Properties

Label 532.2.k.b.277.12
Level $532$
Weight $2$
Character 532.277
Analytic conductor $4.248$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [532,2,Mod(121,532)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(532, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("532.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 532 = 2^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 532.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24804138753\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 277.12
Character \(\chi\) \(=\) 532.277
Dual form 532.2.k.b.121.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58842 + 2.75122i) q^{3} +2.85036 q^{5} +(1.33785 + 2.28258i) q^{7} +(-3.54616 + 6.14212i) q^{9} +(0.978605 - 1.69499i) q^{11} +(-2.81153 - 4.86971i) q^{13} +(4.52757 + 7.84197i) q^{15} +(0.0951900 + 0.164874i) q^{17} +(-1.31004 - 4.15738i) q^{19} +(-4.15482 + 7.30641i) q^{21} +(2.03261 - 3.52059i) q^{23} +3.12454 q^{25} -13.0006 q^{27} +(-3.37321 - 5.84257i) q^{29} +(2.76493 - 4.78900i) q^{31} +6.21774 q^{33} +(3.81335 + 6.50616i) q^{35} +(-1.08132 - 1.87290i) q^{37} +(8.93177 - 15.4703i) q^{39} +(-5.78624 + 10.0221i) q^{41} +(-1.76396 + 3.05527i) q^{43} +(-10.1078 + 17.5072i) q^{45} +(-0.322245 + 0.558144i) q^{47} +(-3.42032 + 6.10749i) q^{49} +(-0.302403 + 0.523778i) q^{51} -0.986923 q^{53} +(2.78937 - 4.83134i) q^{55} +(9.35699 - 10.2079i) q^{57} +(0.517408 + 0.896178i) q^{59} +(-6.63206 + 11.4871i) q^{61} +(-18.7641 + 0.122851i) q^{63} +(-8.01386 - 13.8804i) q^{65} +2.98339 q^{67} +12.9146 q^{69} +(-7.31183 + 12.6645i) q^{71} +(-1.60909 - 2.78703i) q^{73} +(4.96308 + 8.59630i) q^{75} +(5.17818 - 0.0339023i) q^{77} +17.3324 q^{79} +(-10.0120 - 17.3413i) q^{81} +1.00867 q^{83} +(0.271326 + 0.469950i) q^{85} +(10.7161 - 18.5609i) q^{87} +(3.33188 - 5.77099i) q^{89} +(7.35409 - 12.9325i) q^{91} +17.5675 q^{93} +(-3.73407 - 11.8500i) q^{95} +(-0.455589 + 0.789103i) q^{97} +(6.94057 + 12.0214i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - q^{3} + 12 q^{5} - 6 q^{7} - 15 q^{9} + q^{11} - 7 q^{13} - 2 q^{15} + 3 q^{17} - 19 q^{19} + 12 q^{21} + 8 q^{23} + 16 q^{25} + 20 q^{27} - 22 q^{29} - 7 q^{31} - 14 q^{33} + 18 q^{35} + 9 q^{37}+ \cdots - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/532\mathbb{Z}\right)^\times\).

\(n\) \(267\) \(381\) \(477\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.58842 + 2.75122i 0.917075 + 1.58842i 0.803835 + 0.594852i \(0.202790\pi\)
0.113240 + 0.993568i \(0.463877\pi\)
\(4\) 0 0
\(5\) 2.85036 1.27472 0.637359 0.770567i \(-0.280027\pi\)
0.637359 + 0.770567i \(0.280027\pi\)
\(6\) 0 0
\(7\) 1.33785 + 2.28258i 0.505659 + 0.862733i
\(8\) 0 0
\(9\) −3.54616 + 6.14212i −1.18205 + 2.04737i
\(10\) 0 0
\(11\) 0.978605 1.69499i 0.295060 0.511060i −0.679939 0.733269i \(-0.737994\pi\)
0.974999 + 0.222209i \(0.0713269\pi\)
\(12\) 0 0
\(13\) −2.81153 4.86971i −0.779777 1.35061i −0.932070 0.362279i \(-0.881999\pi\)
0.152292 0.988335i \(-0.451334\pi\)
\(14\) 0 0
\(15\) 4.52757 + 7.84197i 1.16901 + 2.02479i
\(16\) 0 0
\(17\) 0.0951900 + 0.164874i 0.0230870 + 0.0399878i 0.877338 0.479873i \(-0.159317\pi\)
−0.854251 + 0.519861i \(0.825984\pi\)
\(18\) 0 0
\(19\) −1.31004 4.15738i −0.300543 0.953768i
\(20\) 0 0
\(21\) −4.15482 + 7.30641i −0.906656 + 1.59439i
\(22\) 0 0
\(23\) 2.03261 3.52059i 0.423829 0.734093i −0.572481 0.819918i \(-0.694019\pi\)
0.996310 + 0.0858246i \(0.0273525\pi\)
\(24\) 0 0
\(25\) 3.12454 0.624908
\(26\) 0 0
\(27\) −13.0006 −2.50197
\(28\) 0 0
\(29\) −3.37321 5.84257i −0.626389 1.08494i −0.988270 0.152714i \(-0.951199\pi\)
0.361881 0.932224i \(-0.382135\pi\)
\(30\) 0 0
\(31\) 2.76493 4.78900i 0.496596 0.860129i −0.503396 0.864056i \(-0.667916\pi\)
0.999992 + 0.00392619i \(0.00124975\pi\)
\(32\) 0 0
\(33\) 6.21774 1.08237
\(34\) 0 0
\(35\) 3.81335 + 6.50616i 0.644573 + 1.09974i
\(36\) 0 0
\(37\) −1.08132 1.87290i −0.177768 0.307903i 0.763348 0.645988i \(-0.223554\pi\)
−0.941116 + 0.338085i \(0.890221\pi\)
\(38\) 0 0
\(39\) 8.93177 15.4703i 1.43023 2.47723i
\(40\) 0 0
\(41\) −5.78624 + 10.0221i −0.903659 + 1.56518i −0.0809512 + 0.996718i \(0.525796\pi\)
−0.822708 + 0.568465i \(0.807538\pi\)
\(42\) 0 0
\(43\) −1.76396 + 3.05527i −0.269001 + 0.465924i −0.968604 0.248608i \(-0.920027\pi\)
0.699603 + 0.714532i \(0.253360\pi\)
\(44\) 0 0
\(45\) −10.1078 + 17.5072i −1.50678 + 2.60983i
\(46\) 0 0
\(47\) −0.322245 + 0.558144i −0.0470042 + 0.0814136i −0.888570 0.458741i \(-0.848301\pi\)
0.841566 + 0.540154i \(0.181634\pi\)
\(48\) 0 0
\(49\) −3.42032 + 6.10749i −0.488618 + 0.872498i
\(50\) 0 0
\(51\) −0.302403 + 0.523778i −0.0423450 + 0.0733436i
\(52\) 0 0
\(53\) −0.986923 −0.135564 −0.0677821 0.997700i \(-0.521592\pi\)
−0.0677821 + 0.997700i \(0.521592\pi\)
\(54\) 0 0
\(55\) 2.78937 4.83134i 0.376119 0.651457i
\(56\) 0 0
\(57\) 9.35699 10.2079i 1.23936 1.35207i
\(58\) 0 0
\(59\) 0.517408 + 0.896178i 0.0673608 + 0.116672i 0.897739 0.440528i \(-0.145209\pi\)
−0.830378 + 0.557201i \(0.811875\pi\)
\(60\) 0 0
\(61\) −6.63206 + 11.4871i −0.849148 + 1.47077i 0.0328220 + 0.999461i \(0.489551\pi\)
−0.881970 + 0.471306i \(0.843783\pi\)
\(62\) 0 0
\(63\) −18.7641 + 0.122851i −2.36405 + 0.0154778i
\(64\) 0 0
\(65\) −8.01386 13.8804i −0.993997 1.72165i
