572572 − 7.98287i − 0.333781i
573573 0.738923 0.0308690
574574 −12.5921 −0.525583
575575 3.86893 0.161346
576576 0.0334417 0.00139340
577577 − 22.5839i − 0.940179i −0.882619 0.470090i 0.844222π-0.844222\pi
0.882619 0.470090i 0.155778π-0.155778\pi
578578 − 11.2811i − 0.469231i
579579 −17.9824 −0.747324
580580 0 0
581581 39.8872 1.65480
582582 − 6.61193i − 0.274073i
583583 5.92710i 0.245475i
584584 −12.2792 −0.508116
585585 −0.0945539 −0.00390932
586586 25.7223 1.06258
587587 −33.5049 −1.38289 −0.691447 0.722427i 0.743026π-0.743026\pi
−0.691447 + 0.722427i 0.743026π0.743026\pi
588588 4.96295i 0.204669i
589589 −31.6036 −1.30220
590590 5.52071i 0.227284i
591591 46.7514i 1.92310i
592592 − 8.92766i − 0.366925i
593593 −13.3565 −0.548488 −0.274244 0.961660i 0.588428π-0.588428\pi
−0.274244 + 0.961660i 0.588428π0.588428\pi
594594 7.21654i 0.296098i
595595 8.25650i 0.338484i
596596 −4.74072 −0.194187
597597 11.8485i 0.484928i
598598 − 4.65014i − 0.190159i
599599 0.915670i 0.0374133i 0.999825 + 0.0187066i 0.00595485π0.00595485\pi
−0.999825 + 0.0187066i 0.994045π0.994045\pi
600600 8.28215 0.338118
601601 5.77455i 0.235549i 0.993040 + 0.117774i 0.0375760π0.0375760\pi
−0.993040 + 0.117774i 0.962424π0.962424\pi
602602 4.38345 0.178656
603603 0.238720 0.00972144
604604 −6.49415 −0.264243
605605 4.47661 0.182000
606606 − 2.12802i − 0.0864449i
607607 14.9822i 0.608108i 0.952655 + 0.304054i 0.0983403π0.0983403\pi
−0.952655 + 0.304054i 0.901660π0.901660\pi
608608 −4.96656 −0.201421
609609 0 0
610610 −2.40744 −0.0974743
611611 58.8586i 2.38116i
612612 0.177843i 0.00718887i
613613 23.9141 0.965881 0.482940 0.875653i 0.339569π-0.339569\pi
0.482940 + 0.875653i 0.339569π0.339569\pi
614614 −1.81399 −0.0732067
615615 3.45699 0.139399
616616 4.38345 0.176614
617617 14.7070i 0.592080i 0.955176 + 0.296040i 0.0956661π0.0956661\pi
−0.955176 + 0.296040i 0.904334π0.904334\pi
618618 3.14920 0.126679
619619 − 22.9142i − 0.920998i −0.887660 0.460499i 0.847671π-0.847671\pi
0.887660 0.460499i 0.152329π-0.152329\pi
620620 − 3.14790i − 0.126423i
621621 4.20375i 0.168691i
622622 −19.4100 −0.778271
623623 5.62454i 0.225342i
624624 − 9.95448i − 0.398498i
625625 21.3890 0.855560
626626 33.8847i 1.35431i
627627 12.0818i 0.482501i
628628 6.56139i 0.261828i
629629 47.4773 1.89304
630630 − 0.0519202i − 0.00206855i
631631 −13.1112 −0.521947 −0.260974 0.965346i 0.584044π-0.584044\pi
−0.260974 + 0.965346i 0.584044π0.584044\pi
632632 −9.40223 −0.374001
633633 −10.1725 −0.404319
634634 5.49761 0.218338
635635 − 6.27914i − 0.249180i
636636 7.39097i 0.293071i
637637 16.2863 0.645287
638638 0 0
639639 0.201900 0.00798702
640640 − 0.494698i − 0.0195547i
641641 − 43.0960i − 1.70219i −0.525011 0.851096i 0.675939π-0.675939\pi
0.525011 0.851096i 0.324061π-0.324061\pi
642642 7.22906 0.285308
643643 8.64296 0.340845 0.170422 0.985371i 0.445487π-0.445487\pi
0.170422 + 0.985371i 0.445487π0.445487\pi
