Properties

Label 464.2.u.h.65.1
Level $464$
Weight $2$
Character 464.65
Analytic conductor $3.705$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(49,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 0, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.u (of order \(7\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 13 x^{10} - 9 x^{9} - 5 x^{8} + 35 x^{7} + 197 x^{6} - 140 x^{5} - 80 x^{4} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 65.1
Root \(-1.56920 + 0.755686i\) of defining polynomial
Character \(\chi\) \(=\) 464.65
Dual form 464.2.u.h.257.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.56920 - 0.755686i) q^{3} +(0.110081 + 0.482295i) q^{5} +(2.82760 + 1.36170i) q^{7} +(0.0208506 + 0.0261458i) q^{9} +O(q^{10})\) \(q+(-1.56920 - 0.755686i) q^{3} +(0.110081 + 0.482295i) q^{5} +(2.82760 + 1.36170i) q^{7} +(0.0208506 + 0.0261458i) q^{9} +(-0.870839 + 1.09200i) q^{11} +(-3.56353 + 4.46852i) q^{13} +(0.191725 - 0.840003i) q^{15} +5.31800 q^{17} +(4.47471 - 2.15491i) q^{19} +(-3.40804 - 4.27355i) q^{21} +(-0.181045 + 0.793210i) q^{23} +(4.28435 - 2.06324i) q^{25} +(1.14972 + 5.03725i) q^{27} +(5.38501 + 0.0414712i) q^{29} +(1.41596 + 6.20373i) q^{31} +(2.19173 - 1.05548i) q^{33} +(-0.345477 + 1.51363i) q^{35} +(5.56630 + 6.97992i) q^{37} +(8.96867 - 4.31909i) q^{39} -4.01226 q^{41} +(-0.310799 + 1.36170i) q^{43} +(-0.0103147 + 0.0129343i) q^{45} +(6.42079 - 8.05142i) q^{47} +(1.77665 + 2.22785i) q^{49} +(-8.34499 - 4.01873i) q^{51} +(-0.944288 - 4.13720i) q^{53} +(-0.622528 - 0.299794i) q^{55} -8.65014 q^{57} -11.1598 q^{59} +(-4.38454 - 2.11149i) q^{61} +(0.0233543 + 0.102322i) q^{63} +(-2.54742 - 1.22677i) q^{65} +(-4.45072 - 5.58102i) q^{67} +(0.883513 - 1.10789i) q^{69} +(-3.76423 + 4.72019i) q^{71} +(-2.73238 + 11.9713i) q^{73} -8.28215 q^{75} +(-3.94935 + 1.90191i) q^{77} +(5.86220 + 7.35096i) q^{79} +(2.02476 - 8.87107i) q^{81} +(11.4508 - 5.51441i) q^{83} +(0.585409 + 2.56484i) q^{85} +(-8.41880 - 4.13445i) q^{87} +(-0.398796 - 1.74724i) q^{89} +(-16.1610 + 7.78272i) q^{91} +(2.46615 - 10.8049i) q^{93} +(1.53188 + 1.92092i) q^{95} +(-3.42035 + 1.64715i) q^{97} -0.0467086 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{3} - q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 3 q^{3} - q^{7} - 11 q^{9} + 2 q^{11} + q^{13} + 9 q^{15} - 12 q^{17} + 6 q^{19} - 13 q^{21} - 35 q^{23} - 6 q^{25} - 39 q^{27} - 14 q^{29} + 8 q^{31} + 33 q^{33} + 18 q^{35} + 31 q^{37} + 22 q^{39} - 30 q^{41} + 5 q^{43} - 20 q^{45} + 33 q^{47} + 37 q^{49} + 15 q^{51} + 13 q^{53} - 36 q^{55} - 38 q^{57} - 38 q^{59} - 5 q^{61} - 4 q^{63} - 20 q^{65} + 7 q^{67} + 20 q^{69} - 3 q^{71} - 22 q^{73} + 2 q^{75} + 10 q^{77} + 60 q^{79} + 88 q^{81} + 39 q^{83} + 38 q^{85} - 9 q^{87} + 39 q^{89} - 61 q^{91} - 54 q^{93} - 55 q^{95} - 19 q^{97} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.56920 0.755686i −0.905977 0.436295i −0.0779327 0.996959i \(-0.524832\pi\)
−0.828044 + 0.560663i \(0.810546\pi\)
\(4\) 0 0
\(5\) 0.110081 + 0.482295i 0.0492296 + 0.215689i 0.993560 0.113311i \(-0.0361456\pi\)
−0.944330 + 0.329000i \(0.893288\pi\)
\(6\) 0 0
\(7\) 2.82760 + 1.36170i 1.06873 + 0.514674i 0.883697 0.468059i \(-0.155046\pi\)
0.185033 + 0.982732i \(0.440761\pi\)
\(8\) 0 0
\(9\) 0.0208506 + 0.0261458i 0.00695019 + 0.00871526i
\(10\) 0 0
\(11\) −0.870839 + 1.09200i −0.262568 + 0.329250i −0.895587 0.444887i \(-0.853244\pi\)
0.633019 + 0.774136i \(0.281815\pi\)
\(12\) 0 0
\(13\) −3.56353 + 4.46852i −0.988344 + 1.23934i −0.0174472 + 0.999848i \(0.505554\pi\)
−0.970897 + 0.239497i \(0.923018\pi\)
\(14\) 0 0
\(15\) 0.191725 0.840003i 0.0495032 0.216888i
\(16\) 0 0
\(17\) 5.31800 1.28980 0.644902 0.764265i \(-0.276898\pi\)
0.644902 + 0.764265i \(0.276898\pi\)
\(18\) 0 0
\(19\) 4.47471 2.15491i 1.02657 0.494370i 0.156697 0.987647i \(-0.449915\pi\)
0.869872 + 0.493277i \(0.164201\pi\)
\(20\) 0 0
\(21\) −3.40804 4.27355i −0.743695 0.932565i
\(22\) 0 0
\(23\) −0.181045 + 0.793210i −0.0377505 + 0.165396i −0.990289 0.139021i \(-0.955604\pi\)
0.952539 + 0.304417i \(0.0984616\pi\)
\(24\) 0 0
\(25\) 4.28435 2.06324i 0.856871 0.412647i
\(26\) 0 0
\(27\) 1.14972 + 5.03725i 0.221263 + 0.969419i
\(28\) 0 0
\(29\) 5.38501 + 0.0414712i 0.999970 + 0.00770101i
\(30\) 0 0
\(31\) 1.41596 + 6.20373i 0.254314 + 1.11422i 0.927226 + 0.374501i \(0.122186\pi\)
−0.672912 + 0.739722i \(0.734957\pi\)
\(32\) 0 0
\(33\) 2.19173 1.05548i 0.381530 0.183735i
\(34\) 0 0
\(35\) −0.345477 + 1.51363i −0.0583962 + 0.255851i
\(36\) 0 0
\(37\) 5.56630 + 6.97992i 0.915095 + 1.14749i 0.988655 + 0.150202i \(0.0479923\pi\)
−0.0735606 + 0.997291i \(0.523436\pi\)
\(38\) 0 0
\(39\) 8.96867 4.31909i 1.43614 0.691607i
\(40\) 0 0
\(41\) −4.01226 −0.626610 −0.313305 0.949652i \(-0.601436\pi\)
−0.313305 + 0.949652i \(0.601436\pi\)
\(42\) 0 0
\(43\) −0.310799 + 1.36170i −0.0473964 + 0.207657i −0.993082 0.117427i \(-0.962535\pi\)
0.945685 + 0.325084i \(0.105393\pi\)
\(44\) 0 0
\(45\) −0.0103147 + 0.0129343i −0.00153763 + 0.00192813i
\(46\) 0 0
\(47\) 6.42079 8.05142i 0.936569 1.17442i −0.0478986 0.998852i \(-0.515252\pi\)
0.984467 0.175568i \(-0.0561761\pi\)
\(48\) 0 0
\(49\) 1.77665 + 2.22785i 0.253807 + 0.318264i
\(50\) 0 0
\(51\) −8.34499 4.01873i −1.16853 0.562735i
\(52\) 0 0
\(53\) −0.944288 4.13720i −0.129708 0.568288i −0.997456 0.0712835i \(-0.977291\pi\)
0.867748 0.497004i \(-0.165567\pi\)
\(54\) 0 0
\(55\) −0.622528 0.299794i −0.0839416 0.0404241i
\(56\) 0 0
\(57\) −8.65014 −1.14574
\(58\) 0 0
\(59\) −11.1598 −1.45288 −0.726438 0.687232i \(-0.758826\pi\)
