Properties

Label 2-5220-1.1-c1-0-31
Degree $2$
Conductor $5220$
Sign $-1$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 3·11-s − 13-s + 3·17-s + 2·19-s + 6·23-s + 25-s + 29-s − 4·31-s + 35-s − 4·37-s + 6·41-s − 4·43-s + 3·47-s − 6·49-s − 6·53-s + 3·55-s + 8·61-s + 65-s + 5·67-s + 6·71-s − 10·73-s + 3·77-s + 8·79-s + 6·83-s − 3·85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 0.904·11-s − 0.277·13-s + 0.727·17-s + 0.458·19-s + 1.25·23-s + 1/5·25-s + 0.185·29-s − 0.718·31-s + 0.169·35-s − 0.657·37-s + 0.937·41-s − 0.609·43-s + 0.437·47-s − 6/7·49-s − 0.824·53-s + 0.404·55-s + 1.02·61-s + 0.124·65-s + 0.610·67-s + 0.712·71-s − 1.17·73-s + 0.341·77-s + 0.900·79-s + 0.658·83-s − 0.325·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
29 \( 1 - T \)
good7 \( 1 + T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84810196803628289805734009232, −7.17200244107852945270928514398, −6.55871663938078909837613964064, −5.42887452661776211362861662810, −5.12592807923731182988104321368, −4.04737359121481937461253099566, −3.22096091049596195828610343470, −2.58119535601956010950816443634, −1.24733217530574868050256113811, 0, 1.24733217530574868050256113811, 2.58119535601956010950816443634, 3.22096091049596195828610343470, 4.04737359121481937461253099566, 5.12592807923731182988104321368, 5.42887452661776211362861662810, 6.55871663938078909837613964064, 7.17200244107852945270928514398, 7.84810196803628289805734009232

Graph of the $Z$-function along the critical line