644644 2.55343 0.100619
645645 −1.20342 −0.0473846
646646 − 26.4121i − 1.03917i
647647 4.79078 0.188345 0.0941725 0.995556i 0.469979π-0.469979\pi
0.0941725 + 0.995556i 0.469979π0.469979\pi
648648 9.09921i 0.357451i
649649 15.5870i 0.611844i
650650 − 27.1785i − 1.06603i
651651 34.7821 1.36322
652652 5.65808i 0.221588i
653653 − 5.51910i − 0.215979i −0.994152 0.107990i 0.965559π-0.965559\pi
0.994152 0.107990i 0.0344413π-0.0344413\pi
654654 −25.2623 −0.987835
655655 7.31958i 0.286000i
656656 4.01226i 0.156653i
657657 0.410637i 0.0160205i
658658 −32.3197 −1.25995
659659 − 1.84337i − 0.0718075i −0.999355 0.0359037i 0.988569π-0.988569\pi
0.999355 0.0359037i 0.0114310π-0.0114310\pi
660660 −1.20342 −0.0468430
661661 −26.0980 −1.01509 −0.507547 0.861624i 0.669448π-0.669448\pi
−0.507547 + 0.861624i 0.669448π0.669448\pi
662662 −13.6463 −0.530378
663663 52.9379 2.05594
664664 − 12.7094i − 0.493221i
665665 7.71087i 0.299015i
666666 −0.298556 −0.0115688
667667 0 0
668668 −12.0891 −0.467742
669669 38.2055i 1.47711i
670670 − 3.53135i − 0.136428i
671671 −6.79709 −0.262399
672672 5.46607 0.210858
673673 −21.9315 −0.845396 −0.422698 0.906271i 0.638917π-0.638917\pi
−0.422698 + 0.906271i 0.638917π0.638917\pi
674674 22.5673 0.869261
675675 24.5695i 0.945680i
676676 −19.6664 −0.756400
677677 − 10.1655i − 0.390694i −0.980734 0.195347i 0.937417π-0.937417\pi
0.980734 0.195347i 0.0625832π-0.0625832\pi
678678 − 29.0571i − 1.11593i
679679 − 11.9143i − 0.457228i
680680 2.63080 0.100887
681681 3.75405i 0.143856i
682682 − 8.88770i − 0.340327i
683683 20.4869 0.783910 0.391955 0.919984i 0.371799π-0.371799\pi
0.391955 + 0.919984i 0.371799π0.371799\pi
684684 0.166090i 0.00635062i
685685 − 0.746624i − 0.0285271i
686686 − 13.0258i − 0.497329i
687687 −16.1835 −0.617439
688688 − 1.39672i − 0.0532493i
689689 24.2540 0.924006
690690 −0.701010 −0.0266870
691691 −30.8462 −1.17345 −0.586723 0.809788i 0.699582π-0.699582\pi
−0.586723 + 0.809788i 0.699582π0.699582\pi
692692 11.6405 0.442504
693693 − 0.146590i − 0.00556850i
694694 2.97305i 0.112855i
695695 4.33177 0.164313
696696 0 0
697697 −21.3372 −0.808204
698698 − 5.73913i − 0.217229i
699699 20.5252i 0.776336i
700700 14.9239 0.564071
701701 20.6761 0.780927 0.390463 0.920619i 0.372315π-0.372315\pi
0.390463 + 0.920619i 0.372315π0.372315\pi
702702 29.5305 1.11456
703703 44.3397 1.67230
704704 − 1.39672i − 0.0526408i
705705 8.87294 0.334174
706706 6.47216i 0.243583i
707707 − 3.83456i − 0.144213i
708708 19.4367i 0.730476i
709709 45.0200 1.69076 0.845382 0.534163i 0.179373π-0.179373\pi
0.845382 + 0.534163i 0.179373π0.179373\pi
710710 − 2.98667i − 0.112088i
711711 0.314427i 0.0117919i
712712 1.79217 0.0671644
713713 − 5.17722i − 0.193888i
714714 29.0686i 1.08786i
715715 3.94911i 0.147688i
716716 −18.3551 −0.685963
717717 25.0265i 0.934631i
718718 −10.7414 −0.400866
719719 −10.0777 −0.375834 −0.187917 0.982185i 0.560174π-0.560174\pi