\(66\) 0 0
\(67\) 2.98339 0.364479 0.182240 0.983254i \(-0.441665\pi\)
0.182240 + 0.983254i \(0.441665\pi\)
\(68\) 0 0
\(69\) 12.9146 1.55473
\(70\) 0 0
\(71\) −7.31183 + 12.6645i −0.867754 + 1.50299i −0.00346797 + 0.999994i \(0.501104\pi\)
−0.864286 + 0.503000i \(0.832229\pi\)
\(72\) 0 0
\(73\) −1.60909 2.78703i −0.188330 0.326197i 0.756364 0.654152i \(-0.226974\pi\)
−0.944694 + 0.327954i \(0.893641\pi\)
\(74\) 0 0
\(75\) 4.96308 + 8.59630i 0.573087 + 0.992616i
\(76\) 0 0
\(77\) 5.17818 0.0339023i 0.590108 0.00386352i
\(78\) 0 0
\(79\) 17.3324 1.95005 0.975024 0.222102i \(-0.0712916\pi\)
0.975024 + 0.222102i \(0.0712916\pi\)
\(80\) 0 0
\(81\) −10.0120 17.3413i −1.11244 1.92681i
\(82\) 0 0
\(83\) 1.00867 0.110716 0.0553579 0.998467i \(-0.482370\pi\)
0.0553579 + 0.998467i \(0.482370\pi\)
\(84\) 0 0
\(85\) 0.271326 + 0.469950i 0.0294294 + 0.0509732i
\(86\) 0 0
\(87\) 10.7161 18.5609i 1.14889 1.98994i
\(88\) 0 0
\(89\) 3.33188 5.77099i 0.353179 0.611724i −0.633625 0.773640i \(-0.718434\pi\)
0.986805 + 0.161916i \(0.0517673\pi\)
\(90\) 0 0
\(91\) 7.35409 12.9325i 0.770918 1.35569i
\(92\) 0 0
\(93\) 17.5675 1.82166
\(94\) 0 0
\(95\) −3.73407 11.8500i −0.383108 1.21579i
\(96\) 0 0
\(97\) −0.455589 + 0.789103i −0.0462580 + 0.0801212i −0.888227 0.459404i \(-0.848063\pi\)
0.841969 + 0.539525i \(0.181396\pi\)
\(98\) 0 0
\(99\) 6.94057 + 12.0214i 0.697554 + 1.20820i
\(100\) 0 0
\(101\) 9.24643 0.920054 0.460027 0.887905i \(-0.347840\pi\)
0.460027 + 0.887905i \(0.347840\pi\)
\(102\) 0 0
\(103\) 7.49973 + 12.9899i 0.738971 + 1.27993i 0.952959 + 0.303099i \(0.0980212\pi\)
−0.213988 + 0.976836i \(0.568646\pi\)
\(104\) 0 0
\(105\) −11.8427 + 20.8259i −1.15573 + 2.03240i
\(106\) 0 0
\(107\) −9.23202 15.9903i −0.892493 1.54584i −0.836877 0.547391i \(-0.815621\pi\)
−0.0556158 0.998452i \(-0.517712\pi\)
\(108\) 0 0
\(109\) −4.32098 7.48416i −0.413875 0.716853i 0.581435 0.813593i \(-0.302492\pi\)
−0.995310 + 0.0967406i \(0.969158\pi\)
\(110\) 0 0
\(111\) 3.43518 5.94990i 0.326053 0.564740i
\(112\) 0 0
\(113\) −1.31120 −0.123347 −0.0616736 0.998096i \(-0.519644\pi\)
−0.0616736 + 0.998096i \(0.519644\pi\)
\(114\) 0 0
\(115\) 5.79367 10.0349i 0.540262 0.935762i
\(116\) 0 0
\(117\) 39.8805 3.68695
\(118\) 0 0
\(119\) −0.248988 + 0.437855i −0.0228247 + 0.0401381i
\(120\) 0 0
\(121\) 3.58467 + 6.20882i 0.325879 + 0.564438i
\(122\) 0 0
\(123\) −36.7639 −3.31489
\(124\) 0 0
\(125\) −5.34574 −0.478137
\(126\) 0 0
\(127\) 0.666587 + 1.15456i 0.0591500 + 0.102451i 0.894084 0.447899i \(-0.147828\pi\)
−0.834934 + 0.550350i \(0.814494\pi\)
\(128\) 0 0
\(129\) −11.2076 −0.986777
\(130\) 0 0
\(131\) −1.00818 −0.0880848 −0.0440424 0.999030i \(-0.514024\pi\)
−0.0440424 + 0.999030i \(0.514024\pi\)
\(132\) 0 0
\(133\) 7.73691 8.55220i 0.670875 0.741570i
\(134\) 0 0
\(135\) −37.0564 −3.18931
\(136\) 0 0
\(137\) −7.98734 −0.682404 −0.341202 0.939990i \(-0.610834\pi\)
−0.341202 + 0.939990i \(0.610834\pi\)
\(138\) 0 0
\(139\) −6.74538 11.6833i −0.572136 0.990968i −0.996346 0.0854044i \(-0.972782\pi\)
0.424211 0.905563i \(-0.360552\pi\)
\(140\) 0 0
\(141\) −2.04744 −0.172425
\(142\) 0 0
\(143\) −11.0055 −0.920326
\(144\) 0 0
\(145\) −9.61485 16.6534i −0.798470 1.38299i
\(146\) 0 0
\(147\) −22.2360 + 0.291177i −1.83399 + 0.0240158i
\(148\) 0 0
\(149\) 20.5504 1.68355 0.841776 0.539827i \(-0.181510\pi\)
0.841776 + 0.539827i \(0.181510\pi\)
\(150\) 0 0
\(151\) −6.60649 + 11.4428i −0.537629 + 0.931200i 0.461403 + 0.887191i \(0.347346\pi\)
−0.999031 + 0.0440091i \(0.985987\pi\)
\(152\) 0 0
\(153\) −1.35023 −0.109160
\(154\) 0 0
\(155\) 7.88104 13.6504i 0.633020 1.09642i
\(156\) 0 0
\(157\) 9.42953 + 16.3324i 0.752559 + 1.30347i 0.946579 + 0.322472i \(0.104514\pi\)
−0.194020 + 0.980998i \(0.562153\pi\)
\(158\) 0 0
\(159\) −1.56765 2.71525i −0.124323 0.215333i
\(160\) 0 0
\(161\) 10.7553 0.0704167i 0.847639 0.00554961i
\(162\) 0 0
\(163\) 5.26051 + 9.11148i 0.412035 + 0.713666i 0.995112 0.0987511i \(-0.0314848\pi\)
−0.583077 + 0.812417i \(0.698151\pi\)
\(164\) 0 0
\(165\) 17.7228 1.37972
\(166\) 0 0
\(167\) −9.32105 16.1445i −0.721284 1.24930i −0.960485 0.278331i \(-0.910219\pi\)
0.239201 0.970970i \(-0.423115\pi\)
\(168\) 0 0
\(169\) −9.30937 + 16.1243i −0.716106 + 1.24033i
\(170\) 0 0
\(171\) 30.1807 + 6.69631i 2.30798 + 0.512080i
\(172\) 0 0
\(173\) −3.94940 −0.300267 −0.150134 0.988666i \(-0.547970\pi\)
−0.150134 + 0.988666i \(0.547970\pi\)
\(174\) 0 0
\(175\) 4.18016 + 7.13200i 0.315990 + 0.539129i
\(176\) 0 0
\(177\) −1.64372 + 2.84701i −0.123550 + 0.213995i
\(178\) 0 0
\(179\) 6.49357 11.2472i 0.485352 0.840654i −0.514506 0.857487i \(-0.672025\pi\)
0.999858 + 0.0168324i \(0.00535818\pi\)
\(180\) 0 0
\(181\) 7.82120 + 13.5467i 0.581345 + 1.00692i 0.995320 + 0.0966310i \(0.0308067\pi\)
−0.413975 + 0.910288i \(0.635860\pi\)
\(182\) 0 0
\(183\) −42.1380 −3.11493
\(184\) 0 0
\(185\) −3.08215 5.33843i −0.226604 0.392489i
\(186\) 0 0
\(187\) 0.372614 0.0272482
\(188\) 0 0
\(189\) −17.3929 29.6749i −1.26514 2.15853i
\(190\) 0 0
\(191\) 3.30842 + 5.73035i 0.239389 + 0.414633i 0.960539 0.278145i \(-0.0897197\pi\)
−0.721150 + 0.692779i \(0.756386\pi\)
\(192\) 0 0
\(193\) −4.68500 8.11467i −0.337234 0.584106i 0.646677 0.762764i \(-0.276158\pi\)
