Properties

Label 528.4.b.b
Level $528$
Weight $4$
Character orbit 528.b
Analytic conductor $31.153$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [528,4,Mod(65,528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(528, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("528.65");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 528.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1530084830\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 2) q^{3} + ( - 2 \beta_{2} + 2 \beta_1 - 1) q^{5} + ( - 5 \beta_{3} + 3 \beta_{2} + \cdots - 1) q^{9} + 11 \beta_{3} q^{11} + (12 \beta_{3} - 6 \beta_{2} + \cdots + 62) q^{15} + ( - 17 \beta_{3} + 12 \beta_{2} + \cdots + 6) q^{23}+ \cdots + (77 \beta_{3} + 132 \beta_{2} + \cdots + 550) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{3} - 10 q^{9} + 260 q^{15} - 648 q^{25} - 272 q^{27} - 680 q^{31} + 242 q^{33} - 868 q^{37} + 82 q^{45} + 1372 q^{49} - 968 q^{55} + 832 q^{67} - 1934 q^{69} - 1080 q^{75} + 1358 q^{81} + 766 q^{93}+ \cdots + 1936 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 10\nu^{2} + 2\nu - 9 ) / 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{3} - 4\nu^{2} + 10\nu + 9 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -4\beta_{3} + 5\beta_{2} + 4\beta _1 + 7 ) / 18 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} - \beta_{2} + 10\beta _1 + 22 ) / 18 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/528\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(145\) \(353\) \(463\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
1.68614 + 0.396143i
1.68614 0.396143i
−1.18614 1.26217i
−1.18614 + 1.26217i
0 −4.87228 1.80579i 0 8.95521i 0 0 0 20.4783 + 17.5966i 0
65.2 0 −4.87228 + 1.80579i 0 8.95521i 0 0 0 20.4783 17.5966i 0
65.3 0 0.872281 5.12241i 0 22.2217i 0 0 0 −25.4783 8.93637i 0
65.4 0 0.872281 + 5.12241i 0 22.2217i 0 0 0 −25.4783 + 8.93637i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
3.b odd 2 1 inner
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 528.4.b.b 4
3.b odd 2 1 inner 528.4.b.b 4
4.b odd 2 1 132.4.b.a 4
11.b odd 2 1 CM 528.4.b.b 4
12.b even 2 1 132.4.b.a 4
33.d even 2 1 inner 528.4.b.b 4
44.c even 2 1 132.4.b.a 4
132.d odd 2 1 132.4.b.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.4.b.a 4 4.b odd 2 1
132.4.b.a 4 12.b even 2 1
132.4.b.a 4 44.c even 2 1
132.4.b.a 4 132.d odd 2 1
528.4.b.b 4 1.a even 1 1 trivial
528.4.b.b 4 3.b odd 2 1 inner
528.4.b.b 4 11.b odd 2 1 CM
528.4.b.b 4 33.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(528, [\chi])\):

\( T_{5}^{4} + 574T_{5}^{2} + 39601 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 8 T^{3} + \cdots + 729 \) Copy content Toggle raw display
$5$ \( T^{4} + 574 T^{2} + 39601 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1331)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 35998 T^{2} + 253009 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 340 T + 26227)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 434 T + 36397)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 413996)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 50864)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 97982146441 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 416 T - 729233)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 1090366 T^{2} + 276656689 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 4398696652249 \) Copy content Toggle raw display
$97$ \( (T^{2} - 34 T - 2736863)^{2} \) Copy content Toggle raw display
show more
show less