−0.187917 + 0.982185i 0.560174π0.560174\pi
720720 −0.0165436 −0.000616542 0
721721 5.67466 0.211335
722722 − 5.66670i − 0.210893i
723723 − 16.0310i − 0.596198i
724724 9.89404 0.367709
725725 0 0
726726 15.7608 0.584937
727727 22.4140i 0.831289i 0.909527 + 0.415644i 0.136444π0.136444\pi
−0.909527 + 0.415644i 0.863556π0.863556\pi
728728 − 17.9373i − 0.664802i
729729 −26.6924 −0.988606
730730 6.07449 0.224827
731731 7.42774 0.274725
732732 −8.47584 −0.313276
733733 − 3.94609i − 0.145752i −0.997341 0.0728760i 0.976782π-0.976782\pi
0.997341 0.0728760i 0.0232177π-0.0232177\pi
734734 −18.9393 −0.699064
735735 − 2.45516i − 0.0905601i
736736 − 0.813609i − 0.0299900i
737737 − 9.97032i − 0.367261i
738738 0.134177 0.00493912
739739 6.20181i 0.228137i 0.993473 + 0.114069i 0.0363884π0.0363884\pi
−0.993473 + 0.114069i 0.963612π0.963612\pi
740740 4.41650i 0.162354i
741741 49.4395 1.81620
742742 13.3181i 0.488922i
743743 − 48.6919i − 1.78633i −0.449725 0.893167i 0.648478π-0.648478\pi
0.449725 0.893167i 0.351522π-0.351522\pi
744744 − 11.0828i − 0.406314i
745745 2.34523 0.0859224
746746 2.43402i 0.0891160i
747747 −0.425025 −0.0155508
748748 7.42774 0.271585
749749 13.0263 0.475971
750750 −8.40519 −0.306914
751751 − 26.3802i − 0.962626i −0.876549 0.481313i 0.840160π-0.840160\pi
0.876549 0.481313i 0.159840π-0.159840\pi
752752 10.2982i 0.375535i
753753 10.3037 0.375489
754754 0 0
755755 3.21264 0.116920
756756 16.2154i 0.589749i
757757 38.1907i 1.38806i 0.719944 + 0.694032i 0.244168π0.244168\pi
−0.719944 + 0.694032i 0.755832π0.755832\pi
758758 17.1415 0.622606
759759 −1.97921 −0.0718408
760760 2.45695 0.0891229
761761 6.23834 0.226140 0.113070 0.993587i 0.463932π-0.463932\pi
0.113070 + 0.993587i 0.463932π0.463932\pi
762762 − 22.1069i − 0.800848i
763763 −45.5211 −1.64798
764764 − 0.424259i − 0.0153492i
765765 − 0.0879786i − 0.00318087i
766766 23.7774i 0.859111i
767767 63.7830 2.30307
768768 − 1.74168i − 0.0628474i
769769 28.1561i 1.01534i 0.861553 + 0.507668i 0.169492π0.169492\pi
−0.861553 + 0.507668i 0.830508π0.830508\pi
770770 −2.16849 −0.0781468
771771 46.5398i 1.67609i
772772 10.3248i 0.371597i
773773 35.0724i 1.26146i 0.776000 + 0.630732i 0.217245π0.217245\pi
−0.776000 + 0.630732i 0.782755π0.782755\pi
774774 −0.0467086 −0.00167891
775775 − 30.2591i − 1.08694i
776776 −3.79630 −0.136279
777777 −48.7992 −1.75066
778778 −11.5272 −0.413271
779779 −19.9271 −0.713964
780780 4.92446i 0.176324i
781781 − 8.43248i − 0.301738i
782782 4.32677 0.154725
783783 0 0
784784 2.84952 0.101769
785785 − 3.24591i − 0.115851i
786786 25.7700i 0.919184i
787787 27.3021 0.973216 0.486608 0.873621i 0.338234π-0.338234\pi
0.486608 + 0.873621i 0.338234π0.338234\pi
788788 26.8428 0.956234
789789 −40.6758 −1.44810
790790 4.65127 0.165485
791791 − 52.3590i − 1.86167i
792792 −0.0467086 −0.00165972
793793 27.8141i 0.987708i
794794 28.9833i 1.02858i
795795 − 3.65630i − 0.129676i