−0.983911 + 0.178657i \(0.942825\pi\)
\(194\) 0 0
\(195\) 25.4587 44.0958i 1.82314 3.15777i
\(196\) 0 0
\(197\) −15.3895 −1.09646 −0.548228 0.836329i \(-0.684697\pi\)
−0.548228 + 0.836329i \(0.684697\pi\)
\(198\) 0 0
\(199\) 13.5102 0.957711 0.478856 0.877894i \(-0.341052\pi\)
0.478856 + 0.877894i \(0.341052\pi\)
\(200\) 0 0
\(201\) 4.73888 + 8.20798i 0.334255 + 0.578946i
\(202\) 0 0
\(203\) 8.82328 15.5161i 0.619273 1.08902i
\(204\) 0 0
\(205\) −16.4929 + 28.5665i −1.15191 + 1.99517i
\(206\) 0 0
\(207\) 14.4159 + 24.9691i 1.00198 + 1.73547i
\(208\) 0 0
\(209\) −8.32874 1.84793i −0.576111 0.127824i
\(210\) 0 0
\(211\) 5.34366 9.25549i 0.367873 0.637174i −0.621360 0.783525i \(-0.713420\pi\)
0.989233 + 0.146351i \(0.0467528\pi\)
\(212\) 0 0
\(213\) −46.4570 −3.18318
\(214\) 0 0
\(215\) −5.02791 + 8.70860i −0.342901 + 0.593921i
\(216\) 0 0
\(217\) 14.6303 0.0957867i 0.993171 0.00650243i
\(218\) 0 0
\(219\) 5.11183 8.85395i 0.345426 0.598295i
\(220\) 0 0
\(221\) 0.535259 0.927095i 0.0360054 0.0623632i
\(222\) 0 0
\(223\) 6.95138 12.0401i 0.465499 0.806267i −0.533725 0.845658i \(-0.679208\pi\)
0.999224 + 0.0393907i \(0.0125417\pi\)
\(224\) 0 0
\(225\) −11.0801 + 19.1913i −0.738673 + 1.27942i
\(226\) 0 0
\(227\) −12.8500 + 22.2568i −0.852884 + 1.47724i 0.0257110 + 0.999669i \(0.491815\pi\)
−0.878595 + 0.477568i \(0.841518\pi\)
\(228\) 0 0
\(229\) 0.385216 + 0.667214i 0.0254558 + 0.0440907i 0.878473 0.477793i \(-0.158563\pi\)
−0.853017 + 0.521883i \(0.825230\pi\)
\(230\) 0 0
\(231\) 8.31840 + 14.1925i 0.547310 + 0.933797i
\(232\) 0 0
\(233\) −19.6982 −1.29047 −0.645236 0.763984i \(-0.723241\pi\)
−0.645236 + 0.763984i \(0.723241\pi\)
\(234\) 0 0
\(235\) −0.918512 + 1.59091i −0.0599171 + 0.103779i
\(236\) 0 0
\(237\) 27.5311 + 47.6853i 1.78834 + 3.09749i
\(238\) 0 0
\(239\) 4.16702 0.269542 0.134771 0.990877i \(-0.456970\pi\)
0.134771 + 0.990877i \(0.456970\pi\)
\(240\) 0 0
\(241\) 25.5185 1.64379 0.821896 0.569638i \(-0.192917\pi\)
0.821896 + 0.569638i \(0.192917\pi\)
\(242\) 0 0
\(243\) 12.3055 21.3138i 0.789401 1.36728i
\(244\) 0 0
\(245\) −9.74914 + 17.4085i −0.622850 + 1.11219i
\(246\) 0 0
\(247\) −16.5620 + 18.0681i −1.05382 + 1.14964i
\(248\) 0 0
\(249\) 1.60219 + 2.77508i 0.101535 + 0.175863i
\(250\) 0 0
\(251\) 7.07385 + 12.2523i 0.446497 + 0.773356i 0.998155 0.0607146i \(-0.0193380\pi\)
−0.551658 + 0.834070i \(0.686005\pi\)
\(252\) 0 0
\(253\) −3.97825 6.89053i −0.250110 0.433204i
\(254\) 0 0
\(255\) −0.861958 + 1.49296i −0.0539779 + 0.0934925i
\(256\) 0 0
\(257\) −2.61985 + 4.53771i −0.163422 + 0.283055i −0.936094 0.351751i \(-0.885586\pi\)
0.772672 + 0.634806i \(0.218920\pi\)
\(258\) 0 0
\(259\) 2.82840 4.97385i 0.175748 0.309060i
\(260\) 0 0
\(261\) 47.8477 2.96170
\(262\) 0 0
\(263\) 5.82127 + 10.0827i 0.358955 + 0.621729i 0.987787 0.155813i \(-0.0497998\pi\)
−0.628831 + 0.777542i \(0.716466\pi\)
\(264\) 0 0
\(265\) −2.81308 −0.172806
\(266\) 0 0
\(267\) 21.1697 1.29557
\(268\) 0 0
\(269\) −11.8538 20.5314i −0.722740 1.25182i −0.959898 0.280351i \(-0.909549\pi\)
0.237158 0.971471i \(-0.423784\pi\)
\(270\) 0 0
\(271\) 12.2584 0.744642 0.372321 0.928104i \(-0.378562\pi\)
0.372321 + 0.928104i \(0.378562\pi\)
\(272\) 0 0
\(273\) 47.2615 0.309428i 2.86040 0.0187274i
\(274\) 0 0
\(275\) 3.05769 5.29607i 0.184385 0.319365i
\(276\) 0 0
\(277\) 3.73156 6.46325i 0.224208 0.388339i −0.731874 0.681440i \(-0.761354\pi\)
0.956081 + 0.293101i \(0.0946873\pi\)
\(278\) 0 0
\(279\) 19.6097 + 33.9651i 1.17400 + 2.03344i
\(280\) 0 0
\(281\) −9.43708 16.3455i −0.562969 0.975091i −0.997235 0.0743066i \(-0.976326\pi\)
0.434266 0.900785i \(-0.357008\pi\)
\(282\) 0 0
\(283\) 8.07820 + 13.9919i 0.480199 + 0.831730i 0.999742 0.0227149i \(-0.00723101\pi\)
−0.519543 + 0.854444i \(0.673898\pi\)
\(284\) 0 0
\(285\) 26.6708 29.0961i 1.57984 1.72350i
\(286\) 0 0
\(287\) −30.6172 + 0.200455i −1.80728 + 0.0118325i
\(288\) 0 0
\(289\) 8.48188 14.6910i 0.498934 0.864179i
\(290\) 0 0
\(291\) −2.89466 −0.169688
\(292\) 0 0
\(293\) −10.8581 −0.634334 −0.317167 0.948370i \(-0.602732\pi\)
−0.317167 + 0.948370i \(0.602732\pi\)
\(294\) 0 0
\(295\) 1.47480 + 2.55443i 0.0858661 + 0.148724i
\(296\) 0 0
\(297\) −12.7225 + 22.0360i −0.738233 + 1.27866i
\(298\) 0 0
\(299\) −22.8590 −1.32197
\(300\) 0 0
\(301\) −9.33379 + 0.0611096i −0.537991 + 0.00352230i
\(302\) 0 0
\(303\) 14.6872 + 25.4390i 0.843759 + 1.46143i
\(304\) 0 0
\(305\) −18.9037 + 32.7422i −1.08242 + 1.87481i
\(306\) 0 0
\(307\) 2.12730 3.68459i 0.121411 0.210291i −0.798913 0.601446i \(-0.794591\pi\)
0.920324 + 0.391156i \(0.127925\pi\)
\(308\) 0 0
\(309\) −23.8255 + 41.2669i −1.35538 + 2.34759i
\(310\) 0 0
\(311\) −11.2164 + 19.4275i −0.636026 + 1.10163i 0.350270 + 0.936649i \(0.386090\pi\)
−0.986297 + 0.164981i \(0.947244\pi\)
\(312\) 0 0
\(313\) −11.0380 + 19.1184i −0.623907 + 1.08064i 0.364844 + 0.931069i \(0.381122\pi\)
−0.988751 + 0.149570i \(0.952211\pi\)
\(314\) 0 0
\(315\) −53.4844 + 0.350170i −3.01350 + 0.0197298i
\(316\) 0 0
\(317\) 5.32538 9.22383i 0.299103 0.518062i −0.676828 0.736141i \(-0.736646\pi\)
0.975931 + 0.218079i \(0.0699792\pi\)
\(318\) 0 0
\(319\) −13.2042 −0.739291
\(320\) 0 0
\(321\) 29.3286 50.7987i 1.63697 2.83531i
\(322\) 0 0