−0.726438 + 0.687232i \(0.758826\pi\)
\(60\) 0 0
\(61\) −4.38454 2.11149i −0.561383 0.270348i 0.131598 0.991303i \(-0.457989\pi\)
−0.692982 + 0.720955i \(0.743703\pi\)
\(62\) 0 0
\(63\) 0.0233543 + 0.102322i 0.00294237 + 0.0128913i
\(64\) 0 0
\(65\) −2.54742 1.22677i −0.315969 0.152163i
\(66\) 0 0
\(67\) −4.45072 5.58102i −0.543742 0.681830i 0.431718 0.902009i \(-0.357908\pi\)
−0.975460 + 0.220178i \(0.929336\pi\)
\(68\) 0 0
\(69\) 0.883513 1.10789i 0.106362 0.133374i
\(70\) 0 0
\(71\) −3.76423 + 4.72019i −0.446732 + 0.560184i −0.953304 0.302014i \(-0.902341\pi\)
0.506572 + 0.862198i \(0.330913\pi\)
\(72\) 0 0
\(73\) −2.73238 + 11.9713i −0.319801 + 1.40114i 0.518103 + 0.855319i \(0.326639\pi\)
−0.837903 + 0.545819i \(0.816219\pi\)
\(74\) 0 0
\(75\) −8.28215 −0.956341
\(76\) 0 0
\(77\) −3.94935 + 1.90191i −0.450070 + 0.216743i
\(78\) 0 0
\(79\) 5.86220 + 7.35096i 0.659549 + 0.827048i 0.993294 0.115615i \(-0.0368840\pi\)
−0.333745 + 0.942663i \(0.608313\pi\)
\(80\) 0 0
\(81\) 2.02476 8.87107i 0.224974 0.985675i
\(82\) 0 0
\(83\) 11.4508 5.51441i 1.25689 0.605285i 0.317538 0.948246i \(-0.397144\pi\)
0.939350 + 0.342960i \(0.111430\pi\)
\(84\) 0 0
\(85\) 0.585409 + 2.56484i 0.0634965 + 0.278196i
\(86\) 0 0
\(87\) −8.41880 4.13445i −0.902590 0.443259i
\(88\) 0 0
\(89\) −0.398796 1.74724i −0.0422722 0.185207i 0.949384 0.314118i \(-0.101709\pi\)
−0.991656 + 0.128911i \(0.958852\pi\)
\(90\) 0 0
\(91\) −16.1610 + 7.78272i −1.69413 + 0.815851i
\(92\) 0 0
\(93\) 2.46615 10.8049i 0.255728 1.12042i
\(94\) 0 0
\(95\) 1.53188 + 1.92092i 0.157168 + 0.197082i
\(96\) 0 0
\(97\) −3.42035 + 1.64715i −0.347283 + 0.167243i −0.599391 0.800456i \(-0.704591\pi\)
0.252108 + 0.967699i \(0.418876\pi\)
\(98\) 0 0
\(99\) −0.0467086 −0.00469439
\(100\) 0 0
\(101\) 0.271881 1.19119i 0.0270532 0.118528i −0.959598 0.281373i \(-0.909210\pi\)
0.986652 + 0.162846i \(0.0520672\pi\)
\(102\) 0 0
\(103\) −1.12736 + 1.41366i −0.111082 + 0.139292i −0.834264 0.551365i \(-0.814107\pi\)
0.723182 + 0.690657i \(0.242679\pi\)
\(104\) 0 0
\(105\) 1.68595 2.11412i 0.164532 0.206317i
\(106\) 0 0
\(107\) −2.58788 3.24509i −0.250179 0.313715i 0.640845 0.767670i \(-0.278584\pi\)
−0.891025 + 0.453955i \(0.850013\pi\)
\(108\) 0 0
\(109\) −13.0682 6.29330i −1.25170 0.602789i −0.313736 0.949510i \(-0.601581\pi\)
−0.937968 + 0.346721i \(0.887295\pi\)
\(110\) 0 0
\(111\) −3.46000 15.1593i −0.328409 1.43885i
\(112\) 0 0
\(113\) −15.0312 7.23864i −1.41402 0.680954i −0.438065 0.898943i \(-0.644336\pi\)
−0.975951 + 0.217989i \(0.930050\pi\)
\(114\) 0 0
\(115\) −0.402491 −0.0375325
\(116\) 0 0
\(117\) −0.191135 −0.0176704
\(118\) 0 0
\(119\) 15.0371 + 7.24151i 1.37845 + 0.663828i
\(120\) 0 0
\(121\) 2.01363 + 8.82230i 0.183057 + 0.802027i
\(122\) 0 0
\(123\) 6.29603 + 3.03201i 0.567694 + 0.273387i
\(124\) 0 0
\(125\) 3.00891 + 3.77305i 0.269125 + 0.337472i
\(126\) 0 0
\(127\) 7.91387 9.92368i 0.702243 0.880584i −0.294946 0.955514i \(-0.595302\pi\)
0.997189 + 0.0749295i \(0.0238732\pi\)
\(128\) 0 0
\(129\) 1.51672 1.90191i 0.133540 0.167454i
\(130\) 0 0
\(131\) −3.29243 + 14.4251i −0.287661 + 1.26033i 0.600064 + 0.799952i \(0.295142\pi\)
−0.887725 + 0.460374i \(0.847715\pi\)
\(132\) 0 0
\(133\) 15.5870 1.35157
\(134\) 0 0
\(135\) −2.30288 + 1.10901i −0.198200 + 0.0954482i
\(136\) 0 0
\(137\) −0.941003 1.17998i −0.0803953 0.100813i 0.740007 0.672599i \(-0.234822\pi\)
−0.820403 + 0.571786i \(0.806251\pi\)
\(138\) 0 0
\(139\) 1.94848 8.53684i 0.165268 0.724086i −0.822578 0.568652i \(-0.807465\pi\)
0.987846 0.155434i \(-0.0496776\pi\)
\(140\) 0 0
\(141\) −16.1598 + 7.78216i −1.36090 + 0.655377i
\(142\) 0 0
\(143\) −1.77636 7.78272i −0.148546 0.650824i
\(144\) 0 0
\(145\) 0.572784 + 2.60173i 0.0475671 + 0.216062i
\(146\) 0 0
\(147\) −1.10436 4.83852i −0.0910861 0.399074i
\(148\) 0 0
\(149\) 4.27124 2.05692i 0.349914 0.168510i −0.250668 0.968073i \(-0.580650\pi\)
0.600581 + 0.799564i \(0.294936\pi\)
\(150\) 0 0
\(151\) −1.44508 + 6.33133i −0.117599 + 0.515236i 0.881475 + 0.472230i \(0.156551\pi\)
−0.999075 + 0.0430064i \(0.986306\pi\)
\(152\) 0 0
\(153\) 0.110883 + 0.139043i 0.00896438 + 0.0112410i
\(154\) 0 0
\(155\) −2.83616 + 1.36582i −0.227806 + 0.109706i
\(156\) 0 0
\(157\) 6.56139 0.523656 0.261828 0.965115i \(-0.415675\pi\)
0.261828 + 0.965115i \(0.415675\pi\)
\(158\) 0 0
\(159\) −1.64465 + 7.20566i −0.130429 + 0.571446i
\(160\) 0 0
\(161\) −1.59204 + 1.99635i −0.125470 + 0.157334i
\(162\) 0 0
\(163\) −3.52776 + 4.42367i −0.276315 + 0.346488i −0.900553 0.434746i \(-0.856838\pi\)
0.624238 + 0.781234i \(0.285410\pi\)
\(164\) 0 0
\(165\) 0.750319 + 0.940870i 0.0584123 + 0.0732467i
\(166\) 0 0
\(167\) −10.8919 5.24527i −0.842842 0.405891i −0.0379260 0.999281i \(-0.512075\pi\)
−0.804915 + 0.593389i \(0.797789\pi\)
\(168\) 0 0
\(169\) −4.37618 19.1733i −0.336630 1.47487i
\(170\) 0 0
\(171\) 0.149642 + 0.0720639i 0.0114434 + 0.00551086i
\(172\) 0 0
\(173\) 11.6405 0.885008 0.442504 0.896767i \(-0.354090\pi\)
0.442504 + 0.896767i \(0.354090\pi\)
\(174\) 0 0
\(175\) 14.9239 1.12814
\(176\) 0 0
\(177\) 17.5119 + 8.43327i 1.31627 + 0.633883i
\(178\) 0 0
\(179\) −4.08440 17.8949i −0.305282 1.33753i −0.862034 0.506850i \(-0.830810\pi\)
0.556752 0.830678i \(-0.312047\pi\)
\(180\) 0 0
\(181\) 8.91422 + 4.29286i 0.662589 + 0.319086i 0.734781 0.678305i \(-0.237285\pi\)
−0.0721917 + 0.997391i \(0.522999\pi\)
\(182\) 0 0
\(183\) 5.28460 + 6.62667i 0.390649 + 0.489858i
\(184\) 0 0
\(185\) −2.75364 + 3.45296i −0.202452 + 0.253866i
\(186\) 0 0
\(187\) −4.63112 + 5.80724i −0.338661 + 0.424667i
\(188\) 0 0