796796 6.80294 0.241124
797797 40.9620i 1.45095i 0.688249 + 0.725475i 0.258380π0.258380\pi
−0.688249 + 0.725475i 0.741620π0.741620\pi
798798 27.1476i 0.961014i
799799 −54.7655 −1.93746
800800 − 4.75527i − 0.168124i
801801 − 0.0599333i − 0.00211764i
802802 10.3297i 0.364753i
803803 17.1506 0.605230
804804 − 12.4328i − 0.438471i
805805 −1.26318 −0.0445211
806806 −36.3690 −1.28104
807807 −27.1863 −0.957004
808808 −1.22182 −0.0429835
809809 43.1355i 1.51656i 0.651927 + 0.758282i 0.273961π0.273961\pi
−0.651927 + 0.758282i 0.726039π0.726039\pi
810810 − 4.50136i − 0.158162i
811811 −38.0001 −1.33436 −0.667182 0.744894i 0.732500π-0.732500\pi
−0.667182 + 0.744894i 0.732500π0.732500\pi
812812 0 0
813813 −0.382611 −0.0134187
814814 12.4694i 0.437053i
815815 − 2.79904i − 0.0980463i
816816 9.26224 0.324243
817817 6.93688 0.242691
818818 −9.96171 −0.348303
819819 −0.599856 −0.0209607
820820 − 1.98486i − 0.0693143i
821821 12.2176 0.426396 0.213198 0.977009i 0.431612π-0.431612\pi
0.213198 + 0.977009i 0.431612π0.431612\pi
822822 − 2.62863i − 0.0916840i
823823 36.6269i 1.27673i 0.769733 + 0.638367i 0.220390π0.220390\pi
−0.769733 + 0.638367i 0.779610π0.779610\pi
824824 − 1.80814i − 0.0629896i
825825 −11.5678 −0.402740
826826 35.0237i 1.21863i
827827 25.8144i 0.897655i 0.893618 + 0.448828i 0.148158π0.148158\pi
−0.893618 + 0.448828i 0.851842π0.851842\pi
828828 −0.0272085 −0.000945560 0
829829 − 15.7732i − 0.547825i −0.961755 0.273913i 0.911682π-0.911682\pi
0.961755 0.273913i 0.0883179π-0.0883179\pi
830830 6.28733i 0.218236i
831831 − 6.53463i − 0.226684i
832832 −5.71545 −0.198148
833833 15.1538i 0.525046i
834834 15.2508 0.528092
835835 5.98046 0.206962
836836 6.93688 0.239917
837837 32.8777 1.13642
838838 − 28.3523i − 0.979412i
839839 − 2.15662i − 0.0744547i −0.999307 0.0372274i 0.988147π-0.988147\pi
0.999307 0.0372274i 0.0118526π-0.0118526\pi
840840 −2.70406 −0.0932988
841841 0 0
842842 −9.51999 −0.328080
843843 42.5860i 1.46674i
844844 5.84061i 0.201042i
845845 9.72893 0.334685
846846 0.344388 0.0118403
847847 28.3999 0.975832
848848 4.24359 0.145726
849849 13.2324i 0.454135i
850850 25.2885 0.867389
851851 7.26363i 0.248994i
852852 − 10.5151i − 0.360242i
853853 21.6578i 0.741548i 0.928723 + 0.370774i 0.120908π0.120908\pi
−0.928723 + 0.370774i 0.879092π0.879092\pi
854854 −15.2729 −0.522629
855855 − 0.0821645i − 0.00280997i
856856 − 4.15063i − 0.141866i
857857 −12.6208 −0.431117 −0.215559 0.976491i 0.569157π-0.569157\pi
−0.215559 + 0.976491i 0.569157π0.569157\pi
858858 13.9036i 0.474661i
859859 19.4272i 0.662849i 0.943482 + 0.331424i 0.107529π0.107529\pi
−0.943482 + 0.331424i 0.892471π0.892471\pi
860860 0.690954i 0.0235613i
861861 21.9313 0.747418
862862 − 18.9749i − 0.646289i
863863 45.9285 1.56342 0.781712 0.623640i 0.214347π-0.214347\pi
0.781712 + 0.623640i 0.214347π0.214347\pi
864864 5.16679 0.175778
865865 −5.75852 −0.195795
