gp: [N,k,chi] = [5355,2,Mod(1,5355)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5355, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5355.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [7,-1,0,11,-7,0,7,-9,0,1,-6,0,16]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 6 1,\beta_1,\ldots,\beta_{6} 1 , β 1 , … , β 6 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 7 − x 6 − 12 x 5 + 8 x 4 + 43 x 3 − 15 x 2 − 44 x + 8 x^{7} - x^{6} - 12x^{5} + 8x^{4} + 43x^{3} - 15x^{2} - 44x + 8 x 7 − x 6 − 1 2 x 5 + 8 x 4 + 4 3 x 3 − 1 5 x 2 − 4 4 x + 8
x^7 - x^6 - 12*x^5 + 8*x^4 + 43*x^3 - 15*x^2 - 44*x + 8
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − 4 \nu^{2} - 4 ν 2 − 4
v^2 - 4
β 3 \beta_{3} β 3 = = =
ν 3 − ν 2 − 5 ν + 2 \nu^{3} - \nu^{2} - 5\nu + 2 ν 3 − ν 2 − 5 ν + 2
v^3 - v^2 - 5*v + 2
β 4 \beta_{4} β 4 = = =
ν 4 − 8 ν 2 − ν + 10 \nu^{4} - 8\nu^{2} - \nu + 10 ν 4 − 8 ν 2 − ν + 1 0
v^4 - 8*v^2 - v + 10
β 5 \beta_{5} β 5 = = =
( ν 6 − ν 5 − 10 ν 4 + 6 ν 3 + 25 ν 2 − 3 ν − 10 ) / 2 ( \nu^{6} - \nu^{5} - 10\nu^{4} + 6\nu^{3} + 25\nu^{2} - 3\nu - 10 ) / 2 ( ν 6 − ν 5 − 1 0 ν 4 + 6 ν 3 + 2 5 ν 2 − 3 ν − 1 0 ) / 2
(v^6 - v^5 - 10*v^4 + 6*v^3 + 25*v^2 - 3*v - 10) / 2
β 6 \beta_{6} β 6 = = =
( − ν 6 + 3 ν 5 + 8 ν 4 − 24 ν 3 − 13 ν 2 + 39 ν − 2 ) / 2 ( -\nu^{6} + 3\nu^{5} + 8\nu^{4} - 24\nu^{3} - 13\nu^{2} + 39\nu - 2 ) / 2 ( − ν 6 + 3 ν 5 + 8 ν 4 − 2 4 ν 3 − 1 3 ν 2 + 3 9 ν − 2 ) / 2
(-v^6 + 3*v^5 + 8*v^4 - 24*v^3 - 13*v^2 + 39*v - 2) / 2
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + 4 \beta_{2} + 4 β 2 + 4
b2 + 4
ν 3 \nu^{3} ν 3 = = =
β 3 + β 2 + 5 β 1 + 2 \beta_{3} + \beta_{2} + 5\beta _1 + 2 β 3 + β 2 + 5 β 1 + 2
b3 + b2 + 5*b1 + 2
ν 4 \nu^{4} ν 4 = = =
β 4 + 8 β 2 + β 1 + 22 \beta_{4} + 8\beta_{2} + \beta _1 + 22 β 4 + 8 β 2 + β 1 + 2 2
b4 + 8*b2 + b1 + 22
ν 5 \nu^{5} ν 5 = = =
β 6 + β 5 + β 4 + 9 β 3 + 11 β 2 + 28 β 1 + 22 \beta_{6} + \beta_{5} + \beta_{4} + 9\beta_{3} + 11\beta_{2} + 28\beta _1 + 22 β 6 + β 5 + β 4 + 9 β 3 + 1 1 β 2 + 2 8 β 1 + 2 2
b6 + b5 + b4 + 9*b3 + 11*b2 + 28*b1 + 22
ν 6 \nu^{6} ν 6 = = =
β 6 + 3 β 5 + 11 β 4 + 3 β 3 + 60 β 2 + 11 β 1 + 140 \beta_{6} + 3\beta_{5} + 11\beta_{4} + 3\beta_{3} + 60\beta_{2} + 11\beta _1 + 140 β 6 + 3 β 5 + 1 1 β 4 + 3 β 3 + 6 0 β 2 + 1 1 β 1 + 1 4 0
b6 + 3*b5 + 11*b4 + 3*b3 + 60*b2 + 11*b1 + 140
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
17 17 1 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 5355 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(5355)) S 2 n e w ( Γ 0 ( 5 3 5 5 ) ) :