\(323\) 0.560741 0.611732i 0.0312005 0.0340377i
\(324\) 0 0
\(325\) −8.78472 15.2156i −0.487289 0.844009i
\(326\) 0 0
\(327\) 13.7271 23.7760i 0.759109 1.31481i
\(328\) 0 0
\(329\) −1.70512 + 0.0111637i −0.0940064 + 0.000615473i
\(330\) 0 0
\(331\) 0.328728 + 0.569374i 0.0180685 + 0.0312956i 0.874918 0.484271i \(-0.160915\pi\)
−0.856850 + 0.515566i \(0.827582\pi\)
\(332\) 0 0
\(333\) 15.3381 0.840523
\(334\) 0 0
\(335\) 8.50373 0.464608
\(336\) 0 0
\(337\) 9.12455 15.8042i 0.497046 0.860909i −0.502948 0.864316i \(-0.667751\pi\)
0.999994 + 0.00340783i \(0.00108475\pi\)
\(338\) 0 0
\(339\) −2.08274 3.60740i −0.113119 0.195927i
\(340\) 0 0
\(341\) −5.41155 9.37307i −0.293052 0.507580i
\(342\) 0 0
\(343\) −18.5167 + 0.363736i −0.999807 + 0.0196399i
\(344\) 0 0
\(345\) 36.8111 1.98184
\(346\) 0 0
\(347\) 0.591098 + 1.02381i 0.0317318 + 0.0549611i 0.881455 0.472268i \(-0.156564\pi\)
−0.849723 + 0.527229i \(0.823231\pi\)
\(348\) 0 0
\(349\) 13.0348 0.697735 0.348868 0.937172i \(-0.386566\pi\)
0.348868 + 0.937172i \(0.386566\pi\)
\(350\) 0 0
\(351\) 36.5516 + 63.3093i 1.95098 + 3.37920i
\(352\) 0 0
\(353\) −1.99549 + 3.45629i −0.106209 + 0.183960i −0.914232 0.405192i \(-0.867205\pi\)
0.808022 + 0.589152i \(0.200538\pi\)
\(354\) 0 0
\(355\) −20.8413 + 36.0982i −1.10614 + 1.91589i
\(356\) 0 0
\(357\) −1.60013 + 0.0104763i −0.0846881 + 0.000554465i
\(358\) 0 0
\(359\) −17.3988 −0.918274 −0.459137 0.888365i \(-0.651841\pi\)
−0.459137 + 0.888365i \(0.651841\pi\)
\(360\) 0 0
\(361\) −15.5676 + 10.8926i −0.819348 + 0.573297i
\(362\) 0 0
\(363\) −11.3879 + 19.7244i −0.597710 + 1.03526i
\(364\) 0 0
\(365\) −4.58649 7.94403i −0.240068 0.415810i
\(366\) 0 0
\(367\) 31.9647 1.66854 0.834271 0.551355i \(-0.185889\pi\)
0.834271 + 0.551355i \(0.185889\pi\)
\(368\) 0 0
\(369\) −41.0378 71.0796i −2.13634 3.70026i
\(370\) 0 0
\(371\) −1.32035 2.25273i −0.0685493 0.116956i
\(372\) 0 0
\(373\) 2.07791 + 3.59905i 0.107590 + 0.186352i 0.914794 0.403922i \(-0.132353\pi\)
−0.807203 + 0.590274i \(0.799020\pi\)
\(374\) 0 0
\(375\) −8.49128 14.7073i −0.438488 0.759483i
\(376\) 0 0
\(377\) −18.9677 + 32.8531i −0.976889 + 1.69202i
\(378\) 0 0
\(379\) −20.2143 −1.03834 −0.519169 0.854671i \(-0.673759\pi\)
−0.519169 + 0.854671i \(0.673759\pi\)
\(380\) 0 0
\(381\) −2.11764 + 3.66786i −0.108490 + 0.187910i
\(382\) 0 0
\(383\) 11.8318 0.604577 0.302288 0.953217i \(-0.402249\pi\)
0.302288 + 0.953217i \(0.402249\pi\)
\(384\) 0 0
\(385\) 14.7597 0.0966336i 0.752222 0.00492490i
\(386\) 0 0
\(387\) −12.5105 21.6689i −0.635947 1.10149i
\(388\) 0 0
\(389\) −37.1025 −1.88117 −0.940585 0.339557i \(-0.889723\pi\)
−0.940585 + 0.339557i \(0.889723\pi\)
\(390\) 0 0
\(391\) 0.773937 0.0391397
\(392\) 0 0
\(393\) −1.60141 2.77372i −0.0807803 0.139916i
\(394\) 0 0
\(395\) 49.4035 2.48576
\(396\) 0 0
\(397\) −5.71410 −0.286782 −0.143391 0.989666i \(-0.545801\pi\)
−0.143391 + 0.989666i \(0.545801\pi\)
\(398\) 0 0
\(399\) 35.8185 + 7.70148i 1.79317 + 0.385556i
\(400\) 0 0
\(401\) −13.2768 −0.663011 −0.331505 0.943453i \(-0.607557\pi\)
−0.331505 + 0.943453i \(0.607557\pi\)
\(402\) 0 0
\(403\) −31.0947 −1.54894
\(404\) 0 0
\(405\) −28.5377 49.4288i −1.41805 2.45614i
\(406\) 0 0
\(407\) −4.23274 −0.209809
\(408\) 0 0
\(409\) −14.9809 −0.740757 −0.370378 0.928881i \(-0.620772\pi\)
−0.370378 + 0.928881i \(0.620772\pi\)
\(410\) 0 0
\(411\) −12.6872 21.9750i −0.625816 1.08394i
\(412\) 0 0
\(413\) −1.35338 + 2.37997i −0.0665955 + 0.117111i
\(414\) 0 0
\(415\) 2.87507 0.141132
\(416\) 0 0
\(417\) 21.4290 37.1161i 1.04938 1.81758i
\(418\) 0 0
\(419\) 11.6652 0.569881 0.284940 0.958545i \(-0.408026\pi\)
0.284940 + 0.958545i \(0.408026\pi\)
\(420\) 0 0
\(421\) 0.0530323 0.0918546i 0.00258464 0.00447672i −0.864730 0.502237i \(-0.832511\pi\)
0.867315 + 0.497760i \(0.165844\pi\)
\(422\) 0 0
\(423\) −2.28546 3.95853i −0.111123 0.192470i
\(424\) 0 0
\(425\) 0.297425 + 0.515155i 0.0144272 + 0.0249887i
\(426\) 0 0
\(427\) −35.0928 + 0.229757i −1.69826 + 0.0111187i
\(428\) 0 0
\(429\) −17.4814 30.2786i −0.844008 1.46186i
\(430\) 0 0
\(431\) −5.10523 −0.245911 −0.122955 0.992412i \(-0.539237\pi\)
−0.122955 + 0.992412i \(0.539237\pi\)
\(432\) 0 0
\(433\) −7.34596 12.7236i −0.353024 0.611456i 0.633753 0.773535i \(-0.281513\pi\)
−0.986778 + 0.162079i \(0.948180\pi\)
\(434\) 0 0
\(435\) 30.5449 52.9052i 1.46451 2.53661i
\(436\) 0 0
\(437\) −17.2992 3.83824i −0.827533 0.183608i
\(438\) 0 0
\(439\) 29.2018 1.39373 0.696864 0.717203i \(-0.254578\pi\)
0.696864 + 0.717203i \(0.254578\pi\)
\(440\) 0 0
\(441\) −25.3839 42.6662i −1.20876 2.03172i
\(442\) 0 0
\(443\) 17.8779 30.9654i 0.849405 1.47121i −0.0323360 0.999477i \(-0.510295\pi\)
0.881741 0.471735i \(-0.156372\pi\)
\(444\) 0 0
\(445\) 9.49706 16.4494i 0.450204 0.779776i
\(446\) 0 0
\(447\) 32.6426 + 56.5387i 1.54394 + 2.67419i
\(448\) 0 0
\(449\) 5.62378 0.265403 0.132701 0.991156i \(-0.457635\pi\)
0.132701 + 0.991156i \(0.457635\pi\)
\(450\) 0 0
\(451\) 11.3249 + 19.6153i 0.533268 + 0.923647i
\(452\) 0 0
\(453\) −41.9755 −1.97218
\(454\) 0 0
\(455\) 20.9618 36.8621i 0.982704 1.72812i
\(456\) 0 0
\(457\) −10.7762 18.6649i −0.504090 0.873109i −0.999989 0.00472862i \(-0.998495\pi\)
0.495899 0.868380i \(-0.334839\pi\)
\(458\) 0 0