\(189\) −3.60827 + 15.8089i −0.262463 + 1.14993i
\(190\) 0 0
\(191\) −0.424259 −0.0306983 −0.0153492 0.999882i \(-0.504886\pi\)
−0.0153492 + 0.999882i \(0.504886\pi\)
\(192\) 0 0
\(193\) 9.30230 4.47975i 0.669594 0.322460i −0.0680181 0.997684i \(-0.521668\pi\)
0.737612 + 0.675225i \(0.235953\pi\)
\(194\) 0 0
\(195\) 3.07035 + 3.85010i 0.219872 + 0.275711i
\(196\) 0 0
\(197\) 5.97308 26.1698i 0.425564 1.86452i −0.0724862 0.997369i \(-0.523093\pi\)
0.498050 0.867148i \(-0.334050\pi\)
\(198\) 0 0
\(199\) −6.12924 + 2.95169i −0.434490 + 0.209239i −0.638327 0.769765i \(-0.720373\pi\)
0.203837 + 0.979005i \(0.434659\pi\)
\(200\) 0 0
\(201\) 2.76655 + 12.1211i 0.195138 + 0.854954i
\(202\) 0 0
\(203\) 15.1701 + 7.45002i 1.06474 + 0.522889i
\(204\) 0 0
\(205\) −0.441673 1.93510i −0.0308478 0.135153i
\(206\) 0 0
\(207\) −0.0245140 + 0.0118053i −0.00170384 + 0.000820526i
\(208\) 0 0
\(209\) −1.54360 + 6.76296i −0.106773 + 0.467803i
\(210\) 0 0
\(211\) −3.64156 4.56638i −0.250696 0.314362i 0.640521 0.767941i \(-0.278719\pi\)
−0.891216 + 0.453579i \(0.850147\pi\)
\(212\) 0 0
\(213\) 9.47380 4.56234i 0.649134 0.312607i
\(214\) 0 0
\(215\) −0.690954 −0.0471226
\(216\) 0 0
\(217\) −4.44385 + 19.4698i −0.301668 + 1.32169i
\(218\) 0 0
\(219\) 13.3342 16.7206i 0.901042 1.12987i
\(220\) 0 0
\(221\) −18.9508 + 23.7636i −1.27477 + 1.59851i
\(222\) 0 0
\(223\) 13.6769 + 17.1503i 0.915874 + 1.14847i 0.988517 + 0.151111i \(0.0482852\pi\)
−0.0726432 + 0.997358i \(0.523143\pi\)
\(224\) 0 0
\(225\) 0.143276 + 0.0689982i 0.00955174 + 0.00459988i
\(226\) 0 0
\(227\) −0.479626 2.10138i −0.0318339 0.139474i 0.956514 0.291688i \(-0.0942168\pi\)
−0.988348 + 0.152214i \(0.951360\pi\)
\(228\) 0 0
\(229\) −8.37172 4.03161i −0.553219 0.266416i 0.136320 0.990665i \(-0.456472\pi\)
−0.689539 + 0.724249i \(0.742187\pi\)
\(230\) 0 0
\(231\) 7.63456 0.502317
\(232\) 0 0
\(233\) −11.7848 −0.772045 −0.386022 0.922489i \(-0.626151\pi\)
−0.386022 + 0.922489i \(0.626151\pi\)
\(234\) 0 0
\(235\) 4.58996 + 2.21041i 0.299416 + 0.144191i
\(236\) 0 0
\(237\) −3.64393 15.9651i −0.236699 1.03704i
\(238\) 0 0
\(239\) −12.9462 6.23455i −0.837419 0.403280i −0.0345265 0.999404i \(-0.510992\pi\)
−0.802892 + 0.596124i \(0.796707\pi\)
\(240\) 0 0
\(241\) −5.73880 7.19623i −0.369669 0.463550i 0.561852 0.827238i \(-0.310089\pi\)
−0.931521 + 0.363688i \(0.881517\pi\)
\(242\) 0 0
\(243\) −0.216675 + 0.271702i −0.0138997 + 0.0174297i
\(244\) 0 0
\(245\) −0.878905 + 1.10211i −0.0561512 + 0.0704114i
\(246\) 0 0
\(247\) −6.31651 + 27.6744i −0.401910 + 1.76088i
\(248\) 0 0
\(249\) −22.1357 −1.40279
\(250\) 0 0
\(251\) 5.33012 2.56685i 0.336434 0.162018i −0.258037 0.966135i \(-0.583076\pi\)
0.594471 + 0.804117i \(0.297361\pi\)
\(252\) 0 0
\(253\) −0.708523 0.888459i −0.0445444 0.0558569i
\(254\) 0 0
\(255\) 1.01959 4.46713i 0.0638494 0.279743i
\(256\) 0 0
\(257\) 24.0750 11.5939i 1.50176 0.723209i 0.511094 0.859525i \(-0.329241\pi\)
0.990665 + 0.136316i \(0.0435263\pi\)
\(258\) 0 0
\(259\) 6.23471 + 27.3160i 0.387406 + 1.69734i
\(260\) 0 0
\(261\) 0.111196 + 0.141660i 0.00688287 + 0.00876853i
\(262\) 0 0
\(263\) −5.19684 22.7688i −0.320451 1.40399i −0.836753 0.547581i \(-0.815549\pi\)
0.516302 0.856407i \(-0.327308\pi\)
\(264\) 0 0
\(265\) 1.89140 0.910851i 0.116188 0.0559531i
\(266\) 0 0
\(267\) −0.694573 + 3.04312i −0.0425072 + 0.186236i
\(268\) 0 0
\(269\) 9.73222 + 12.2038i 0.593384 + 0.744080i 0.984331 0.176333i \(-0.0564236\pi\)
−0.390946 + 0.920413i \(0.627852\pi\)
\(270\) 0 0
\(271\) 0.197924 0.0953153i 0.0120230 0.00578999i −0.427863 0.903844i \(-0.640733\pi\)
0.439886 + 0.898054i \(0.355019\pi\)
\(272\) 0 0
\(273\) 31.2411 1.89080
\(274\) 0 0
\(275\) −1.47793 + 6.47525i −0.0891227 + 0.390472i
\(276\) 0 0
\(277\) 2.33928 2.93336i 0.140554 0.176249i −0.706572 0.707641i \(-0.749759\pi\)
0.847126 + 0.531392i \(0.178331\pi\)
\(278\) 0 0
\(279\) −0.132678 + 0.166373i −0.00794322 + 0.00996048i
\(280\) 0 0
\(281\) −15.2450 19.1167i −0.909442 1.14040i −0.989632 0.143624i \(-0.954124\pi\)
0.0801905 0.996780i \(-0.474447\pi\)
\(282\) 0 0
\(283\) 6.84512 + 3.29644i 0.406900 + 0.195953i 0.626127 0.779721i \(-0.284639\pi\)
−0.219227 + 0.975674i \(0.570353\pi\)
\(284\) 0 0
\(285\) −0.952214 4.17192i −0.0564043 0.247123i
\(286\) 0 0
\(287\) −11.3451 5.46349i −0.669678 0.322500i
\(288\) 0 0
\(289\) 11.2811 0.663593
\(290\) 0 0
\(291\) 6.61193 0.387598
\(292\) 0 0
\(293\) 23.1750 + 11.1605i 1.35390 + 0.652003i 0.963267 0.268545i \(-0.0865427\pi\)
0.390631 + 0.920547i \(0.372257\pi\)
\(294\) 0 0
\(295\) −1.22847 5.38230i −0.0715245 0.313369i
\(296\) 0 0
\(297\) −6.50188 3.13114i −0.377277 0.181687i
\(298\) 0 0
\(299\) −2.89932 3.63563i −0.167672 0.210254i
\(300\) 0 0
\(301\) −2.73304 + 3.42712i −0.157530 + 0.197536i
\(302\) 0 0
\(303\) −1.32680 + 1.66375i −0.0762226 + 0.0955801i
\(304\) 0 0
\(305\) 0.535705 2.34708i 0.0306744 0.134393i
\(306\) 0 0
\(307\) −1.81399 −0.103530 −0.0517649 0.998659i \(-0.516485\pi\)
−0.0517649 + 0.998659i \(0.516485\pi\)
\(308\) 0 0
\(309\) 2.83733 1.36639i 0.161410 0.0777310i
\(310\) 0 0
\(311\) −12.1020 15.1754i −0.686239 0.860517i 0.309673 0.950843i \(-0.399780\pi\)
−0.995912 + 0.0903265i \(0.971209\pi\)
\(312\) 0 0
\(313\) −7.54006 + 33.0352i −0.426189 + 1.86726i 0.0676576 + 0.997709i \(0.478447\pi\)
−0.493847 + 0.869549i \(0.664410\pi\)
\(314\) 0 0
\(315\) −0.0467785 + 0.0225273i −0.00263567 + 0.00126927i
\(316\) 0 0
\(317\) −1.22333 5.35977i −0.0687092 0.301035i 0.928884 0.370370i \(-0.120769\pi\)
−0.997593 + 0.0693356i \(0.977912\pi\)
\(318\) 0 0
\(319\) −4.73476 + 5.84430i −0.265096 + 0.327218i
