L(s) = 1 | + (1.58 + 2.75i)3-s + 2.85·5-s + (1.33 + 2.28i)7-s + (−3.54 + 6.14i)9-s + (0.978 − 1.69i)11-s + (−2.81 − 4.86i)13-s + (4.52 + 7.84i)15-s + (0.0951 + 0.164i)17-s + (−1.31 − 4.15i)19-s + (−4.15 + 7.30i)21-s + (2.03 − 3.52i)23-s + 3.12·25-s − 13.0·27-s + (−3.37 − 5.84i)29-s + (2.76 − 4.78i)31-s + ⋯ |
L(s) = 1 | + (0.917 + 1.58i)3-s + 1.27·5-s + (0.505 + 0.862i)7-s + (−1.18 + 2.04i)9-s + (0.295 − 0.511i)11-s + (−0.779 − 1.35i)13-s + (1.16 + 2.02i)15-s + (0.0230 + 0.0399i)17-s + (−0.300 − 0.953i)19-s + (−0.906 + 1.59i)21-s + (0.423 − 0.734i)23-s + 0.624·25-s − 2.50·27-s + (−0.626 − 1.08i)29-s + (0.496 − 0.860i)31-s + ⋯ |
Λ(s)=(=(532s/2ΓC(s)L(s)(0.0622−0.998i)Λ(2−s)
Λ(s)=(=(532s/2ΓC(s+1/2)L(s)(0.0622−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
532
= 22⋅7⋅19
|
Sign: |
0.0622−0.998i
|
Analytic conductor: |
4.24804 |
Root analytic conductor: |
2.06107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ532(277,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 532, ( :1/2), 0.0622−0.998i)
|
Particular Values
L(1) |
≈ |
1.71011+1.60674i |
L(21) |
≈ |
1.71011+1.60674i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−1.33−2.28i)T |
| 19 | 1+(1.31+4.15i)T |
good | 3 | 1+(−1.58−2.75i)T+(−1.5+2.59i)T2 |
| 5 | 1−2.85T+5T2 |
| 11 | 1+(−0.978+1.69i)T+(−5.5−9.52i)T2 |
| 13 | 1+(2.81+4.86i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−0.0951−0.164i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−2.03+3.52i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3.37+5.84i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−2.76+4.78i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1.08+1.87i)T+(−18.5+32.0i)T2 |
| 41 | 1+(5.78−10.0i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.76−3.05i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.322−0.558i)T+(−23.5−40.7i)T2 |
| 53 | 1+0.986T+53T2 |
| 59 | 1+(−0.517−0.896i)T+(−29.5+51.0i)T2 |
| 61 | 1+(6.63−11.4i)T+(−30.5−52.8i)T2 |
| 67 | 1−2.98T+67T2 |
| 71 | 1+(7.31−12.6i)T+(−35.5−61.4i)T2 |
| 73 | 1+(1.60+2.78i)T+(−36.5+63.2i)T2 |
| 79 | 1−17.3T+79T2 |
| 83 | 1−1.00T+83T2 |
| 89 | 1+(−3.33+5.77i)T+(−44.5−77.0i)T2 |
| 97 | 1+(0.455−0.789i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72314756330852697939420789044, −9.965370673301687135988805875875, −9.403935993337369105546862174653, −8.659914257849886059524259452573, −7.903804305381126492364265594703, −6.08459246494268131365022120807, −5.28652644039624607935283778427, −4.52105786983106785535757846195, −2.98478209976894718050678025018, −2.35671507711614687214481510448,
1.61591283019238957079251268211, 1.95556623915889385782767018559, 3.54088342822400835745324628663, 5.10061552156946356607687691985, 6.47144636797934281639128793836, 6.99494733219979858426248760337, 7.75568618363911135200641007907, 8.870172072364436492261012996200, 9.497394581158860719693242673855, 10.50718795807322518410049657967