\(459\) −1.23753 2.14346i −0.0577629 0.100048i
\(460\) 0 0
\(461\) 11.4084 19.7599i 0.531340 0.920309i −0.467990 0.883734i \(-0.655022\pi\)
0.999331 0.0365752i \(-0.0116448\pi\)
\(462\) 0 0
\(463\) 3.25507 0.151276 0.0756380 0.997135i \(-0.475901\pi\)
0.0756380 + 0.997135i \(0.475901\pi\)
\(464\) 0 0
\(465\) 50.0736 2.32211
\(466\) 0 0
\(467\) 16.4571 + 28.5046i 0.761546 + 1.31904i 0.942054 + 0.335463i \(0.108893\pi\)
−0.180508 + 0.983574i \(0.557774\pi\)
\(468\) 0 0
\(469\) 3.99132 + 6.80982i 0.184302 + 0.314448i
\(470\) 0 0
\(471\) −29.9561 + 51.8855i −1.38031 + 2.39076i
\(472\) 0 0
\(473\) 3.45244 + 5.97979i 0.158743 + 0.274951i
\(474\) 0 0
\(475\) −4.09326 12.9899i −0.187812 0.596017i
\(476\) 0 0
\(477\) 3.49978 6.06180i 0.160244 0.277551i
\(478\) 0 0
\(479\) 16.0470 0.733207 0.366604 0.930377i \(-0.380520\pi\)
0.366604 + 0.930377i \(0.380520\pi\)
\(480\) 0 0
\(481\) −6.08032 + 10.5314i −0.277239 + 0.480191i
\(482\) 0 0
\(483\) 17.2777 + 29.4785i 0.786164 + 1.34132i
\(484\) 0 0
\(485\) −1.29859 + 2.24922i −0.0589660 + 0.102132i
\(486\) 0 0
\(487\) 1.02790 1.78038i 0.0465787 0.0806767i −0.841796 0.539796i \(-0.818502\pi\)
0.888375 + 0.459119i \(0.151835\pi\)
\(488\) 0 0
\(489\) −16.7118 + 28.9457i −0.755734 + 1.30897i
\(490\) 0 0
\(491\) 13.7152 23.7554i 0.618958 1.07207i −0.370718 0.928745i \(-0.620889\pi\)
0.989676 0.143321i \(-0.0457782\pi\)
\(492\) 0 0
\(493\) 0.642192 1.11231i 0.0289229 0.0500959i
\(494\) 0 0
\(495\) 19.7831 + 34.2654i 0.889185 + 1.54011i
\(496\) 0 0
\(497\) −38.6897 + 0.253307i −1.73547 + 0.0113624i
\(498\) 0 0
\(499\) 6.27346 0.280838 0.140419 0.990092i \(-0.455155\pi\)
0.140419 + 0.990092i \(0.455155\pi\)
\(500\) 0 0
\(501\) 29.6115 51.2886i 1.32294 2.29141i
\(502\) 0 0
\(503\) −9.35263 16.1992i −0.417013 0.722288i 0.578624 0.815594i \(-0.303590\pi\)
−0.995637 + 0.0933063i \(0.970256\pi\)
\(504\) 0 0
\(505\) 26.3556 1.17281
\(506\) 0 0
\(507\) −59.1488 −2.62689
\(508\) 0 0
\(509\) −15.9094 + 27.5558i −0.705170 + 1.22139i 0.261460 + 0.965214i \(0.415796\pi\)
−0.966630 + 0.256176i \(0.917537\pi\)
\(510\) 0 0
\(511\) 4.20889 7.40151i 0.186190 0.327423i
\(512\) 0 0
\(513\) 17.0313 + 54.0485i 0.751950 + 2.38630i
\(514\) 0 0
\(515\) 21.3769 + 37.0259i 0.941980 + 1.63156i
\(516\) 0 0
\(517\) 0.630700 + 1.09240i 0.0277382 + 0.0480439i
\(518\) 0 0
\(519\) −6.27330 10.8657i −0.275367 0.476950i
\(520\) 0 0
\(521\) −6.49298 + 11.2462i −0.284463 + 0.492704i −0.972479 0.232992i \(-0.925149\pi\)
0.688016 + 0.725696i \(0.258482\pi\)
\(522\) 0 0
\(523\) −6.34661 + 10.9927i −0.277518 + 0.480675i −0.970767 0.240023i \(-0.922845\pi\)
0.693249 + 0.720698i \(0.256178\pi\)
\(524\) 0 0
\(525\) −12.9819 + 22.8292i −0.566576 + 0.996346i
\(526\) 0 0
\(527\) 1.05277 0.0458596
\(528\) 0 0
\(529\) 3.23698 + 5.60661i 0.140738 + 0.243766i
\(530\) 0 0
\(531\) −7.33924 −0.318496
\(532\) 0 0
\(533\) 65.0727 2.81861
\(534\) 0 0
\(535\) −26.3146 45.5781i −1.13768 1.97051i
\(536\) 0 0
\(537\) 41.2580 1.78042
\(538\) 0 0
\(539\) 7.00500 + 11.7742i 0.301727 + 0.507152i
\(540\) 0 0
\(541\) −0.575266 + 0.996390i −0.0247326 + 0.0428381i −0.878127 0.478428i \(-0.841207\pi\)
0.853394 + 0.521266i \(0.174540\pi\)
\(542\) 0 0
\(543\) −24.8467 + 43.0357i −1.06627 + 1.84684i
\(544\) 0 0
\(545\) −12.3163 21.3325i −0.527574 0.913785i
\(546\) 0 0
\(547\) −15.5089 26.8621i −0.663111 1.14854i −0.979794 0.200011i \(-0.935902\pi\)
0.316682 0.948532i \(-0.397431\pi\)
\(548\) 0 0
\(549\) −47.0366 81.4698i −2.00747 3.47705i
\(550\) 0 0
\(551\) −19.8708 + 21.6777i −0.846523 + 0.923501i
\(552\) 0 0
\(553\) 23.1881 + 39.5625i 0.986059 + 1.68237i
\(554\) 0 0
\(555\) 9.79149 16.9594i 0.415625 0.719884i
\(556\) 0 0
\(557\) 6.28770 0.266418 0.133209 0.991088i \(-0.457472\pi\)
0.133209 + 0.991088i \(0.457472\pi\)
\(558\) 0 0
\(559\) 19.8377 0.839044
\(560\) 0 0
\(561\) 0.591867 + 1.02514i 0.0249886 + 0.0432816i
\(562\) 0 0
\(563\) −8.24585 + 14.2822i −0.347521 + 0.601924i −0.985808 0.167874i \(-0.946310\pi\)
0.638287 + 0.769798i \(0.279643\pi\)
\(564\) 0 0
\(565\) −3.73739 −0.157233
\(566\) 0 0
\(567\) 26.1883 46.0531i 1.09980 1.93405i
\(568\) 0 0
\(569\) 4.81526 + 8.34028i 0.201866 + 0.349643i 0.949130 0.314885i \(-0.101966\pi\)
−0.747263 + 0.664528i \(0.768633\pi\)
\(570\) 0 0
\(571\) 4.54817 7.87767i 0.190335 0.329670i −0.755026 0.655695i \(-0.772376\pi\)
0.945361 + 0.326025i \(0.105709\pi\)
\(572\) 0 0
\(573\) −10.5103 + 18.2044i −0.439075 + 0.760500i
\(574\) 0 0
\(575\) 6.35097 11.0002i 0.264854 0.458740i
\(576\) 0 0
\(577\) −14.3237 + 24.8094i −0.596304 + 1.03283i 0.397057 + 0.917794i \(0.370032\pi\)
−0.993361 + 0.115036i \(0.963302\pi\)
\(578\) 0 0
\(579\) 14.8835 25.7790i 0.618538 1.07134i
\(580\) 0 0
\(581\) 1.34945 + 2.30237i 0.0559845 + 0.0955183i
\(582\) 0 0
\(583\) −0.965807 + 1.67283i −0.0399996 + 0.0692814i
\(584\) 0 0
\(585\) 113.674 4.69982
\(586\) 0 0
\(587\) 5.36250 9.28811i 0.221334 0.383361i −0.733879 0.679280i \(-0.762292\pi\)
0.955213 + 0.295918i \(0.0956256\pi\)
\(588\) 0 0
\(589\) −23.5318 5.22110i −0.969613 0.215131i
\(590\) 0 0
\(591\) −24.4450 42.3400i −1.00553 1.74163i
\(592\) 0 0
\(593\) 11.5939 20.0813i 0.476106 0.824640i −0.523519 0.852014i \(-0.675381\pi\)
0.999625 + 0.0273738i \(0.00871443\pi\)
\(594\) 0 0