\(320\) 0 0
\(321\) 1.60862 + 7.04781i 0.0897843 + 0.393371i
\(322\) 0 0
\(323\) 23.7965 11.4598i 1.32407 0.637640i
\(324\) 0 0
\(325\) −6.04779 + 26.4971i −0.335471 + 1.46980i
\(326\) 0 0
\(327\) 15.7508 + 19.7509i 0.871021 + 1.09223i
\(328\) 0 0
\(329\) 29.1190 14.0230i 1.60538 0.773112i
\(330\) 0 0
\(331\) 13.6463 0.750067 0.375034 0.927011i \(-0.377631\pi\)
0.375034 + 0.927011i \(0.377631\pi\)
\(332\) 0 0
\(333\) −0.0664350 + 0.291071i −0.00364062 + 0.0159506i
\(334\) 0 0
\(335\) 2.20176 2.76092i 0.120295 0.150845i
\(336\) 0 0
\(337\) 14.0705 17.6438i 0.766469 0.961122i −0.233468 0.972365i \(-0.575007\pi\)
0.999937 + 0.0112429i \(0.00357882\pi\)
\(338\) 0 0
\(339\) 18.1168 + 22.7177i 0.983968 + 1.23386i
\(340\) 0 0
\(341\) −8.00754 3.85623i −0.433632 0.208826i
\(342\) 0 0
\(343\) −2.89852 12.6993i −0.156505 0.685695i
\(344\) 0 0
\(345\) 0.631588 + 0.304157i 0.0340036 + 0.0163752i
\(346\) 0 0
\(347\) 2.97305 0.159602 0.0798008 0.996811i \(-0.474572\pi\)
0.0798008 + 0.996811i \(0.474572\pi\)
\(348\) 0 0
\(349\) −5.73913 −0.307208 −0.153604 0.988132i \(-0.549088\pi\)
−0.153604 + 0.988132i \(0.549088\pi\)
\(350\) 0 0
\(351\) −26.6061 12.8128i −1.42013 0.683898i
\(352\) 0 0
\(353\) 1.44019 + 6.30988i 0.0766536 + 0.335841i 0.998685 0.0512748i \(-0.0163284\pi\)
−0.922031 + 0.387116i \(0.873471\pi\)
\(354\) 0 0
\(355\) −2.69090 1.29587i −0.142818 0.0687775i
\(356\) 0 0
\(357\) −18.1239 22.7267i −0.959221 1.20283i
\(358\) 0 0
\(359\) −6.69717 + 8.39798i −0.353463 + 0.443229i −0.926496 0.376303i \(-0.877195\pi\)
0.573034 + 0.819532i \(0.305766\pi\)
\(360\) 0 0
\(361\) 3.53313 4.43041i 0.185954 0.233179i
\(362\) 0 0
\(363\) 3.50710 15.3656i 0.184075 0.806485i
\(364\) 0 0
\(365\) −6.07449 −0.317954
\(366\) 0 0
\(367\) 17.0637 8.21747i 0.890720 0.428948i 0.0681919 0.997672i \(-0.478277\pi\)
0.822529 + 0.568724i \(0.192563\pi\)
\(368\) 0 0
\(369\) −0.0836580 0.104904i −0.00435506 0.00546107i
\(370\) 0 0
\(371\) 2.96355 12.9842i 0.153860 0.674104i
\(372\) 0 0
\(373\) −2.19298 + 1.05608i −0.113548 + 0.0546819i −0.489796 0.871837i \(-0.662929\pi\)
0.376247 + 0.926519i \(0.377214\pi\)
\(374\) 0 0
\(375\) −1.87033 8.19446i −0.0965835 0.423160i
\(376\) 0 0
\(377\) −19.3749 + 23.9152i −0.997859 + 1.23170i
\(378\) 0 0
\(379\) −3.81433 16.7117i −0.195929 0.858422i −0.973329 0.229415i \(-0.926319\pi\)
0.777400 0.629007i \(-0.216538\pi\)
\(380\) 0 0
\(381\) −19.9176 + 9.59182i −1.02041 + 0.491404i
\(382\) 0 0
\(383\) −5.29096 + 23.1812i −0.270355 + 1.18450i 0.639239 + 0.769008i \(0.279249\pi\)
−0.909595 + 0.415497i \(0.863608\pi\)
\(384\) 0 0
\(385\) −1.35203 1.69539i −0.0689057 0.0864051i
\(386\) 0 0
\(387\) −0.0420830 + 0.0202661i −0.00213920 + 0.00103018i
\(388\) 0 0
\(389\) −11.5272 −0.584453 −0.292227 0.956349i \(-0.594396\pi\)
−0.292227 + 0.956349i \(0.594396\pi\)
\(390\) 0 0
\(391\) −0.962797 + 4.21829i −0.0486907 + 0.213328i
\(392\) 0 0
\(393\) 16.0673 20.1478i 0.810489 1.01632i
\(394\) 0 0
\(395\) −2.90002 + 3.63651i −0.145916 + 0.182973i
\(396\) 0 0
\(397\) 18.0708 + 22.6601i 0.906948 + 1.13728i 0.990047 + 0.140736i \(0.0449468\pi\)
−0.0830990 + 0.996541i \(0.526482\pi\)
\(398\) 0 0
\(399\) −24.4591 11.7789i −1.22449 0.589682i
\(400\) 0 0
\(401\) −2.29856 10.0707i −0.114785 0.502905i −0.999335 0.0364602i \(-0.988392\pi\)
0.884550 0.466445i \(-0.154465\pi\)
\(402\) 0 0
\(403\) −32.7673 15.7799i −1.63226 0.786054i
\(404\) 0 0
\(405\) 4.50136 0.223674
\(406\) 0 0
\(407\) −12.4694 −0.618086
\(408\) 0 0
\(409\) −8.97519 4.32222i −0.443794 0.213720i 0.198622 0.980076i \(-0.436354\pi\)
−0.642416 + 0.766356i \(0.722068\pi\)
\(410\) 0 0
\(411\) 0.584925 + 2.56273i 0.0288522 + 0.126410i
\(412\) 0 0
\(413\) −31.5553 15.1962i −1.55273 0.747757i
\(414\) 0 0
\(415\) 3.92009 + 4.91563i 0.192429 + 0.241299i
\(416\) 0 0
\(417\) −9.50872 + 11.9236i −0.465644 + 0.583899i
\(418\) 0 0
\(419\) −17.6773 + 22.1667i −0.863595 + 1.08291i 0.132193 + 0.991224i \(0.457798\pi\)
−0.995788 + 0.0916894i \(0.970773\pi\)
\(420\) 0 0
\(421\) 2.11840 9.28130i 0.103244 0.452343i −0.896708 0.442622i \(-0.854048\pi\)
0.999953 0.00972116i \(-0.00309439\pi\)
\(422\) 0 0
\(423\) 0.344388 0.0167447
\(424\) 0 0
\(425\) 22.7842 10.9723i 1.10519 0.532234i
\(426\) 0 0
\(427\) −9.52251 11.9409i −0.460827 0.577859i
\(428\) 0 0
\(429\) −3.09384 + 13.5550i −0.149372 + 0.654441i
\(430\) 0 0
\(431\) −17.0958 + 8.23291i −0.823477 + 0.396566i −0.797665 0.603101i \(-0.793931\pi\)
−0.0258122 + 0.999667i \(0.508217\pi\)
\(432\) 0 0
\(433\) −6.30063 27.6049i −0.302789 1.32661i −0.865897 0.500222i \(-0.833252\pi\)
0.563108 0.826383i \(-0.309605\pi\)
\(434\) 0 0
\(435\) 1.06728 4.51547i 0.0511720 0.216500i
\(436\) 0 0
\(437\) 0.899171 + 3.93953i 0.0430132 + 0.188453i
\(438\) 0 0
\(439\) −17.9255 + 8.63248i −0.855539 + 0.412006i −0.809631 0.586940i \(-0.800333\pi\)
−0.0459084 + 0.998946i \(0.514618\pi\)
\(440\) 0 0
\(441\) −0.0212047 + 0.0929038i −0.00100975 + 0.00442399i
\(442\) 0 0
\(443\) 22.1713 + 27.8019i 1.05339 + 1.32091i 0.945097 + 0.326790i \(0.105967\pi\)
0.108292 + 0.994119i \(0.465462\pi\)
\(444\) 0 0
\(445\) 0.798784 0.384674i 0.0378660 0.0182353i
\(446\) 0 0
\(447\) −8.25681 −0.390534
\(448\) 0 0
\(449\) −2.41460 + 10.5790i −0.113952 + 0.499256i 0.885452 + 0.464731i \(0.153849\pi\)
−0.999404 + 0.0345250i \(0.989008\pi\)
\(450\) 0 0
\(451\) 3.49404 4.38138i 0.164528 0.206311i
\(452\) 0 0
\(453\) 7.05212 8.84307i 0.331337 0.415484i
\(454\) 0 0
\(455\) −5.53258 6.93764i −0.259371 0.325242i
\(456\) 0 0
\(457\) −29.1336 14.0300i −1.36281 0.656296i −0.397550 0.917580i \(-0.630140\pi\)
