Properties

Label 528.4.b.b
Level 528528
Weight 44
Character orbit 528.b
Analytic conductor 31.15331.153
Analytic rank 00
Dimension 44
CM discriminant -11
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [528,4,Mod(65,528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(528, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("528.65"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 528=24311 528 = 2^{4} \cdot 3 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 528.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-8,0,0,0,0,0,-10,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 31.153008483031.1530084830
Analytic rank: 00
Dimension: 44
Coefficient field: Q(3,11)\Q(\sqrt{-3}, \sqrt{-11})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x32x23x+9 x^{4} - x^{3} - 2x^{2} - 3x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2232 2^{2}\cdot 3^{2}
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β12)q3+(2β2+2β11)q5+(5β3+3β2+1)q9+11β3q11+(12β36β2++62)q15+(17β3+12β2++6)q23++(77β3+132β2++550)q99+O(q100) q + ( - \beta_1 - 2) q^{3} + ( - 2 \beta_{2} + 2 \beta_1 - 1) q^{5} + ( - 5 \beta_{3} + 3 \beta_{2} + \cdots - 1) q^{9} + 11 \beta_{3} q^{11} + (12 \beta_{3} - 6 \beta_{2} + \cdots + 62) q^{15} + ( - 17 \beta_{3} + 12 \beta_{2} + \cdots + 6) q^{23}+ \cdots + (77 \beta_{3} + 132 \beta_{2} + \cdots + 550) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q310q9+260q15648q25272q27680q31+242q33868q37+82q45+1372q49968q55+832q671934q691080q75+1358q81+766q93++1936q99+O(q100) 4 q - 8 q^{3} - 10 q^{9} + 260 q^{15} - 648 q^{25} - 272 q^{27} - 680 q^{31} + 242 q^{33} - 868 q^{37} + 82 q^{45} + 1372 q^{49} - 968 q^{55} + 832 q^{67} - 1934 q^{69} - 1080 q^{75} + 1358 q^{81} + 766 q^{93}+ \cdots + 1936 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x32x23x+9 x^{4} - x^{3} - 2x^{2} - 3x + 9 : Copy content Toggle raw display

β1\beta_{1}== (ν3+10ν2+2ν9)/6 ( -\nu^{3} + 10\nu^{2} + 2\nu - 9 ) / 6 Copy content Toggle raw display
β2\beta_{2}== (2ν34ν2+10ν+9)/3 ( -2\nu^{3} - 4\nu^{2} + 10\nu + 9 ) / 3 Copy content Toggle raw display
β3\beta_{3}== ν3+4 -\nu^{3} + 4 Copy content Toggle raw display
ν\nu== (4β3+5β2+4β1+7)/18 ( -4\beta_{3} + 5\beta_{2} + 4\beta _1 + 7 ) / 18 Copy content Toggle raw display
ν2\nu^{2}== (β3β2+10β1+22)/18 ( -\beta_{3} - \beta_{2} + 10\beta _1 + 22 ) / 18 Copy content Toggle raw display
ν3\nu^{3}== β3+4 -\beta_{3} + 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/528Z)×\left(\mathbb{Z}/528\mathbb{Z}\right)^\times.

nn 133133 145145 353353 463463
χ(n)\chi(n) 11 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
65.1
1.68614 + 0.396143i
1.68614 0.396143i
−1.18614 1.26217i
−1.18614 + 1.26217i
0 −4.87228 1.80579i 0 8.95521i 0 0 0 20.4783 + 17.5966i 0
65.2 0 −4.87228 + 1.80579i 0 8.95521i 0 0 0 20.4783 17.5966i 0
65.3 0 0.872281 5.12241i 0 22.2217i 0 0 0 −25.4783 8.93637i 0
65.4 0 0.872281 + 5.12241i 0 22.2217i 0 0 0 −25.4783 + 8.93637i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by Q(11)\Q(\sqrt{-11})
3.b odd 2 1 inner
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 528.4.b.b 4
3.b odd 2 1 inner 528.4.b.b 4
4.b odd 2 1 132.4.b.a 4
11.b odd 2 1 CM 528.4.b.b 4
12.b even 2 1 132.4.b.a 4
33.d even 2 1 inner 528.4.b.b 4
44.c even 2 1 132.4.b.a 4
132.d odd 2 1 132.4.b.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.4.b.a 4 4.b odd 2 1
132.4.b.a 4 12.b even 2 1
132.4.b.a 4 44.c even 2 1
132.4.b.a 4 132.d odd 2 1
528.4.b.b 4 1.a even 1 1 trivial
528.4.b.b 4 3.b odd 2 1 inner
528.4.b.b 4 11.b odd 2 1 CM
528.4.b.b 4 33.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(528,[χ])S_{4}^{\mathrm{new}}(528, [\chi]):

T54+574T52+39601 T_{5}^{4} + 574T_{5}^{2} + 39601 Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+8T3++729 T^{4} + 8 T^{3} + \cdots + 729 Copy content Toggle raw display
55 T4+574T2+39601 T^{4} + 574 T^{2} + 39601 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T2+1331)2 (T^{2} + 1331)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4+35998T2+253009 T^{4} + 35998 T^{2} + 253009 Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T2+340T+26227)2 (T^{2} + 340 T + 26227)^{2} Copy content Toggle raw display
3737 (T2+434T+36397)2 (T^{2} + 434 T + 36397)^{2} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 (T2+413996)2 (T^{2} + 413996)^{2} Copy content Toggle raw display
5353 (T2+50864)2 (T^{2} + 50864)^{2} Copy content Toggle raw display
5959 T4++97982146441 T^{4} + \cdots + 97982146441 Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 (T2416T729233)2 (T^{2} - 416 T - 729233)^{2} Copy content Toggle raw display
7171 T4+1090366T2+276656689 T^{4} + 1090366 T^{2} + 276656689 Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4++4398696652249 T^{4} + \cdots + 4398696652249 Copy content Toggle raw display
9797 (T234T2736863)2 (T^{2} - 34 T - 2736863)^{2} Copy content Toggle raw display
show more
show less