\(595\) −0.709704 + 1.24804i −0.0290950 + 0.0511648i
\(596\) 0 0
\(597\) 21.4598 + 37.1695i 0.878293 + 1.52125i
\(598\) 0 0
\(599\) 44.5700 1.82108 0.910541 0.413419i \(-0.135666\pi\)
0.910541 + 0.413419i \(0.135666\pi\)
\(600\) 0 0
\(601\) −39.5150 −1.61185 −0.805926 0.592017i \(-0.798332\pi\)
−0.805926 + 0.592017i \(0.798332\pi\)
\(602\) 0 0
\(603\) −10.5796 + 18.3244i −0.430833 + 0.746225i
\(604\) 0 0
\(605\) 10.2176 + 17.6974i 0.415404 + 0.719500i
\(606\) 0 0
\(607\) 2.29021 + 3.96676i 0.0929567 + 0.161006i 0.908754 0.417332i \(-0.137035\pi\)
−0.815797 + 0.578338i \(0.803702\pi\)
\(608\) 0 0
\(609\) 56.7033 0.371245i 2.29773 0.0150436i
\(610\) 0 0
\(611\) 3.62400 0.146611
\(612\) 0 0
\(613\) −5.84990 10.1323i −0.236275 0.409241i 0.723367 0.690463i \(-0.242593\pi\)
−0.959642 + 0.281223i \(0.909260\pi\)
\(614\) 0 0
\(615\) −104.790 −4.22555
\(616\) 0 0
\(617\) −11.0865 19.2024i −0.446327 0.773061i 0.551816 0.833966i \(-0.313935\pi\)
−0.998144 + 0.0609042i \(0.980602\pi\)
\(618\) 0 0
\(619\) 12.0994 20.9568i 0.486318 0.842327i −0.513559 0.858054i \(-0.671673\pi\)
0.999876 + 0.0157277i \(0.00500648\pi\)
\(620\) 0 0
\(621\) −26.4252 + 45.7698i −1.06041 + 1.83668i
\(622\) 0 0
\(623\) 17.6303 0.115428i 0.706343 0.00462453i
\(624\) 0 0
\(625\) −30.8600 −1.23440
\(626\) 0 0
\(627\) −8.14547 25.8495i −0.325299 1.03233i
\(628\) 0 0
\(629\) 0.205862 0.356563i 0.00820824 0.0142171i
\(630\) 0 0
\(631\) −5.06477 8.77243i −0.201625 0.349225i 0.747427 0.664344i \(-0.231289\pi\)
−0.949052 + 0.315119i \(0.897956\pi\)
\(632\) 0 0
\(633\) 33.9519 1.34947
\(634\) 0 0
\(635\) 1.90001 + 3.29092i 0.0753996 + 0.130596i
\(636\) 0 0
\(637\) 39.3580 0.515387i 1.55942 0.0204204i
\(638\) 0 0
\(639\) −51.8578 89.8203i −2.05146 3.55324i
\(640\) 0 0
\(641\) −7.84954 13.5958i −0.310038 0.537002i 0.668332 0.743863i \(-0.267008\pi\)
−0.978370 + 0.206861i \(0.933675\pi\)
\(642\) 0 0
\(643\) −5.22469 + 9.04943i −0.206042 + 0.356875i −0.950464 0.310834i \(-0.899392\pi\)
0.744422 + 0.667709i \(0.232725\pi\)
\(644\) 0 0
\(645\) −31.9457 −1.25786
\(646\) 0 0
\(647\) −6.88048 + 11.9173i −0.270499 + 0.468519i −0.968990 0.247101i \(-0.920522\pi\)
0.698490 + 0.715619i \(0.253856\pi\)
\(648\) 0 0
\(649\) 2.02535 0.0795021
\(650\) 0 0
\(651\) 23.5026 + 40.0991i 0.921140 + 1.57161i
\(652\) 0 0
\(653\) −15.3234 26.5409i −0.599652 1.03863i −0.992872 0.119183i \(-0.961972\pi\)
0.393220 0.919444i \(-0.371361\pi\)
\(654\) 0 0
\(655\) −2.87366 −0.112283
\(656\) 0 0
\(657\) 22.8244 0.890464
\(658\) 0 0
\(659\) 4.36257 + 7.55619i 0.169941 + 0.294347i 0.938399 0.345553i \(-0.112309\pi\)
−0.768458 + 0.639901i \(0.778975\pi\)
\(660\) 0 0
\(661\) 20.3588 0.791864 0.395932 0.918280i \(-0.370422\pi\)
0.395932 + 0.918280i \(0.370422\pi\)
\(662\) 0 0
\(663\) 3.40086 0.132079
\(664\) 0 0
\(665\) 22.0530 24.3768i 0.855177 0.945293i
\(666\) 0 0
\(667\) −27.4257 −1.06193
\(668\) 0 0
\(669\) 44.1668 1.70759
\(670\) 0 0
\(671\) 12.9803 + 22.4826i 0.501100 + 0.867930i
\(672\) 0 0
\(673\) −10.4493 −0.402790 −0.201395 0.979510i \(-0.564547\pi\)
−0.201395 + 0.979510i \(0.564547\pi\)
\(674\) 0 0
\(675\) −40.6209 −1.56350
\(676\) 0 0
\(677\) 15.3568 + 26.5988i 0.590210 + 1.02227i 0.994204 + 0.107512i \(0.0342884\pi\)
−0.403994 + 0.914762i \(0.632378\pi\)
\(678\) 0 0
\(679\) −2.41070 + 0.0157832i −0.0925141 + 0.000605703i
\(680\) 0 0
\(681\) −81.6447 −3.12863
\(682\) 0 0
\(683\) 13.3390 23.1038i 0.510403 0.884044i −0.489524 0.871990i \(-0.662830\pi\)
0.999927 0.0120541i \(-0.00383704\pi\)
\(684\) 0 0
\(685\) −22.7668 −0.869874
\(686\) 0 0
\(687\) −1.22377 + 2.11963i −0.0466897 + 0.0808690i
\(688\) 0 0
\(689\) 2.77476 + 4.80603i 0.105710 + 0.183095i
\(690\) 0 0
\(691\) −18.7601 32.4935i −0.713669 1.23611i −0.963471 0.267814i \(-0.913699\pi\)
0.249802 0.968297i \(-0.419635\pi\)
\(692\) 0 0
\(693\) −18.1544 + 31.9252i −0.689629 + 1.21274i
\(694\) 0 0
\(695\) −19.2267 33.3017i −0.729312 1.26321i
\(696\) 0 0
\(697\) −2.20317 −0.0834510
\(698\) 0 0
\(699\) −31.2890 54.1941i −1.18346 2.04981i
\(700\) 0 0
\(701\) 1.01872 1.76447i 0.0384765 0.0666432i −0.846146 0.532951i \(-0.821083\pi\)
0.884622 + 0.466308i \(0.154416\pi\)
\(702\) 0 0
\(703\) −6.36979 + 6.94902i −0.240241 + 0.262087i
\(704\) 0 0
\(705\) −5.83593 −0.219794
\(706\) 0 0
\(707\) 12.3703 + 21.1057i 0.465234 + 0.793761i
\(708\) 0 0
\(709\) 8.49192 14.7084i 0.318921 0.552387i −0.661342 0.750084i \(-0.730013\pi\)
0.980263 + 0.197697i \(0.0633463\pi\)
\(710\) 0 0
\(711\) −61.4634 + 106.458i −2.30506 + 3.99248i
\(712\) 0 0
\(713\) −11.2401 19.4683i −0.420943 0.729095i
\(714\) 0 0
\(715\) −31.3696 −1.17316
\(716\) 0 0
\(717\) 6.61898 + 11.4644i 0.247190 + 0.428146i
\(718\) 0 0
\(719\) −3.68685 −0.137496 −0.0687481 0.997634i \(-0.521900\pi\)
−0.0687481 + 0.997634i \(0.521900\pi\)
\(720\) 0 0
\(721\) −19.6170 + 34.4973i −0.730575 + 1.28475i
\(722\) 0 0
\(723\) 40.5341 + 70.2071i 1.50748 + 2.61103i
\(724\) 0 0
\(725\) −10.5397 18.2553i −0.391435 0.677986i
\(726\) 0 0
\(727\) −5.31640 + 9.20827i −0.197174 + 0.341516i −0.947611 0.319426i \(-0.896510\pi\)
0.750437 + 0.660942i \(0.229843\pi\)
\(728\) 0 0
\(729\) 18.1135 0.670872
\(730\) 0 0
\(731\) −0.671645 −0.0248417
\(732\) 0 0
\(733\) −14.9730 25.9339i −0.553039 0.957892i −0.998053 0.0623685i \(-0.980135\pi\)