−0.965262 + 0.261285i \(0.915854\pi\)
\(458\) 0 0
\(459\) 6.11420 + 26.7881i 0.285386 + 1.25036i
\(460\) 0 0
\(461\) −22.8888 11.0227i −1.06604 0.513377i −0.183211 0.983074i \(-0.558649\pi\)
−0.882828 + 0.469696i \(0.844363\pi\)
\(462\) 0 0
\(463\) −3.22072 −0.149680 −0.0748398 0.997196i \(-0.523845\pi\)
−0.0748398 + 0.997196i \(0.523845\pi\)
\(464\) 0 0
\(465\) 5.48263 0.254251
\(466\) 0 0
\(467\) 20.5930 + 9.91706i 0.952929 + 0.458907i 0.844712 0.535221i \(-0.179772\pi\)
0.108217 + 0.994127i \(0.465486\pi\)
\(468\) 0 0
\(469\) −4.98516 21.8414i −0.230193 1.00854i
\(470\) 0 0
\(471\) −10.2961 4.95835i −0.474420 0.228469i
\(472\) 0 0
\(473\) −1.21632 1.52521i −0.0559263 0.0701293i
\(474\) 0 0
\(475\) 14.7252 18.4648i 0.675637 0.847222i
\(476\) 0 0
\(477\) 0.0884813 0.110952i 0.00405128 0.00508015i
\(478\) 0 0
\(479\) 0.477409 2.09166i 0.0218134 0.0955706i −0.962849 0.270039i \(-0.912963\pi\)
0.984663 + 0.174468i \(0.0558206\pi\)
\(480\) 0 0
\(481\) −51.0256 −2.32657
\(482\) 0 0
\(483\) 4.00683 1.92959i 0.182317 0.0877993i
\(484\) 0 0
\(485\) −1.17093 1.46830i −0.0531691 0.0666719i
\(486\) 0 0
\(487\) 4.84560 21.2300i 0.219575 0.962021i −0.738218 0.674562i \(-0.764332\pi\)
0.957793 0.287459i \(-0.0928105\pi\)
\(488\) 0 0
\(489\) 8.87865 4.27573i 0.401507 0.193355i
\(490\) 0 0
\(491\) −8.64786 37.8888i −0.390273 1.70990i −0.663696 0.748002i \(-0.731013\pi\)
0.273423 0.961894i \(-0.411844\pi\)
\(492\) 0 0
\(493\) 28.6374 + 0.220544i 1.28977 + 0.00993279i
\(494\) 0 0
\(495\) −0.00514172 0.0225273i −0.000231103 0.00101253i
\(496\) 0 0
\(497\) −17.0712 + 8.22106i −0.765748 + 0.368765i
\(498\) 0 0
\(499\) 8.74490 38.3139i 0.391476 1.71517i −0.267981 0.963424i \(-0.586357\pi\)
0.659457 0.751742i \(-0.270786\pi\)
\(500\) 0 0
\(501\) 13.1278 + 16.4617i 0.586506 + 0.735456i
\(502\) 0 0
\(503\) 25.2735 12.1711i 1.12689 0.542680i 0.224874 0.974388i \(-0.427803\pi\)
0.902014 + 0.431707i \(0.142089\pi\)
\(504\) 0 0
\(505\) 0.604433 0.0268969
\(506\) 0 0
\(507\) −7.62190 + 33.3937i −0.338501 + 1.48307i
\(508\) 0 0
\(509\) 1.06278 1.33268i 0.0471069 0.0590701i −0.757720 0.652580i \(-0.773687\pi\)
0.804827 + 0.593510i \(0.202258\pi\)
\(510\) 0 0
\(511\) −24.0274 + 30.1294i −1.06291 + 1.33285i
\(512\) 0 0
\(513\) 15.9995 + 20.0627i 0.706394 + 0.885790i
\(514\) 0 0
\(515\) −0.805903 0.388102i −0.0355123 0.0171018i
\(516\) 0 0
\(517\) 3.20065 + 14.0230i 0.140765 + 0.616730i
\(518\) 0 0
\(519\) −18.2662 8.79653i −0.801797 0.386125i
\(520\) 0 0
\(521\) −21.0834 −0.923678 −0.461839 0.886964i \(-0.652810\pi\)
−0.461839 + 0.886964i \(0.652810\pi\)
\(522\) 0 0
\(523\) 8.93606 0.390747 0.195373 0.980729i \(-0.437408\pi\)
0.195373 + 0.980729i \(0.437408\pi\)
\(524\) 0 0
\(525\) −23.4186 11.2778i −1.02207 0.492203i
\(526\) 0 0
\(527\) 7.53008 + 32.9914i 0.328015 + 1.43713i
\(528\) 0 0
\(529\) 20.1259 + 9.69211i 0.875038 + 0.421396i
\(530\) 0 0
\(531\) −0.232687 0.291781i −0.0100978 0.0126622i
\(532\) 0 0
\(533\) 14.2978 17.9289i 0.619307 0.776586i
\(534\) 0 0
\(535\) 1.28022 1.60534i 0.0553486 0.0694050i
\(536\) 0 0
\(537\) −7.11370 + 31.1672i −0.306979 + 1.34496i
\(538\) 0 0
\(539\) −3.97998 −0.171430
\(540\) 0 0
\(541\) 10.7827 5.19269i 0.463586 0.223251i −0.187486 0.982267i \(-0.560034\pi\)
0.651072 + 0.759016i \(0.274320\pi\)
\(542\) 0 0
\(543\) −10.7441 13.4727i −0.461074 0.578169i
\(544\) 0 0
\(545\) 1.59668 6.99549i 0.0683940 0.299654i
\(546\) 0 0
\(547\) −21.7331 + 10.4661i −0.929239 + 0.447498i −0.836361 0.548180i \(-0.815321\pi\)
−0.0928783 + 0.995677i \(0.529607\pi\)
\(548\) 0 0
\(549\) −0.0362138 0.158663i −0.00154557 0.00677157i
\(550\) 0 0
\(551\) 24.1857 11.4186i 1.03035 0.486450i
\(552\) 0 0
\(553\) 6.56613 + 28.7681i 0.279220 + 1.22334i
\(554\) 0 0
\(555\) 6.93036 3.33748i 0.294177 0.141668i
\(556\) 0 0
\(557\) 4.05033 17.7456i 0.171618 0.751907i −0.813715 0.581264i \(-0.802558\pi\)
0.985333 0.170643i \(-0.0545844\pi\)
\(558\) 0 0
\(559\) −4.97724 6.24126i −0.210515 0.263977i
\(560\) 0 0
\(561\) 11.6556 5.61303i 0.492099 0.236982i
\(562\) 0 0
\(563\) 31.5149 1.32820 0.664098 0.747646i \(-0.268816\pi\)
0.664098 + 0.747646i \(0.268816\pi\)
\(564\) 0 0
\(565\) 1.83652 8.04631i 0.0772629 0.338511i
\(566\) 0 0
\(567\) 17.8049 22.3267i 0.747737 0.937633i
\(568\) 0 0
\(569\) −17.7477 + 22.2549i −0.744023 + 0.932975i −0.999427 0.0338594i \(-0.989220\pi\)
0.255404 + 0.966834i \(0.417792\pi\)
\(570\) 0 0
\(571\) 2.65790 + 3.33290i 0.111230 + 0.139478i 0.834330 0.551266i \(-0.185855\pi\)
−0.723100 + 0.690743i \(0.757283\pi\)
\(572\) 0 0
\(573\) 0.665747 + 0.320607i 0.0278120 + 0.0133935i
\(574\) 0 0
\(575\) 0.860919 + 3.77193i 0.0359028 + 0.157300i
\(576\) 0 0
\(577\) −20.3474 9.79878i −0.847072 0.407929i −0.0405823 0.999176i \(-0.512921\pi\)
−0.806490 + 0.591248i \(0.798636\pi\)
\(578\) 0 0
\(579\) −17.9824 −0.747324
\(580\) 0 0
\(581\) 39.8872 1.65480
\(582\) 0 0
\(583\) 5.34013 + 2.57167i 0.221166 + 0.106508i
\(584\) 0 0
\(585\) −0.0210402 0.0921833i −0.000869906 0.00381131i
\(586\) 0 0
\(587\) −30.1868 14.5372i −1.24594 0.600015i −0.309523 0.950892i \(-0.600169\pi\)
−0.936422 + 0.350877i \(0.885884\pi\)
\(588\) 0 0
\(589\) 19.7045 + 24.7087i 0.811910 + 1.01810i
\(590\) 0 0
\(591\) −29.1490 + 36.5517i −1.19903 + 1.50354i
\(592\) 0 0
\(593\) 8.32767 10.4426i 0.341977 0.428825i −0.580868 0.813998i \(-0.697287\pi\)
0.922844 + 0.385173i \(0.125858\pi\)
\(594\) 0 0
\(595\) −1.83724 + 8.04949i −0.0753197 + 0.329997i
\(596\) 0 0
\(597\) 11.8485 0.484928
\(598\) 0 0
\(599\) 0.824990 0.397294i 0.0337082 0.0162330i −0.416954 0.908928i \(-0.636902\pi\)