866866 28.3148 0.962175
867867 19.6480i 0.667281i
868868 − 19.9705i − 0.677842i
869869 13.1323 0.445482
870870 0 0
871871 −40.7992 −1.38243
872872 14.5046i 0.491187i
873873 0.126955i 0.00429677i
874874 4.04084 0.136683
875875 −15.1456 −0.512016
876876 21.3864 0.722579
877877 8.09527 0.273358 0.136679 0.990615i 0.456357π-0.456357\pi
0.136679 + 0.990615i 0.456357π0.456357\pi
878878 19.8958i 0.671452i
879879 −44.8000 −1.51107
880880 0.690954i 0.0232920i
881881 3.00187i 0.101135i 0.998721 + 0.0505677i 0.0161031π0.0161031\pi
−0.998721 + 0.0505677i 0.983897π0.983897\pi
882882 − 0.0952930i − 0.00320868i
883883 38.6155 1.29952 0.649758 0.760141i 0.274870π-0.274870\pi
0.649758 + 0.760141i 0.274870π0.274870\pi
884884 − 30.3948i − 1.02229i
885885 − 9.61530i − 0.323215i
886886 −35.5600 −1.19466
887887 − 29.4281i − 0.988100i −0.869433 0.494050i 0.835516π-0.835516\pi
0.869433 0.494050i 0.164484π-0.164484\pi
888888 15.5491i 0.521794i
889889 − 39.8352i − 1.33603i
890890 −0.886584 −0.0297184
891891 − 12.7090i − 0.425768i
892892 21.9361 0.734474
893893 −51.1464 −1.71155
894894 8.25681 0.276149
895895 9.08024 0.303519
896896 − 3.13840i − 0.104846i
897897 8.09905i 0.270420i
898898 −10.8511 −0.362106
899899 0 0
900900 −0.159025 −0.00530082
901901 22.5674i 0.751829i
902902 − 5.60400i − 0.186593i
903903 −7.63456 −0.254062
904904 −16.6834 −0.554881
905905 −4.89456 −0.162701
906906 11.3107 0.375773
907907 − 4.66629i − 0.154942i −0.996995 0.0774709i 0.975316π-0.975316\pi
0.996995 0.0774709i 0.0246845π-0.0246845\pi
908908 2.15542 0.0715302
909909 0.0408598i 0.00135523i
910910 8.87357i 0.294156i
911911 37.9571i 1.25758i 0.777577 + 0.628788i 0.216449π0.216449\pi
−0.777577 + 0.628788i 0.783551π0.783551\pi
912912 8.65014 0.286435
913913 17.7515i 0.587488i
914914 − 32.3358i − 1.06957i
915915 4.19298 0.138616
916916 9.29190i 0.307013i
917917 46.4359i 1.53345i
918918 27.4770i 0.906875i
919919 25.3594 0.836530 0.418265 0.908325i 0.362638π-0.362638\pi
0.418265 + 0.908325i 0.362638π0.362638\pi
920920 0.402491i 0.0132697i
921921 3.15939 0.104105
922922 25.4047 0.836659
923923 −34.5062 −1.13579
924924 −7.63456 −0.251159
925925 42.4535i 1.39586i
926926 − 3.22072i − 0.105839i
927927 −0.0604674 −0.00198601
928928 0 0
929929 36.8642 1.20947 0.604737 0.796425i 0.293278π-0.293278\pi
0.604737 + 0.796425i 0.293278π0.293278\pi
930930 5.48263i 0.179783i
931931 14.1523i 0.463824i
932932 11.7848 0.386022
933933 33.8060 1.10676
934934 −22.8565 −0.747887
935935 −3.67449 −0.120169
936936 0.191135i 0.00624743i
937937 2.33445 0.0762631 0.0381316 0.999273i 0.487859π-0.487859\pi
0.0381316 + 0.999273i 0.487859π0.487859\pi
938938 − 22.4031i − 0.731487i
939939 − 59.0163i − 1.92592i
940940 − 5.09448i − 0.166164i
941941 −8.78880 −0.286507 −0.143253 0.989686i 0.545756π-0.545756\pi
−0.143253 + 0.989686i 0.545756π0.545756\pi
942942 − 11.4278i − 0.372339i
943943 − 3.26441i − 0.106304i