0.445014 0.895524i \(-0.353199\pi\)
\(734\) 0 0
\(735\) −63.3805 + 0.829957i −2.33782 + 0.0306134i
\(736\) 0 0
\(737\) 2.91956 5.05683i 0.107543 0.186271i
\(738\) 0 0
\(739\) 2.82989 + 4.90151i 0.104099 + 0.180305i 0.913370 0.407131i \(-0.133471\pi\)
−0.809271 + 0.587436i \(0.800137\pi\)
\(740\) 0 0
\(741\) −76.0168 16.8661i −2.79255 0.619593i
\(742\) 0 0
\(743\) −7.19297 + 12.4586i −0.263884 + 0.457061i −0.967271 0.253747i \(-0.918337\pi\)
0.703386 + 0.710808i \(0.251670\pi\)
\(744\) 0 0
\(745\) 58.5759 2.14606
\(746\) 0 0
\(747\) −3.57690 + 6.19537i −0.130872 + 0.226677i
\(748\) 0 0
\(749\) 24.1481 42.4654i 0.882353 1.55165i
\(750\) 0 0
\(751\) −8.45163 + 14.6386i −0.308404 + 0.534172i −0.978013 0.208542i \(-0.933128\pi\)
0.669609 + 0.742714i \(0.266462\pi\)
\(752\) 0 0
\(753\) −22.4725 + 38.9235i −0.818943 + 1.41845i
\(754\) 0 0
\(755\) −18.8309 + 32.6160i −0.685325 + 1.18702i
\(756\) 0 0
\(757\) 16.3902 28.3886i 0.595711 1.03180i −0.397735 0.917500i \(-0.630204\pi\)
0.993446 0.114302i \(-0.0364631\pi\)
\(758\) 0 0
\(759\) 12.6383 21.8901i 0.458740 0.794560i
\(760\) 0 0
\(761\) 14.0769 + 24.3820i 0.510288 + 0.883845i 0.999929 + 0.0119211i \(0.00379468\pi\)
−0.489641 + 0.871924i \(0.662872\pi\)
\(762\) 0 0
\(763\) 11.3024 19.8757i 0.409173 0.719547i
\(764\) 0 0
\(765\) −3.84865 −0.139148
\(766\) 0 0
\(767\) 2.90942 5.03926i 0.105053 0.181957i
\(768\) 0 0
\(769\) 4.63448 + 8.02715i 0.167123 + 0.289466i 0.937407 0.348235i \(-0.113219\pi\)
−0.770284 + 0.637701i \(0.779885\pi\)
\(770\) 0 0
\(771\) −16.6457 −0.599480
\(772\) 0 0
\(773\) −0.250331 −0.00900380 −0.00450190 0.999990i \(-0.501433\pi\)
−0.00450190 + 0.999990i \(0.501433\pi\)
\(774\) 0 0
\(775\) 8.63913 14.9634i 0.310327 0.537501i
\(776\) 0 0
\(777\) 18.1769 0.119006i 0.652091 0.00426933i
\(778\) 0 0
\(779\) 49.2457 + 10.9263i 1.76441 + 0.391476i
\(780\) 0 0
\(781\) 14.3108 + 24.7870i 0.512080 + 0.886948i
\(782\) 0 0
\(783\) 43.8538 + 75.9571i 1.56721 + 2.71448i
\(784\) 0 0
\(785\) 26.8775 + 46.5533i 0.959300 + 1.66156i
\(786\) 0 0
\(787\) 12.9458 22.4227i 0.461466 0.799283i −0.537568 0.843220i \(-0.680657\pi\)
0.999034 + 0.0439372i \(0.0139901\pi\)
\(788\) 0 0
\(789\) −18.4933 + 32.0313i −0.658377 + 1.14034i
\(790\) 0 0
\(791\) −1.75419 2.99292i −0.0623717 0.106416i
\(792\) 0 0
\(793\) 74.5848 2.64858
\(794\) 0 0
\(795\) −4.46836 7.73942i −0.158476 0.274489i
\(796\) 0 0
\(797\) −40.5377 −1.43592 −0.717959 0.696086i \(-0.754923\pi\)
−0.717959 + 0.696086i \(0.754923\pi\)
\(798\) 0 0
\(799\) −0.122698 −0.00434074
\(800\) 0 0
\(801\) 23.6308 + 40.9297i 0.834952 + 1.44618i
\(802\) 0 0
\(803\) −6.29866 −0.222275
\(804\) 0 0
\(805\) 30.6566 0.200713i 1.08050 0.00707420i
\(806\) 0 0
\(807\) 37.6577 65.2250i 1.32561 2.29603i
\(808\) 0 0
\(809\) 3.90668 6.76656i 0.137351 0.237900i −0.789142 0.614211i \(-0.789474\pi\)
0.926493 + 0.376311i \(0.122808\pi\)
\(810\) 0 0
\(811\) 14.0324 + 24.3049i 0.492745 + 0.853460i 0.999965 0.00835697i \(-0.00266014\pi\)
−0.507220 + 0.861817i \(0.669327\pi\)
\(812\) 0 0
\(813\) 19.4714 + 33.7255i 0.682892 + 1.18280i
\(814\) 0 0
\(815\) 14.9943 + 25.9710i 0.525229 + 0.909723i
\(816\) 0 0
\(817\) 15.0127 + 3.33093i 0.525230 + 0.116535i
\(818\) 0 0
\(819\) 53.3540 + 91.0303i 1.86434 + 3.18086i
\(820\) 0 0
\(821\) 7.96065 13.7883i 0.277829 0.481213i −0.693016 0.720922i \(-0.743719\pi\)
0.970845 + 0.239709i \(0.0770519\pi\)
\(822\) 0 0
\(823\) 28.9114 1.00779 0.503894 0.863766i \(-0.331900\pi\)
0.503894 + 0.863766i \(0.331900\pi\)
\(824\) 0 0
\(825\) 19.4276 0.676381
\(826\) 0 0
\(827\) −1.72201 2.98261i −0.0598803 0.103716i 0.834531 0.550961i \(-0.185739\pi\)
−0.894412 + 0.447245i \(0.852405\pi\)
\(828\) 0 0
\(829\) 14.6904 25.4446i 0.510220 0.883727i −0.489710 0.871885i \(-0.662897\pi\)
0.999930 0.0118413i \(-0.00376930\pi\)
\(830\) 0 0
\(831\) 23.7091 0.822460
\(832\) 0 0
\(833\) −1.33255 + 0.0174495i −0.0461700 + 0.000604589i
\(834\) 0 0
\(835\) −26.5683 46.0177i −0.919435 1.59251i
\(836\) 0 0
\(837\) −35.9458 + 62.2600i −1.24247 + 2.15202i
\(838\) 0 0
\(839\) 12.5315 21.7052i 0.432635 0.749345i −0.564465 0.825457i \(-0.690917\pi\)
0.997099 + 0.0761121i \(0.0242507\pi\)
\(840\) 0 0
\(841\) −8.25709 + 14.3017i −0.284727 + 0.493162i
\(842\) 0 0
\(843\) 29.9801 51.9271i 1.03257 1.78846i
\(844\) 0 0
\(845\) −26.5350 + 45.9600i −0.912833 + 1.58107i
\(846\) 0 0
\(847\) −9.37638 + 16.4887i −0.322176 + 0.566560i
\(848\) 0 0
\(849\) −25.6632 + 44.4499i −0.880757 + 1.52552i
\(850\) 0 0
\(851\) −8.79161 −0.301372
\(852\) 0 0
\(853\) −23.2723 + 40.3088i −0.796829 + 1.38015i 0.124843 + 0.992177i \(0.460157\pi\)
−0.921671 + 0.387971i \(0.873176\pi\)
\(854\) 0 0
\(855\) 86.0259 + 19.0869i 2.94202 + 0.652757i
\(856\) 0 0
\(857\) 0.765982 + 1.32672i 0.0261655 + 0.0453199i 0.878812 0.477169i \(-0.158337\pi\)
−0.852646 + 0.522489i \(0.825004\pi\)
\(858\) 0 0
\(859\) −9.23183 + 15.9900i −0.314986 + 0.545572i −0.979435 0.201762i \(-0.935333\pi\)
0.664449 + 0.747334i \(0.268666\pi\)
\(860\) 0 0
\(861\) −49.1845 83.9165i −1.67620 2.85987i
\(862\) 0 0
\(863\) 5.23845 + 9.07326i 0.178319 + 0.308857i 0.941305 0.337558i \(-0.109601\pi\)
−0.762986 + 0.646415i \(0.776267\pi\)
\(864\) 0 0
\(865\) −11.2572 −0.382756