0.450662 + 0.892695i \(0.351188\pi\)
\(600\) 0 0
\(601\) 3.60037 + 4.51472i 0.146862 + 0.184159i 0.849821 0.527071i \(-0.176710\pi\)
−0.702959 + 0.711230i \(0.748138\pi\)
\(602\) 0 0
\(603\) 0.0531202 0.232735i 0.00216322 0.00947770i
\(604\) 0 0
\(605\) −4.03329 + 1.94233i −0.163977 + 0.0789669i
\(606\) 0 0
\(607\) −3.33385 14.6065i −0.135317 0.592861i −0.996428 0.0844449i \(-0.973088\pi\)
0.861111 0.508416i \(-0.169769\pi\)
\(608\) 0 0
\(609\) −18.1751 23.1544i −0.736492 0.938264i
\(610\) 0 0
\(611\) 13.0973 + 57.3829i 0.529859 + 2.32146i
\(612\) 0 0
\(613\) 21.5458 10.3759i 0.870228 0.419080i 0.0551825 0.998476i \(-0.482426\pi\)
0.815046 + 0.579396i \(0.196712\pi\)
\(614\) 0 0
\(615\) −0.769252 + 3.37031i −0.0310192 + 0.135904i
\(616\) 0 0
\(617\) −9.16964 11.4984i −0.369156 0.462907i 0.562208 0.826996i \(-0.309952\pi\)
−0.931364 + 0.364089i \(0.881380\pi\)
\(618\) 0 0
\(619\) 20.6449 9.94208i 0.829790 0.399606i 0.0297537 0.999557i \(-0.490528\pi\)
0.800036 + 0.599951i \(0.204813\pi\)
\(620\) 0 0
\(621\) −4.20375 −0.168691
\(622\) 0 0
\(623\) 1.25158 5.48352i 0.0501434 0.219693i
\(624\) 0 0
\(625\) 13.3358 16.7226i 0.533433 0.668904i
\(626\) 0 0
\(627\) 7.53288 9.44594i 0.300834 0.377234i
\(628\) 0 0
\(629\) 29.6016 + 37.1192i 1.18029 + 1.48004i
\(630\) 0 0
\(631\) 11.8128 + 5.68872i 0.470258 + 0.226465i 0.653977 0.756514i \(-0.273099\pi\)
−0.183719 + 0.982979i \(0.558814\pi\)
\(632\) 0 0
\(633\) 2.26359 + 9.91742i 0.0899695 + 0.394182i
\(634\) 0 0
\(635\) 5.65731 + 2.72442i 0.224503 + 0.108115i
\(636\) 0 0
\(637\) −16.2863 −0.645287
\(638\) 0 0
\(639\) −0.201900 −0.00798702
\(640\) 0 0
\(641\) 38.8282 + 18.6987i 1.53362 + 0.738553i 0.994604 0.103742i \(-0.0330816\pi\)
0.539017 + 0.842295i \(0.318796\pi\)
\(642\) 0 0
\(643\) −1.92324 8.42626i −0.0758451 0.332299i 0.922743 0.385415i \(-0.125942\pi\)
−0.998588 + 0.0531161i \(0.983085\pi\)
\(644\) 0 0
\(645\) 1.08424 + 0.522144i 0.0426920 + 0.0205594i
\(646\) 0 0
\(647\) 2.98700 + 3.74558i 0.117431 + 0.147254i 0.837073 0.547092i \(-0.184265\pi\)
−0.719641 + 0.694346i \(0.755694\pi\)
\(648\) 0 0
\(649\) 9.71835 12.1864i 0.381479 0.478359i
\(650\) 0 0
\(651\) 21.6863 27.1938i 0.849953 1.06581i
\(652\) 0 0
\(653\) −1.22812 + 5.38073i −0.0480599 + 0.210564i −0.993257 0.115938i \(-0.963013\pi\)
0.945197 + 0.326502i \(0.105870\pi\)
\(654\) 0 0
\(655\) −7.31958 −0.286000
\(656\) 0 0
\(657\) −0.369971 + 0.178169i −0.0144340 + 0.00695103i
\(658\) 0 0
\(659\) 1.14932 + 1.44120i 0.0447712 + 0.0561413i 0.803713 0.595017i \(-0.202855\pi\)
−0.758942 + 0.651158i \(0.774283\pi\)
\(660\) 0 0
\(661\) 5.80735 25.4436i 0.225880 0.989643i −0.727082 0.686551i \(-0.759124\pi\)
0.952961 0.303092i \(-0.0980190\pi\)
\(662\) 0 0
\(663\) 47.6954 22.9689i 1.85233 0.892037i
\(664\) 0 0
\(665\) 1.71583 + 7.51754i 0.0665371 + 0.291518i
\(666\) 0 0
\(667\) −1.00782 + 4.26393i −0.0390231 + 0.165100i
\(668\) 0 0
\(669\) −8.50153 37.2477i −0.328688 1.44008i
\(670\) 0 0
\(671\) 6.12397 2.94915i 0.236413 0.113851i
\(672\) 0 0
\(673\) −4.88021 + 21.3816i −0.188118 + 0.824200i 0.789489 + 0.613764i \(0.210345\pi\)
−0.977608 + 0.210436i \(0.932512\pi\)
\(674\) 0 0
\(675\) 15.3188 + 19.2092i 0.589622 + 0.739363i
\(676\) 0 0
\(677\) −9.15884 + 4.41066i −0.352003 + 0.169516i −0.601526 0.798853i \(-0.705440\pi\)
0.249523 + 0.968369i \(0.419726\pi\)
\(678\) 0 0
\(679\) −11.9143 −0.457228
\(680\) 0 0
\(681\) −0.835355 + 3.65993i −0.0320109 + 0.140249i
\(682\) 0 0
\(683\) −12.7734 + 16.0173i −0.488760 + 0.612886i −0.963653 0.267158i \(-0.913915\pi\)
0.474893 + 0.880044i \(0.342487\pi\)
\(684\) 0 0
\(685\) 0.465513 0.583735i 0.0177863 0.0223033i
\(686\) 0 0
\(687\) 10.0903 + 12.6528i 0.384967 + 0.482733i
\(688\) 0 0
\(689\) 21.8521 + 10.5234i 0.832500 + 0.400911i
\(690\) 0 0
\(691\) −6.86393 30.0728i −0.261116 1.14402i −0.920043 0.391817i \(-0.871846\pi\)
0.658927 0.752207i \(-0.271011\pi\)
\(692\) 0 0
\(693\) −0.132073 0.0636031i −0.00501704 0.00241608i
\(694\) 0 0
\(695\) 4.33177 0.164313
\(696\) 0 0
\(697\) −21.3372 −0.808204
\(698\) 0 0
\(699\) 18.4926 + 8.90557i 0.699455 + 0.336840i
\(700\) 0 0
\(701\) 4.60087 + 20.1577i 0.173773 + 0.761347i 0.984423 + 0.175817i \(0.0562566\pi\)
−0.810650 + 0.585530i \(0.800886\pi\)
\(702\) 0 0
\(703\) 39.9487 + 19.2383i 1.50669 + 0.725586i
\(704\) 0 0
\(705\) −5.53219 6.93714i −0.208354 0.261268i
\(706\) 0 0
\(707\) 2.39081 2.99798i 0.0899156 0.112751i
\(708\) 0 0
\(709\) −28.0695 + 35.1981i −1.05417 + 1.32189i −0.109461 + 0.993991i \(0.534913\pi\)
−0.944712 + 0.327901i \(0.893659\pi\)
\(710\) 0 0
\(711\) −0.0699666 + 0.306544i −0.00262395 + 0.0114963i
\(712\) 0 0
\(713\) −5.17722 −0.193888
\(714\) 0 0
\(715\) 3.55803 1.71346i 0.133063 0.0640796i
\(716\) 0 0
\(717\) 15.6038 + 19.5665i 0.582733 + 0.730724i
\(718\) 0 0
\(719\) −2.24249 + 9.82501i −0.0836309 + 0.366411i −0.999375 0.0353512i \(-0.988745\pi\)
0.915744 + 0.401762i \(0.131602\pi\)
\(720\) 0 0
\(721\) −5.11269 + 2.46214i −0.190407 + 0.0916950i
\(722\) 0 0
\(723\) 3.56722 + 15.6290i 0.132666 + 0.581250i
\(724\) 0 0
\(725\) 23.1568 10.9329i 0.860023 0.406036i
\(726\) 0 0
\(727\) 4.98758 + 21.8520i 0.184979 + 0.810447i 0.979213 + 0.202835i \(0.0650153\pi\)
−0.794234 + 0.607612i \(0.792128\pi\)
\(728\) 0 0
\(729\) −24.0490 + 11.5814i −0.890703 + 0.428940i
\(730\) 0 0
\(731\) −1.65283 + 7.24151i −0.0611320 + 0.267837i
\(732\) 0 0
\(733\) 2.46035 + 3.08518i 0.0908749 + 0.113954i 0.825190 0.564855i \(-0.191068\pi\)
−0.734315 + 0.678809i \(0.762497\pi\)
\(734\) 0 0
\(735\) 2.21203 1.06526i 0.0815918 0.0392925i
