Properties

Label 2-5355-1.1-c1-0-18
Degree $2$
Conductor $5355$
Sign $1$
Analytic cond. $42.7598$
Root an. cond. $6.53910$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.176·2-s − 1.96·4-s − 5-s + 7-s + 0.701·8-s + 0.176·10-s − 2.87·11-s − 0.00387·13-s − 0.176·14-s + 3.81·16-s − 17-s + 6.65·19-s + 1.96·20-s + 0.508·22-s − 6.71·23-s + 25-s + 0.000683·26-s − 1.96·28-s + 3.59·29-s + 2.71·31-s − 2.07·32-s + 0.176·34-s − 35-s − 8.02·37-s − 1.17·38-s − 0.701·40-s + 6.98·41-s + ⋯
L(s)  = 1  − 0.124·2-s − 0.984·4-s − 0.447·5-s + 0.377·7-s + 0.247·8-s + 0.0558·10-s − 0.867·11-s − 0.00107·13-s − 0.0472·14-s + 0.953·16-s − 0.242·17-s + 1.52·19-s + 0.440·20-s + 0.108·22-s − 1.39·23-s + 0.200·25-s + 0.000134·26-s − 0.372·28-s + 0.668·29-s + 0.488·31-s − 0.367·32-s + 0.0303·34-s − 0.169·35-s − 1.31·37-s − 0.190·38-s − 0.110·40-s + 1.09·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5355 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5355 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5355\)    =    \(3^{2} \cdot 5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(42.7598\)
Root analytic conductor: \(6.53910\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5355,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9648680935\)
\(L(\frac12)\) \(\approx\) \(0.9648680935\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 + T \)
good2 \( 1 + 0.176T + 2T^{2} \)
11 \( 1 + 2.87T + 11T^{2} \)
13 \( 1 + 0.00387T + 13T^{2} \)
19 \( 1 - 6.65T + 19T^{2} \)
23 \( 1 + 6.71T + 23T^{2} \)
29 \( 1 - 3.59T + 29T^{2} \)
31 \( 1 - 2.71T + 31T^{2} \)
37 \( 1 + 8.02T + 37T^{2} \)
41 \( 1 - 6.98T + 41T^{2} \)
43 \( 1 + 8.43T + 43T^{2} \)
47 \( 1 + 11.4T + 47T^{2} \)
53 \( 1 - 2.42T + 53T^{2} \)
59 \( 1 + 3.65T + 59T^{2} \)
61 \( 1 - 0.0502T + 61T^{2} \)
67 \( 1 - 3.64T + 67T^{2} \)
71 \( 1 + 2.87T + 71T^{2} \)
73 \( 1 - 5.37T + 73T^{2} \)
79 \( 1 + 9.11T + 79T^{2} \)
83 \( 1 - 6.02T + 83T^{2} \)
89 \( 1 - 12.8T + 89T^{2} \)
97 \( 1 - 12.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.037043814546432680885715583868, −7.83182620574880347583404398940, −6.87865617483158800556650267618, −5.86161694280861954764096934501, −5.10436642351862280275823089117, −4.64894492385625627459544222165, −3.71834548161267880205792795983, −3.00900204269724467409755239158, −1.74191956607680071562885822546, −0.54819858854146726145005955365, 0.54819858854146726145005955365, 1.74191956607680071562885822546, 3.00900204269724467409755239158, 3.71834548161267880205792795983, 4.64894492385625627459544222165, 5.10436642351862280275823089117, 5.86161694280861954764096934501, 6.87865617483158800556650267618, 7.83182620574880347583404398940, 8.037043814546432680885715583868

Graph of the $Z$-function along the critical line