T 2 7 + T 2 6 − 12 T 2 5 − 8 T 2 4 + 43 T 2 3 + 15 T 2 2 − 44 T 2 − 8 T_{2}^{7} + T_{2}^{6} - 12T_{2}^{5} - 8T_{2}^{4} + 43T_{2}^{3} + 15T_{2}^{2} - 44T_{2} - 8 T 2 7 + T 2 6 − 1 2 T 2 5 − 8 T 2 4 + 4 3 T 2 3 + 1 5 T 2 2 − 4 4 T 2 − 8
T2^7 + T2^6 - 12*T2^5 - 8*T2^4 + 43*T2^3 + 15*T2^2 - 44*T2 - 8
T 11 7 + 6 T 11 6 − 36 T 11 5 − 232 T 11 4 + 144 T 11 3 + 1680 T 11 2 + 64 T 11 − 3264 T_{11}^{7} + 6T_{11}^{6} - 36T_{11}^{5} - 232T_{11}^{4} + 144T_{11}^{3} + 1680T_{11}^{2} + 64T_{11} - 3264 T 1 1 7 + 6 T 1 1 6 − 3 6 T 1 1 5 − 2 3 2 T 1 1 4 + 1 4 4 T 1 1 3 + 1 6 8 0 T 1 1 2 + 6 4 T 1 1 − 3 2 6 4
T11^7 + 6*T11^6 - 36*T11^5 - 232*T11^4 + 144*T11^3 + 1680*T11^2 + 64*T11 - 3264
T 13 7 − 16 T 13 6 + 57 T 13 5 + 284 T 13 4 − 2396 T 13 3 + 5496 T 13 2 − 4112 T 13 − 16 T_{13}^{7} - 16T_{13}^{6} + 57T_{13}^{5} + 284T_{13}^{4} - 2396T_{13}^{3} + 5496T_{13}^{2} - 4112T_{13} - 16 T 1 3 7 − 1 6 T 1 3 6 + 5 7 T 1 3 5 + 2 8 4 T 1 3 4 − 2 3 9 6 T 1 3 3 + 5 4 9 6 T 1 3 2 − 4 1 1 2 T 1 3 − 1 6
T13^7 - 16*T13^6 + 57*T13^5 + 284*T13^4 - 2396*T13^3 + 5496*T13^2 - 4112*T13 - 16
T 19 7 − 6 T 19 6 − 84 T 19 5 + 536 T 19 4 + 1584 T 19 3 − 12384 T 19 2 + 6976 T 19 + 23424 T_{19}^{7} - 6T_{19}^{6} - 84T_{19}^{5} + 536T_{19}^{4} + 1584T_{19}^{3} - 12384T_{19}^{2} + 6976T_{19} + 23424 T 1 9 7 − 6 T 1 9 6 − 8 4 T 1 9 5 + 5 3 6 T 1 9 4 + 1 5 8 4 T 1 9 3 − 1 2 3 8 4 T 1 9 2 + 6 9 7 6 T 1 9 + 2 3 4 2 4
T19^7 - 6*T19^6 - 84*T19^5 + 536*T19^4 + 1584*T19^3 - 12384*T19^2 + 6976*T19 + 23424
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 7 + T 6 − 12 T 5 + ⋯ − 8 T^{7} + T^{6} - 12 T^{5} + \cdots - 8 T 7 + T 6 − 1 2 T 5 + ⋯ − 8
T^7 + T^6 - 12*T^5 - 8*T^4 + 43*T^3 + 15*T^2 - 44*T - 8
3 3 3
T 7 T^{7} T 7
T^7
5 5 5
( T + 1 ) 7 (T + 1)^{7} ( T + 1 ) 7
(T + 1)^7
7 7 7
( T − 1 ) 7 (T - 1)^{7} ( T − 1 ) 7
(T - 1)^7
11 11 1 1
T 7 + 6 T 6 + ⋯ − 3264 T^{7} + 6 T^{6} + \cdots - 3264 T 7 + 6 T 6 + ⋯ − 3 2 6 4
T^7 + 6*T^6 - 36*T^5 - 232*T^4 + 144*T^3 + 1680*T^2 + 64*T - 3264
13 13 1 3
T 7 − 16 T 6 + ⋯ − 16 T^{7} - 16 T^{6} + \cdots - 16 T 7 − 1 6 T 6 + ⋯ − 1 6
T^7 - 16*T^6 + 57*T^5 + 284*T^4 - 2396*T^3 + 5496*T^2 - 4112*T - 16
17 17 1 7
( T + 1 ) 7 (T + 1)^{7} ( T + 1 ) 7
(T + 1)^7
19 19 1 9
T 7 − 6 T 6 + ⋯ + 23424 T^{7} - 6 T^{6} + \cdots + 23424 T 7 − 6 T 6 + ⋯ + 2 3 4 2 4
T^7 - 6*T^6 - 84*T^5 + 536*T^4 + 1584*T^3 - 12384*T^2 + 6976*T + 23424
23 23 2 3
T 7 + 14 T 6 + ⋯ + 70688 T^{7} + 14 T^{6} + \cdots + 70688 T 7 + 1 4 T 6 + ⋯ + 7 0 6 8 8
T^7 + 14*T^6 - 27*T^5 - 1094*T^4 - 3208*T^3 + 13200*T^2 + 66928*T + 70688