\(736\) 0 0
\(737\) 9.97032 0.367261
\(738\) 0 0
\(739\) 1.38003 6.04632i 0.0507653 0.222417i −0.943182 0.332277i \(-0.892183\pi\)
0.993947 + 0.109860i \(0.0350402\pi\)
\(740\) 0 0
\(741\) 30.8250 38.6533i 1.13239 1.41997i
\(742\) 0 0
\(743\) −30.3589 + 38.0689i −1.11376 + 1.39661i −0.205271 + 0.978705i \(0.565808\pi\)
−0.908490 + 0.417907i \(0.862764\pi\)
\(744\) 0 0
\(745\) 1.46222 + 1.83357i 0.0535718 + 0.0671769i
\(746\) 0 0
\(747\) 0.382934 + 0.184411i 0.0140108 + 0.00674726i
\(748\) 0 0
\(749\) −2.89863 12.6997i −0.105914 0.464038i
\(750\) 0 0
\(751\) 23.7677 + 11.4459i 0.867296 + 0.417668i 0.813968 0.580909i \(-0.197303\pi\)
0.0533277 + 0.998577i \(0.483017\pi\)
\(752\) 0 0
\(753\) −10.3037 −0.375489
\(754\) 0 0
\(755\) −3.21264 −0.116920
\(756\) 0 0
\(757\) −34.4086 16.5703i −1.25060 0.602259i −0.312930 0.949776i \(-0.601310\pi\)
−0.937673 + 0.347518i \(0.887025\pi\)
\(758\) 0 0
\(759\) 0.440416 + 1.92959i 0.0159861 + 0.0700396i
\(760\) 0 0
\(761\) −5.62055 2.70672i −0.203745 0.0981183i 0.329229 0.944250i \(-0.393211\pi\)
−0.532974 + 0.846132i \(0.678926\pi\)
\(762\) 0 0
\(763\) −28.3820 35.5898i −1.02750 1.28844i
\(764\) 0 0
\(765\) −0.0548537 + 0.0687844i −0.00198324 + 0.00248691i
\(766\) 0 0
\(767\) 39.7681 49.8676i 1.43594 1.80061i
\(768\) 0 0
\(769\) 6.26532 27.4502i 0.225933 0.989879i −0.726985 0.686653i \(-0.759079\pi\)
0.952919 0.303226i \(-0.0980637\pi\)
\(770\) 0 0
\(771\) −46.5398 −1.67609
\(772\) 0 0
\(773\) −31.5991 + 15.2173i −1.13654 + 0.547329i −0.904964 0.425488i \(-0.860103\pi\)
−0.231576 + 0.972817i \(0.574388\pi\)
\(774\) 0 0
\(775\) 18.8663 + 23.6575i 0.677696 + 0.849804i
\(776\) 0 0
\(777\) 10.8589 47.5757i 0.389559 1.70677i
\(778\) 0 0
\(779\) −17.9537 + 8.64606i −0.643259 + 0.309777i
\(780\) 0 0
\(781\) −1.87640 8.22106i −0.0671430 0.294173i
\(782\) 0 0
\(783\) 5.98234 + 27.1733i 0.213791 + 0.971094i
\(784\) 0 0
\(785\) 0.722283 + 3.16453i 0.0257794 + 0.112947i
\(786\) 0 0
\(787\) −24.5984 + 11.8459i −0.876837 + 0.422262i −0.817468 0.575974i \(-0.804623\pi\)
−0.0593688 + 0.998236i \(0.518909\pi\)
\(788\) 0 0
\(789\) −9.05122 + 39.6560i −0.322232 + 1.41179i
\(790\) 0 0
\(791\) −32.6453 40.9359i −1.16073 1.45551i
\(792\) 0 0
\(793\) 25.0597 12.0681i 0.889894 0.428551i
\(794\) 0 0
\(795\) −3.65630 −0.129676
\(796\) 0 0
\(797\) −9.11491 + 39.9350i −0.322867 + 1.41457i 0.509560 + 0.860435i \(0.329808\pi\)
−0.832426 + 0.554136i \(0.813049\pi\)
\(798\) 0 0
\(799\) 34.1457 42.8174i 1.20799 1.51477i
\(800\) 0 0
\(801\) 0.0373678 0.0468577i 0.00132033 0.00165564i
\(802\) 0 0
\(803\) −10.6932 13.4088i −0.377355 0.473188i
\(804\) 0 0
\(805\) −1.13808 0.548071i −0.0401121 0.0193170i
\(806\) 0 0
\(807\) −6.04953 26.5047i −0.212953 0.933010i
\(808\) 0 0
\(809\) 38.8637 + 18.7158i 1.36638 + 0.658012i 0.966049 0.258360i \(-0.0831821\pi\)
0.400327 + 0.916372i \(0.368896\pi\)
\(810\) 0 0
\(811\) −38.0001 −1.33436 −0.667182 0.744894i \(-0.732500\pi\)
−0.667182 + 0.744894i \(0.732500\pi\)
\(812\) 0 0
\(813\) −0.382611 −0.0134187
\(814\) 0 0
\(815\) −2.52185 1.21446i −0.0883366 0.0425407i
\(816\) 0 0
\(817\) 1.54360 + 6.76296i 0.0540037 + 0.236606i
\(818\) 0 0
\(819\) −0.540451 0.260268i −0.0188849 0.00909449i
\(820\) 0 0
\(821\) −7.61753 9.55208i −0.265854 0.333370i 0.630930 0.775840i \(-0.282674\pi\)
−0.896783 + 0.442470i \(0.854102\pi\)
\(822\) 0 0
\(823\) −22.8365 + 28.6361i −0.796030 + 0.998190i 0.203786 + 0.979015i \(0.434675\pi\)
−0.999816 + 0.0191747i \(0.993896\pi\)
\(824\) 0 0
\(825\) 7.21242 9.04409i 0.251104 0.314875i
\(826\) 0 0
\(827\) −5.74425 + 25.1672i −0.199747 + 0.875149i 0.771340 + 0.636423i \(0.219587\pi\)
−0.971087 + 0.238726i \(0.923270\pi\)
\(828\) 0 0
\(829\) −15.7732 −0.547825 −0.273913 0.961755i \(-0.588318\pi\)
−0.273913 + 0.961755i \(0.588318\pi\)
\(830\) 0 0
\(831\) −5.88750 + 2.83527i −0.204235 + 0.0983544i
\(832\) 0 0
\(833\) 9.44821 + 11.8477i 0.327361 + 0.410498i
\(834\) 0 0
\(835\) 1.33078 5.83052i 0.0460535 0.201773i
\(836\) 0 0
\(837\) −29.6218 + 14.2651i −1.02388 + 0.493074i
\(838\) 0 0
\(839\) 0.479893 + 2.10255i 0.0165677 + 0.0725880i 0.982536 0.186073i \(-0.0595760\pi\)
−0.965968 + 0.258661i \(0.916719\pi\)
\(840\) 0 0
\(841\) 28.9966 + 0.446646i 0.999881 + 0.0154016i
\(842\) 0 0
\(843\) 9.47627 + 41.5183i 0.326380 + 1.42996i
\(844\) 0 0
\(845\) 8.76546 4.22123i 0.301541 0.145215i
\(846\) 0 0
\(847\) −6.31957 + 27.6879i −0.217143 + 0.951366i
\(848\) 0 0
\(849\) −8.25027 10.3455i −0.283149 0.355057i
\(850\) 0 0
\(851\) −6.54430 + 3.15157i −0.224336 + 0.108034i
\(852\) 0 0
\(853\) −21.6578 −0.741548 −0.370774 0.928723i \(-0.620908\pi\)
−0.370774 + 0.928723i \(0.620908\pi\)
\(854\) 0 0
\(855\) −0.0182833 + 0.0801045i −0.000625277 + 0.00273952i
\(856\) 0 0
\(857\) −7.86892 + 9.86732i −0.268797 + 0.337061i −0.897850 0.440302i \(-0.854872\pi\)
0.629053 + 0.777363i \(0.283443\pi\)
\(858\) 0 0
\(859\) 12.1127 15.1888i 0.413280 0.518236i −0.531004 0.847369i \(-0.678185\pi\)
0.944284 + 0.329133i \(0.106756\pi\)
\(860\) 0 0
\(861\) 13.6740 + 17.1466i 0.466007 + 0.584355i
\(862\) 0 0
\(863\) −41.3801 19.9276i −1.40860 0.678344i −0.433711 0.901052i \(-0.642796\pi\)
−0.974885 + 0.222708i \(0.928510\pi\)
\(864\) 0 0
\(865\) 1.28139 + 5.61414i 0.0435686 + 0.190886i
\(866\) 0 0
\(867\) −17.7022 8.52495i −0.601200 0.289523i
\(868\) 0 0
\(869\) −13.1323 −0.445482
\(870\) 0 0
\(871\) 40.7992 1.38243
\(872\) 0 0
\(873\) −0.114382 0.0550836i −0.00387125 0.00186430i
\(874\) 0 0
\(875\) 3.37022 + 14.7659i 0.113934 + 0.499179i
\(876\) 0 0
\(877\) −7.29358 3.51240i −0.246287 0.118605i 0.306669 0.951816i \(-0.400786\pi\)