944944 11.1598 0.363219
945945 − 8.02174i − 0.260947i
946946 1.95082i 0.0634266i
947947 − 12.6976i − 0.412618i −0.978487 0.206309i 0.933855π-0.933855\pi
0.978487 0.206309i 0.0661452π-0.0661452\pi
948948 16.3757 0.531857
949949 − 70.1811i − 2.27818i
950950 23.6173 0.766248
951951 −9.57506 −0.310493
952952 16.6900 0.540925
953953 54.4562 1.76401 0.882005 0.471240i 0.156194π-0.156194\pi
0.882005 + 0.471240i 0.156194π0.156194\pi
954954 − 0.141913i − 0.00459460i
955955 0.209880i 0.00679157i
956956 14.3692 0.464732
957957 0 0
958958 2.14546 0.0693165
959959 − 4.73663i − 0.152954i
960960 0.861605i 0.0278082i
961961 −9.49127 −0.306170
962962 51.0256 1.64513
963963 −0.138804 −0.00447290
964964 −9.20432 −0.296451
965965 − 5.10765i − 0.164421i
966966 −4.44725 −0.143088
967967 − 49.5652i − 1.59391i −0.604038 0.796955i 0.706443π-0.706443\pi
0.604038 0.796955i 0.293557π-0.293557\pi
968968 − 9.04918i − 0.290852i
969969 46.0014i 1.47778i
970970 1.87802 0.0602996
971971 − 27.5824i − 0.885162i −0.896729 0.442581i 0.854063π-0.854063\pi
0.896729 0.442581i 0.145937π-0.145937\pi
972972 − 0.347520i − 0.0111467i
973973 27.4810 0.881000
974974 21.7759i 0.697746i
975975 47.3363i 1.51597i
976976 4.86648i 0.155772i
977977 −44.5323 −1.42471 −0.712357 0.701818i 0.752372π-0.752372\pi
−0.712357 + 0.701818i 0.752372π0.752372\pi
978978 − 9.85456i − 0.315114i
979979 −2.50316 −0.0800012
980980 −1.40965 −0.0450298
981981 0.485058 0.0154867
982982 −38.8631 −1.24017
983983 1.19667i 0.0381680i 0.999818 + 0.0190840i 0.00607499π0.00607499\pi
−0.999818 + 0.0190840i 0.993925π0.993925\pi
984984 − 6.98807i − 0.222772i
985985 −13.2791 −0.423106
986986 0 0
987987 56.2904 1.79174
988988 − 28.3861i − 0.903083i
989989 1.13638i 0.0361348i
990990 0.0231067 0.000734378 0
991991 −35.0275 −1.11269 −0.556343 0.830953i 0.687796π-0.687796\pi
−0.556343 + 0.830953i 0.687796π0.687796\pi
992992 −6.36328 −0.202034
993993 23.7674 0.754236
994994 − 18.9476i − 0.600982i
995995 −3.36540 −0.106690
996996 22.1357i 0.701397i
997997 31.1728i 0.987254i 0.869674 + 0.493627i 0.164329π0.164329\pi
−0.869674 + 0.493627i 0.835671π0.835671\pi
998998 − 39.2992i − 1.24400i
999999 −46.1273 −1.45940
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.b.i.1681.8 12
29.2 odd 28 58.2.d.b.25.2 yes 12
29.12 odd 4 1682.2.a.q.1.5 6
29.14 odd 28 58.2.d.b.7.2 12
29.17 odd 4 1682.2.a.t.1.2 6
29.28 even 2 inner 1682.2.b.i.1681.5 12
87.2 even 28 522.2.k.h.199.1 12
87.14 even 28 522.2.k.h.181.1 12
116.31 even 28 464.2.u.h.257.1 12
116.43 even 28 464.2.u.h.65.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.b.7.2 12 29.14 odd 28
58.2.d.b.25.2 yes 12 29.2 odd 28
464.2.u.h.65.1 12 116.43 even 28
464.2.u.h.257.1 12 116.31 even 28
522.2.k.h.181.1 12 87.14 even 28
522.2.k.h.199.1 12 87.2 even 28
1682.2.a.q.1.5 6 29.12 odd 4
1682.2.a.t.1.2 6 29.17 odd 4
1682.2.b.i.1681.5 12 29.28 even 2 inner
1682.2.b.i.1681.8 12 1.1 even 1 trivial