Properties

Label 8-528e4-1.1-c3e4-0-0
Degree $8$
Conductor $77720518656$
Sign $1$
Analytic cond. $941889.$
Root an. cond. $5.58148$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·3-s + 27·9-s − 74·25-s − 136·27-s − 680·31-s − 868·37-s + 1.37e3·49-s + 832·67-s + 592·75-s + 1.08e3·81-s + 5.44e3·93-s + 68·97-s − 4.68e3·103-s + 6.94e3·111-s − 2.66e3·121-s + 127-s + 131-s + 137-s + 139-s − 1.09e4·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8.78e3·169-s + 173-s + ⋯
L(s)  = 1  − 1.53·3-s + 9-s − 0.591·25-s − 0.969·27-s − 3.93·31-s − 3.85·37-s + 4·49-s + 1.51·67-s + 0.911·75-s + 1.49·81-s + 6.06·93-s + 0.0711·97-s − 4.48·103-s + 5.93·111-s − 2·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 6.15·147-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 4·169-s + 0.000439·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(941889.\)
Root analytic conductor: \(5.58148\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 11^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(0.1679352352\)
\(L(\frac12)\) \(\approx\) \(0.1679352352\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + 8 T + 37 T^{2} + 8 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
good5$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 199 T^{2} - 18 p^{3} T^{3} + p^{6} T^{4} )( 1 + 18 T + 199 T^{2} + 18 p^{3} T^{3} + p^{6} T^{4} ) \)
7$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
13$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
17$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
19$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
23$C_2^2$$\times$$C_2^2$ \( ( 1 - 108 T - 503 T^{2} - 108 p^{3} T^{3} + p^{6} T^{4} )( 1 + 108 T - 503 T^{2} + 108 p^{3} T^{3} + p^{6} T^{4} ) \)
29$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 340 T + 85809 T^{2} + 340 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 434 T + 137703 T^{2} + 434 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
41$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
43$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
47$C_2$ \( ( 1 - 36 T + p^{3} T^{2} )^{2}( 1 + 36 T + p^{3} T^{2} )^{2} \)
53$C_2$ \( ( 1 - 738 T + p^{3} T^{2} )^{2}( 1 + 738 T + p^{3} T^{2} )^{2} \)
59$C_2^2$$\times$$C_2^2$ \( ( 1 - 720 T + 313021 T^{2} - 720 p^{3} T^{3} + p^{6} T^{4} )( 1 + 720 T + 313021 T^{2} + 720 p^{3} T^{3} + p^{6} T^{4} ) \)
61$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 416 T - 127707 T^{2} - 416 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
71$C_2^2$$\times$$C_2^2$ \( ( 1 - 612 T + 16633 T^{2} - 612 p^{3} T^{3} + p^{6} T^{4} )( 1 + 612 T + 16633 T^{2} + 612 p^{3} T^{3} + p^{6} T^{4} ) \)
73$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
79$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
83$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
89$C_2^2$$\times$$C_2^2$ \( ( 1 - 1674 T + 2097307 T^{2} - 1674 p^{3} T^{3} + p^{6} T^{4} )( 1 + 1674 T + 2097307 T^{2} + 1674 p^{3} T^{3} + p^{6} T^{4} ) \)
97$C_2^2$ \( ( 1 - 34 T - 911517 T^{2} - 34 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.40857997492150532925498939323, −6.98333835160889542529262768033, −6.86194953369161030691005768824, −6.75247268377493265300800300050, −6.55628365082069979200652743241, −6.06930515550060915144682174023, −5.75381837180462287369536996275, −5.60154219534207920452032192685, −5.36937206770353546404721977701, −5.32439067396000519208958558051, −5.21743505059427081095138883941, −4.77317315973740750776589319256, −4.30204413061990723771605767100, −3.87481588122983611703504307194, −3.85836046963912228644096406726, −3.73304740175502106405738886968, −3.39863833377873652404014848042, −2.72739220450400653567297333197, −2.58524513078746341335265009706, −1.97712140167453155354317439823, −1.82493939414226015478476299289, −1.53735823961345379481586348967, −1.01564968400127826543567921057, −0.45309091328115380591277767427, −0.10921367093147978884609557250, 0.10921367093147978884609557250, 0.45309091328115380591277767427, 1.01564968400127826543567921057, 1.53735823961345379481586348967, 1.82493939414226015478476299289, 1.97712140167453155354317439823, 2.58524513078746341335265009706, 2.72739220450400653567297333197, 3.39863833377873652404014848042, 3.73304740175502106405738886968, 3.85836046963912228644096406726, 3.87481588122983611703504307194, 4.30204413061990723771605767100, 4.77317315973740750776589319256, 5.21743505059427081095138883941, 5.32439067396000519208958558051, 5.36937206770353546404721977701, 5.60154219534207920452032192685, 5.75381837180462287369536996275, 6.06930515550060915144682174023, 6.55628365082069979200652743241, 6.75247268377493265300800300050, 6.86194953369161030691005768824, 6.98333835160889542529262768033, 7.40857997492150532925498939323

Graph of the $Z$-function along the critical line