−0.552955 + 0.833211i \(0.686500\pi\)
\(878\) 0 0
\(879\) −27.9323 35.0260i −0.942134 1.18140i
\(880\) 0 0
\(881\) 1.87163 2.34695i 0.0630569 0.0790709i −0.749303 0.662228i \(-0.769611\pi\)
0.812360 + 0.583157i \(0.198183\pi\)
\(882\) 0 0
\(883\) 24.0764 30.1908i 0.810235 1.01600i −0.189184 0.981942i \(-0.560584\pi\)
0.999420 0.0340614i \(-0.0108442\pi\)
\(884\) 0 0
\(885\) −2.13961 + 9.37422i −0.0719221 + 0.315111i
\(886\) 0 0
\(887\) 29.4281 0.988100 0.494050 0.869433i \(-0.335516\pi\)
0.494050 + 0.869433i \(0.335516\pi\)
\(888\) 0 0
\(889\) 35.8903 17.2839i 1.20372 0.579682i
\(890\) 0 0
\(891\) 7.92394 + 9.93631i 0.265462 + 0.332879i
\(892\) 0 0
\(893\) 11.3811 49.8640i 0.380855 1.66864i
\(894\) 0 0
\(895\) 8.18101 3.93977i 0.273461 0.131692i
\(896\) 0 0
\(897\) 1.80221 + 7.89599i 0.0601740 + 0.263640i
\(898\) 0 0
\(899\) 7.36769 + 33.4659i 0.245726 + 1.11615i
\(900\) 0 0
\(901\) −5.02172 22.0016i −0.167298 0.732979i
\(902\) 0 0
\(903\) 6.87850 3.31251i 0.228902 0.110233i
\(904\) 0 0
\(905\) −1.08914 + 4.77185i −0.0362043 + 0.158622i
\(906\) 0 0
\(907\) −2.90939 3.64825i −0.0966046 0.121138i 0.731179 0.682185i \(-0.238970\pi\)
−0.827784 + 0.561047i \(0.810399\pi\)
\(908\) 0 0
\(909\) 0.0368134 0.0177284i 0.00122102 0.000588014i
\(910\) 0 0
\(911\) 37.9571 1.25758 0.628788 0.777577i \(-0.283551\pi\)
0.628788 + 0.777577i \(0.283551\pi\)
\(912\) 0 0
\(913\) −3.95007 + 17.3064i −0.130728 + 0.572758i
\(914\) 0 0
\(915\) −2.61428 + 3.27820i −0.0864255 + 0.108374i
\(916\) 0 0
\(917\) −28.9523 + 36.3050i −0.956089 + 1.19890i
\(918\) 0 0
\(919\) −15.8113 19.8268i −0.521568 0.654026i 0.449373 0.893344i \(-0.351647\pi\)
−0.970941 + 0.239318i \(0.923076\pi\)
\(920\) 0 0
\(921\) 2.84651 + 1.37081i 0.0937956 + 0.0451696i
\(922\) 0 0
\(923\) −7.67836 33.6411i −0.252736 1.10731i
\(924\) 0 0
\(925\) 38.2492 + 18.4199i 1.25763 + 0.605641i
\(926\) 0 0
\(927\) −0.0604674 −0.00198601
\(928\) 0 0
\(929\) 36.8642 1.20947 0.604737 0.796425i \(-0.293278\pi\)
0.604737 + 0.796425i \(0.293278\pi\)
\(930\) 0 0
\(931\) 12.7508 + 6.14046i 0.417891 + 0.201246i
\(932\) 0 0
\(933\) 7.52255 + 32.9584i 0.246277 + 1.07901i
\(934\) 0 0
\(935\) −3.31060 1.59430i −0.108268 0.0521392i
\(936\) 0 0
\(937\) −1.45551 1.82515i −0.0475493 0.0596249i 0.757488 0.652849i \(-0.226426\pi\)
−0.805038 + 0.593224i \(0.797855\pi\)
\(938\) 0 0
\(939\) 36.7960 46.1408i 1.20079 1.50575i
\(940\) 0 0
\(941\) 5.47972 6.87136i 0.178634 0.224000i −0.684451 0.729059i \(-0.739958\pi\)
0.863085 + 0.505059i \(0.168529\pi\)
\(942\) 0 0
\(943\) 0.726401 3.18257i 0.0236549 0.103639i
\(944\) 0 0
\(945\) −8.02174 −0.260947
\(946\) 0 0
\(947\) −11.4402 + 5.50930i −0.371756 + 0.179028i −0.610428 0.792072i \(-0.709002\pi\)
0.238672 + 0.971100i \(0.423288\pi\)
\(948\) 0 0
\(949\) −43.7572 54.8698i −1.42042 1.78115i
\(950\) 0 0
\(951\) −2.13065 + 9.33500i −0.0690911 + 0.302708i
\(952\) 0 0
\(953\) −49.0633 + 23.6277i −1.58932 + 0.765375i −0.999122 0.0418854i \(-0.986664\pi\)
−0.590195 + 0.807261i \(0.700949\pi\)
\(954\) 0 0
\(955\) −0.0467028 0.204618i −0.00151127 0.00662129i
\(956\) 0 0
\(957\) 11.8462 5.59287i 0.382934 0.180792i
\(958\) 0 0
\(959\) −1.05400 4.61787i −0.0340354 0.149119i
\(960\) 0 0
\(961\) −8.55134 + 4.11811i −0.275850 + 0.132842i
\(962\) 0 0
\(963\) 0.0308868 0.135324i 0.000995314 0.00436076i
\(964\) 0 0
\(965\) 3.18457 + 3.99332i 0.102515 + 0.128549i
\(966\) 0 0
\(967\) 44.6567 21.5055i 1.43606 0.691572i 0.455949 0.890006i \(-0.349300\pi\)
0.980114 + 0.198434i \(0.0635855\pi\)
\(968\) 0 0
\(969\) −46.0014 −1.47778
\(970\) 0 0
\(971\) −6.13766 + 26.8909i −0.196967 + 0.862969i 0.775762 + 0.631025i \(0.217366\pi\)
−0.972729 + 0.231944i \(0.925492\pi\)
\(972\) 0 0
\(973\) 17.1341 21.4855i 0.549295 0.688794i
\(974\) 0 0
\(975\) 29.5137 37.0090i 0.945194 1.18524i
\(976\) 0 0
\(977\) −27.7654 34.8167i −0.888294 1.11389i −0.992850 0.119367i \(-0.961914\pi\)
0.104556 0.994519i \(-0.466658\pi\)
\(978\) 0 0
\(979\) 2.25527 + 1.08608i 0.0720786 + 0.0347112i
\(980\) 0 0
\(981\) −0.107936 0.472897i −0.00344612 0.0150984i
\(982\) 0 0
\(983\) −1.07817 0.519217i −0.0343882 0.0165605i 0.416611 0.909085i \(-0.363218\pi\)
−0.450999 + 0.892525i \(0.648932\pi\)
\(984\) 0 0
\(985\) 13.2791 0.423106
\(986\) 0 0
\(987\) −56.2904 −1.79174
\(988\) 0 0
\(989\) −1.02384 0.493058i −0.0325564 0.0156783i
\(990\) 0 0
\(991\) 7.79435 + 34.1493i 0.247596 + 1.08479i 0.933917 + 0.357490i \(0.116367\pi\)
−0.686321 + 0.727298i \(0.740776\pi\)
\(992\) 0 0
\(993\) −21.4137 10.3123i −0.679544 0.327251i
\(994\) 0 0
\(995\) −2.09829 2.63118i −0.0665204 0.0834139i
\(996\) 0 0
\(997\) 19.4359 24.3719i 0.615543 0.771866i −0.372167 0.928166i \(-0.621385\pi\)
0.987710 + 0.156300i \(0.0499566\pi\)
\(998\) 0 0
\(999\) −28.7599 + 36.0638i −0.909924 + 1.14101i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.u.h.65.1 12
4.3 odd 2 58.2.d.b.7.2 12
12.11 even 2 522.2.k.h.181.1 12
29.25 even 7 inner 464.2.u.h.257.1 12
116.27 even 28 1682.2.b.i.1681.8 12
116.31 even 28 1682.2.b.i.1681.5 12
116.63 odd 14 1682.2.a.q.1.5 6
116.83 odd 14 58.2.d.b.25.2 yes 12
116.111 odd 14 1682.2.a.t.1.2 6
348.83 even 14 522.2.k.h.199.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.b.7.2 12 4.3 odd 2
58.2.d.b.25.2 yes 12 116.83 odd 14
464.2.u.h.65.1 12 1.1 even 1 trivial
464.2.u.h.257.1 12 29.25 even 7 inner
522.2.k.h.181.1 12 12.11 even 2
522.2.k.h.199.1 12 348.83 even 14
1682.2.a.q.1.5 6 116.63 odd 14
1682.2.a.t.1.2 6 116.111 odd 14
1682.2.b.i.1681.5 12 116.31 even 28
1682.2.b.i.1681.8 12 116.27 even 28