\(866\) 0 0
\(867\) 53.8911 1.83024
\(868\) 0 0
\(869\) 16.9616 29.3783i 0.575382 0.996590i
\(870\) 0 0
\(871\) −8.38788 14.5282i −0.284213 0.492271i
\(872\) 0 0
\(873\) −3.23118 5.59656i −0.109359 0.189415i
\(874\) 0 0
\(875\) −7.15179 12.2021i −0.241774 0.412505i
\(876\) 0 0
\(877\) 27.2642 0.920648 0.460324 0.887751i \(-0.347733\pi\)
0.460324 + 0.887751i \(0.347733\pi\)
\(878\) 0 0
\(879\) −17.2471 29.8729i −0.581732 1.00759i
\(880\) 0 0
\(881\) −23.2319 −0.782703 −0.391351 0.920241i \(-0.627992\pi\)
−0.391351 + 0.920241i \(0.627992\pi\)
\(882\) 0 0
\(883\) 0.118706 + 0.205604i 0.00399476 + 0.00691912i 0.868016 0.496536i \(-0.165395\pi\)
−0.864021 + 0.503456i \(0.832062\pi\)
\(884\) 0 0
\(885\) −4.68520 + 8.11500i −0.157491 + 0.272783i
\(886\) 0 0
\(887\) −1.22614 + 2.12374i −0.0411699 + 0.0713083i −0.885876 0.463922i \(-0.846442\pi\)
0.844706 + 0.535230i \(0.179775\pi\)
\(888\) 0 0
\(889\) −1.74359 + 3.06617i −0.0584780 + 0.102836i
\(890\) 0 0
\(891\) −39.1911 −1.31295
\(892\) 0 0
\(893\) 2.74257 + 0.608504i 0.0917765 + 0.0203628i
\(894\) 0 0
\(895\) 18.5090 32.0585i 0.618687 1.07160i
\(896\) 0 0
\(897\) −36.3097 62.8902i −1.21234 2.09984i
\(898\) 0 0
\(899\) −37.3067 −1.24425
\(900\) 0 0
\(901\) −0.0939452 0.162718i −0.00312977 0.00542092i
\(902\) 0 0
\(903\) −14.9941 25.5823i −0.498973 0.851325i
\(904\) 0 0
\(905\) 22.2932 + 38.6130i 0.741051 + 1.28354i
\(906\) 0 0
\(907\) 15.9116 + 27.5597i 0.528337 + 0.915106i 0.999454 + 0.0330355i \(0.0105174\pi\)
−0.471118 + 0.882070i \(0.656149\pi\)
\(908\) 0 0
\(909\) −32.7893 + 56.7927i −1.08755 + 1.88370i
\(910\) 0 0
\(911\) 6.75206 0.223706 0.111853 0.993725i \(-0.464321\pi\)
0.111853 + 0.993725i \(0.464321\pi\)
\(912\) 0 0
\(913\) 0.987089 1.70969i 0.0326679 0.0565824i
\(914\) 0 0
\(915\) −120.108 −3.97066
\(916\) 0 0
\(917\) −1.34879 2.30124i −0.0445409 0.0759937i
\(918\) 0 0
\(919\) 11.6395 + 20.1602i 0.383951 + 0.665022i 0.991623 0.129166i \(-0.0412299\pi\)
−0.607672 + 0.794188i \(0.707897\pi\)
\(920\) 0 0
\(921\) 13.5162 0.445373
\(922\) 0 0
\(923\) 82.2296 2.70662
\(924\) 0 0
\(925\) −3.37862 5.85195i −0.111088 0.192411i
\(926\) 0 0
\(927\) −106.381 −3.49401
\(928\) 0 0
\(929\) 20.6470 0.677406 0.338703 0.940893i \(-0.390012\pi\)
0.338703 + 0.940893i \(0.390012\pi\)
\(930\) 0 0
\(931\) 29.8719 + 6.21855i 0.979012 + 0.203805i
\(932\) 0 0
\(933\) −71.2657 −2.33313
\(934\) 0 0
\(935\) 1.06208 0.0347338
\(936\) 0 0
\(937\) 29.9229 + 51.8280i 0.977538 + 1.69315i 0.671291 + 0.741193i \(0.265740\pi\)
0.306247 + 0.951952i \(0.400927\pi\)
\(938\) 0 0
\(939\) −70.1322 −2.28868
\(940\) 0 0
\(941\) 40.1284 1.30815 0.654074 0.756431i \(-0.273059\pi\)
0.654074 + 0.756431i \(0.273059\pi\)
\(942\) 0 0
\(943\) 23.5224 + 40.7419i 0.765993 + 1.32674i
\(944\) 0 0
\(945\) −49.5759 84.5842i −1.61270 2.75152i
\(946\) 0 0
\(947\) 5.12447 0.166523 0.0832614 0.996528i \(-0.473466\pi\)
0.0832614 + 0.996528i \(0.473466\pi\)
\(948\) 0 0
\(949\) −9.04802 + 15.6716i −0.293711 + 0.508723i
\(950\) 0 0
\(951\) 33.8358 1.09720
\(952\) 0 0
\(953\) 9.36697 16.2241i 0.303426 0.525549i −0.673484 0.739202i \(-0.735203\pi\)
0.976910 + 0.213653i \(0.0685361\pi\)
\(954\) 0 0
\(955\) 9.43017 + 16.3335i 0.305153 + 0.528541i
\(956\) 0 0
\(957\) −20.9737 36.3276i −0.677985 1.17430i
\(958\) 0 0
\(959\) −10.6858 18.2317i −0.345064 0.588733i
\(960\) 0 0
\(961\) 0.210332 + 0.364305i 0.00678490 + 0.0117518i
\(962\) 0 0
\(963\) 130.953 4.21989
\(964\) 0 0
\(965\) −13.3539 23.1297i −0.429878 0.744571i
\(966\) 0 0
\(967\) −26.0944 + 45.1968i −0.839139 + 1.45343i 0.0514757 + 0.998674i \(0.483608\pi\)
−0.890615 + 0.454758i \(0.849726\pi\)
\(968\) 0 0
\(969\) 2.57370 + 0.571037i 0.0826793 + 0.0183444i
\(970\) 0 0
\(971\) 3.37028 0.108157 0.0540787 0.998537i \(-0.482778\pi\)
0.0540787 + 0.998537i \(0.482778\pi\)
\(972\) 0 0
\(973\) 17.6438 31.0274i 0.565635 0.994692i
\(974\) 0 0
\(975\) 27.9077 48.3375i 0.893761 1.54804i
\(976\) 0 0
\(977\) −24.6157 + 42.6356i −0.787525 + 1.36403i 0.139954 + 0.990158i \(0.455305\pi\)
−0.927479 + 0.373876i \(0.878029\pi\)
\(978\) 0 0
\(979\) −6.52120 11.2950i −0.208418 0.360991i
\(980\) 0 0
\(981\) 61.2915 1.95689
\(982\) 0 0
\(983\) 6.01639 + 10.4207i 0.191893 + 0.332369i 0.945878 0.324524i \(-0.105204\pi\)
−0.753984 + 0.656892i \(0.771871\pi\)
\(984\) 0 0
\(985\) −43.8656 −1.39767
\(986\) 0 0
\(987\) −2.73916 4.67344i −0.0871885 0.148757i
\(988\) 0 0
\(989\) 7.17088 + 12.4203i 0.228021 + 0.394944i
\(990\) 0 0
\(991\) −6.59156 11.4169i −0.209388 0.362670i 0.742134 0.670252i \(-0.233814\pi\)
−0.951522 + 0.307581i \(0.900480\pi\)
\(992\) 0 0
\(993\) −1.04432 + 1.80881i −0.0331404 + 0.0574008i
\(994\) 0 0
\(995\) 38.5088 1.22081
\(996\) 0 0
\(997\) 27.5313 0.871924 0.435962 0.899965i \(-0.356408\pi\)
0.435962 + 0.899965i \(0.356408\pi\)
\(998\) 0 0
\(999\) 14.0578 + 24.3489i 0.444770 + 0.770364i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 532.2.k.b.277.12 yes 24
7.2 even 3 532.2.l.b.429.1 yes 24
19.7 even 3 532.2.l.b.501.1 yes 24
133.121 even 3 inner 532.2.k.b.121.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.k.b.121.12 24 133.121 even 3 inner
532.2.k.b.277.12 yes 24 1.1 even 1 trivial
532.2.l.b.429.1 yes 24 7.2 even 3
532.2.l.b.501.1 yes 24 19.7 even 3