gp: [N,k,chi] = [528,4,Mod(65,528)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(528, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("528.65");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,-8,0,0,0,0,0,-10,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − 2 x 2 − 3 x + 9 x^{4} - x^{3} - 2x^{2} - 3x + 9 x 4 − x 3 − 2 x 2 − 3 x + 9
x^4 - x^3 - 2*x^2 - 3*x + 9
:
β 1 \beta_{1} β 1 = = =
( − ν 3 + 10 ν 2 + 2 ν − 9 ) / 6 ( -\nu^{3} + 10\nu^{2} + 2\nu - 9 ) / 6 ( − ν 3 + 1 0 ν 2 + 2 ν − 9 ) / 6
(-v^3 + 10*v^2 + 2*v - 9) / 6
β 2 \beta_{2} β 2 = = =
( − 2 ν 3 − 4 ν 2 + 10 ν + 9 ) / 3 ( -2\nu^{3} - 4\nu^{2} + 10\nu + 9 ) / 3 ( − 2 ν 3 − 4 ν 2 + 1 0 ν + 9 ) / 3
(-2*v^3 - 4*v^2 + 10*v + 9) / 3
β 3 \beta_{3} β 3 = = =
− ν 3 + 4 -\nu^{3} + 4 − ν 3 + 4
-v^3 + 4
ν \nu ν = = =
( − 4 β 3 + 5 β 2 + 4 β 1 + 7 ) / 18 ( -4\beta_{3} + 5\beta_{2} + 4\beta _1 + 7 ) / 18 ( − 4 β 3 + 5 β 2 + 4 β 1 + 7 ) / 1 8
(-4*b3 + 5*b2 + 4*b1 + 7) / 18
ν 2 \nu^{2} ν 2 = = =
( − β 3 − β 2 + 10 β 1 + 22 ) / 18 ( -\beta_{3} - \beta_{2} + 10\beta _1 + 22 ) / 18 ( − β 3 − β 2 + 1 0 β 1 + 2 2 ) / 1 8
(-b3 - b2 + 10*b1 + 22) / 18
ν 3 \nu^{3} ν 3 = = =
− β 3 + 4 -\beta_{3} + 4 − β 3 + 4
-b3 + 4
Character values
We give the values of χ \chi χ on generators for ( Z / 528 Z ) × \left(\mathbb{Z}/528\mathbb{Z}\right)^\times ( Z / 5 2 8 Z ) × .
n n n
133 133 1 3 3
145 145 1 4 5
353 353 3 5 3
463 463 4 6 3
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 528 , [ χ ] ) S_{4}^{\mathrm{new}}(528, [\chi]) S 4 n e w ( 5 2 8 , [ χ ] ) :
T 5 4 + 574 T 5 2 + 39601 T_{5}^{4} + 574T_{5}^{2} + 39601 T 5 4 + 5 7 4 T 5 2 + 3 9 6 0 1
T5^4 + 574*T5^2 + 39601
T 17 T_{17} T 1 7
T17
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 + 8 T 3 + ⋯ + 729 T^{4} + 8 T^{3} + \cdots + 729 T 4 + 8 T 3 + ⋯ + 7 2 9
T^4 + 8*T^3 + 37*T^2 + 216*T + 729
5 5 5
T 4 + 574 T 2 + 39601 T^{4} + 574 T^{2} + 39601 T 4 + 5 7 4 T 2 + 3 9 6 0 1
T^4 + 574*T^2 + 39601
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
( T 2 + 1331 ) 2 (T^{2} + 1331)^{2} ( T 2 + 1 3 3 1 ) 2
(T^2 + 1331)^2
13 13 1 3
T 4 T^{4} T 4
T^4
17 17 1 7
T 4 T^{4} T 4
T^4
19 19 1 9
T 4 T^{4} T 4
T^4
23 23 2 3
T 4 + 35998 T 2 + 253009 T^{4} + 35998 T^{2} + 253009 T 4 + 3 5 9 9 8 T 2 + 2 5 3 0 0 9
T^4 + 35998*T^2 + 253009
29 29 2 9
T 4 T^{4} T 4
T^4
31 31 3 1
( T 2 + 340 T + 26227 ) 2 (T^{2} + 340 T + 26227)^{2} ( T 2 + 3 4 0 T + 2 6 2 2 7 ) 2
(T^2 + 340*T + 26227)^2
37 37 3 7
( T 2 + 434 T + 36397 ) 2 (T^{2} + 434 T + 36397)^{2} ( T 2 + 4 3 4 T + 3 6 3 9 7 ) 2
(T^2 + 434*T + 36397)^2
41 41 4 1
T 4 T^{4} T 4
T^4
43 43 4 3
T 4 T^{4} T 4
T^4
47 47 4 7
( T 2 + 413996 ) 2 (T^{2} + 413996)^{2} ( T 2 + 4 1 3 9 9 6 ) 2
(T^2 + 413996)^2
53 53 5 3
( T 2 + 50864 ) 2 (T^{2} + 50864)^{2} ( T 2 + 5 0 8 6 4 ) 2
(T^2 + 50864)^2
59 59 5 9
T 4 + ⋯ + 97982146441 T^{4} + \cdots + 97982146441 T 4 + ⋯ + 9 7 9 8 2 1 4 6 4 4 1
T^4 + 929158*T^2 + 97982146441
61 61 6 1
T 4 T^{4} T 4
T^4
67 67 6 7
( T 2 − 416 T − 729233 ) 2 (T^{2} - 416 T - 729233)^{2} ( T 2 − 4 1 6 T − 7 2 9 2 3 3 ) 2
(T^2 - 416*T - 729233)^2
71 71 7 1
T 4 + 1090366 T 2 + 276656689 T^{4} + 1090366 T^{2} + 276656689 T 4 + 1 0 9 0 3 6 6 T 2 + 2 7 6 6 5 6 6 8 9
T^4 + 1090366*T^2 + 276656689
73 73 7 3
T 4 T^{4} T 4
T^4
79 79 7 9
T 4 T^{4} T 4
T^4
83 83 8 3
T 4 T^{4} T 4
T^4
89 89 8 9
T 4 + ⋯ + 4398696652249 T^{4} + \cdots + 4398696652249 T 4 + ⋯ + 4 3 9 8 6 9 6 6 5 2 2 4 9
T^4 + 4212214*T^2 + 4398696652249
97 97 9 7
( T 2 − 34 T − 2736863 ) 2 (T^{2} - 34 T - 2736863)^{2} ( T 2 − 3 4 T − 2 7 3 6 8 6 3 ) 2
(T^2 - 34*T - 2736863)^2
show more
show less