Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [532,2,Mod(121,532)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(532, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("532.121");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 532 = 2^{2} \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 532.k (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.24804138753\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121.1 | 0 | −1.66499 | + | 2.88385i | 0 | 2.17686 | 0 | −2.16805 | − | 1.51643i | 0 | −4.04441 | − | 7.00512i | 0 | ||||||||||||
121.2 | 0 | −1.49182 | + | 2.58391i | 0 | 0.446078 | 0 | 1.18643 | + | 2.36482i | 0 | −2.95105 | − | 5.11136i | 0 | ||||||||||||
121.3 | 0 | −1.00455 | + | 1.73993i | 0 | −0.208844 | 0 | 0.452777 | − | 2.60672i | 0 | −0.518227 | − | 0.897596i | 0 | ||||||||||||
121.4 | 0 | −0.771712 | + | 1.33665i | 0 | −2.99584 | 0 | −2.55868 | + | 0.673181i | 0 | 0.308920 | + | 0.535065i | 0 | ||||||||||||
121.5 | 0 | −0.520631 | + | 0.901759i | 0 | 3.47279 | 0 | 2.62969 | + | 0.291052i | 0 | 0.957887 | + | 1.65911i | 0 | ||||||||||||
121.6 | 0 | −0.0989313 | + | 0.171354i | 0 | 2.23136 | 0 | −1.27819 | − | 2.31651i | 0 | 1.48043 | + | 2.56417i | 0 | ||||||||||||
121.7 | 0 | 0.0144506 | − | 0.0250292i | 0 | −0.520300 | 0 | −2.55086 | + | 0.702209i | 0 | 1.49958 | + | 2.59735i | 0 | ||||||||||||
121.8 | 0 | 0.536703 | − | 0.929597i | 0 | 3.52186 | 0 | −1.25747 | + | 2.32783i | 0 | 0.923900 | + | 1.60024i | 0 | ||||||||||||
121.9 | 0 | 0.609809 | − | 1.05622i | 0 | −3.23495 | 0 | 1.15617 | + | 2.37976i | 0 | 0.756266 | + | 1.30989i | 0 | ||||||||||||
121.10 | 0 | 1.02695 | − | 1.77872i | 0 | −2.32366 | 0 | −0.804015 | − | 2.52063i | 0 | −0.609239 | − | 1.05523i | 0 | ||||||||||||
121.11 | 0 | 1.27630 | − | 2.21062i | 0 | 0.584291 | 0 | 0.854338 | + | 2.50402i | 0 | −1.75791 | − | 3.04478i | 0 | ||||||||||||
121.12 | 0 | 1.58842 | − | 2.75122i | 0 | 2.85036 | 0 | 1.33785 | − | 2.28258i | 0 | −3.54616 | − | 6.14212i | 0 | ||||||||||||
277.1 | 0 | −1.66499 | − | 2.88385i | 0 | 2.17686 | 0 | −2.16805 | + | 1.51643i | 0 | −4.04441 | + | 7.00512i | 0 | ||||||||||||
277.2 | 0 | −1.49182 | − | 2.58391i | 0 | 0.446078 | 0 | 1.18643 | − | 2.36482i | 0 | −2.95105 | + | 5.11136i | 0 | ||||||||||||
277.3 | 0 | −1.00455 | − | 1.73993i | 0 | −0.208844 | 0 | 0.452777 | + | 2.60672i | 0 | −0.518227 | + | 0.897596i | 0 | ||||||||||||
277.4 | 0 | −0.771712 | − | 1.33665i | 0 | −2.99584 | 0 | −2.55868 | − | 0.673181i | 0 | 0.308920 | − | 0.535065i | 0 | ||||||||||||
277.5 | 0 | −0.520631 | − | 0.901759i | 0 | 3.47279 | 0 | 2.62969 | − | 0.291052i | 0 | 0.957887 | − | 1.65911i | 0 | ||||||||||||
277.6 | 0 | −0.0989313 | − | 0.171354i | 0 | 2.23136 | 0 | −1.27819 | + | 2.31651i | 0 | 1.48043 | − | 2.56417i | 0 | ||||||||||||
277.7 | 0 | 0.0144506 | + | 0.0250292i | 0 | −0.520300 | 0 | −2.55086 | − | 0.702209i | 0 | 1.49958 | − | 2.59735i | 0 | ||||||||||||
277.8 | 0 | 0.536703 | + | 0.929597i | 0 | 3.52186 | 0 | −1.25747 | − | 2.32783i | 0 | 0.923900 | − | 1.60024i | 0 | ||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
133.h | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 532.2.k.b | ✓ | 24 |
7.c | even | 3 | 1 | 532.2.l.b | yes | 24 | |
19.c | even | 3 | 1 | 532.2.l.b | yes | 24 | |
133.h | even | 3 | 1 | inner | 532.2.k.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
532.2.k.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
532.2.k.b | ✓ | 24 | 133.h | even | 3 | 1 | inner |
532.2.l.b | yes | 24 | 7.c | even | 3 | 1 | |
532.2.l.b | yes | 24 | 19.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} + T_{3}^{23} + 26 T_{3}^{22} + 15 T_{3}^{21} + 425 T_{3}^{20} + 193 T_{3}^{19} + 4117 T_{3}^{18} + \cdots + 16 \) acting on \(S_{2}^{\mathrm{new}}(532, [\chi])\).