29 29 2 9
T 7 + 12 T 6 + ⋯ − 233472 T^{7} + 12 T^{6} + \cdots - 233472 T 7 + 1 2 T 6 + ⋯ − 2 3 3 4 7 2
T^7 + 12*T^6 - 84*T^5 - 1184*T^4 + 1488*T^3 + 31152*T^2 - 6656*T - 233472
31 31 3 1
T 7 − 12 T 6 + ⋯ + 1968 T^{7} - 12 T^{6} + \cdots + 1968 T 7 − 1 2 T 6 + ⋯ + 1 9 6 8
T^7 - 12*T^6 - 15*T^5 + 796*T^4 - 4296*T^3 + 9528*T^2 - 8672*T + 1968
37 37 3 7
T 7 − 4 T 6 + ⋯ + 45152 T^{7} - 4 T^{6} + \cdots + 45152 T 7 − 4 T 6 + ⋯ + 4 5 1 5 2
T^7 - 4*T^6 - 159*T^5 + 422*T^4 + 7480*T^3 - 12720*T^2 - 100880*T + 45152
41 41 4 1
T 7 − 36 T 6 + ⋯ + 397728 T^{7} - 36 T^{6} + \cdots + 397728 T 7 − 3 6 T 6 + ⋯ + 3 9 7 7 2 8
T^7 - 36*T^6 + 429*T^5 - 822*T^4 - 22872*T^3 + 192048*T^2 - 541104*T + 397728
43 43 4 3
T 7 − 6 T 6 + ⋯ + 1541376 T^{7} - 6 T^{6} + \cdots + 1541376 T 7 − 6 T 6 + ⋯ + 1 5 4 1 3 7 6
T^7 - 6*T^6 - 288*T^5 + 1456*T^4 + 26352*T^3 - 96672*T^2 - 792320*T + 1541376
47 47 4 7
T 7 − 8 T 6 + ⋯ + 481696 T^{7} - 8 T^{6} + \cdots + 481696 T 7 − 8 T 6 + ⋯ + 4 8 1 6 9 6
T^7 - 8*T^6 - 231*T^5 + 1538*T^4 + 15848*T^3 - 68544*T^2 - 376304*T + 481696
53 53 5 3
T 7 − 18 T 6 + ⋯ − 41472 T^{7} - 18 T^{6} + \cdots - 41472 T 7 − 1 8 T 6 + ⋯ − 4 1 4 7 2
T^7 - 18*T^6 - 72*T^5 + 3096*T^4 - 19344*T^3 + 36528*T^2 + 1920*T - 41472
59 59 5 9
T 7 + 12 T 6 + ⋯ − 165888 T^{7} + 12 T^{6} + \cdots - 165888 T 7 + 1 2 T 6 + ⋯ − 1 6 5 8 8 8
T^7 + 12*T^6 - 120*T^5 - 1728*T^4 + 1920*T^3 + 63744*T^2 + 104448*T - 165888
61 61 6 1
T 7 − 38 T 6 + ⋯ + 15088 T^{7} - 38 T^{6} + \cdots + 15088 T 7 − 3 8 T 6 + ⋯ + 1 5 0 8 8
T^7 - 38*T^6 + 417*T^5 + 610*T^4 - 38144*T^3 + 214224*T^2 - 310832*T + 15088
67 67 6 7
T 7 − 26 T 6 + ⋯ − 1536 T^{7} - 26 T^{6} + \cdots - 1536 T 7 − 2 6 T 6 + ⋯ − 1 5 3 6
T^7 - 26*T^6 + 240*T^5 - 864*T^4 + 432*T^3 + 2976*T^2 - 2304*T - 1536
71 71 7 1
T 7 + 6 T 6 + ⋯ − 3264 T^{7} + 6 T^{6} + \cdots - 3264 T 7 + 6 T 6 + ⋯ − 3 2 6 4
T^7 + 6*T^6 - 36*T^5 - 232*T^4 + 144*T^3 + 1680*T^2 + 64*T - 3264
73 73 7 3
T 7 + 8 T 6 + ⋯ + 275456 T^{7} + 8 T^{6} + \cdots + 275456 T 7 + 8 T 6 + ⋯ + 2 7 5 4 5 6
T^7 + 8*T^6 - 168*T^5 - 704*T^4 + 9920*T^3 + 4224*T^2 - 171008*T + 275456
79 79 7 9
T 7 − 6 T 6 + ⋯ + 3294336 T^{7} - 6 T^{6} + \cdots + 3294336 T 7 − 6 T 6 + ⋯ + 3 2 9 4 3 3 6
T^7 - 6*T^6 - 348*T^5 + 1672*T^4 + 35184*T^3 - 132192*T^2 - 1049408*T + 3294336
83 83 8 3
T 7 − 255 T 5 + ⋯ + 291168 T^{7} - 255 T^{5} + \cdots + 291168 T 7 − 2 5 5 T 5 + ⋯ + 2 9 1 1 6 8
T^7 - 255*T^5 + 1326*T^4 + 7992*T^3 - 54048*T^2 - 14640*T + 291168
89 89 8 9
T 7 − 14 T 6 + ⋯ + 5248 T^{7} - 14 T^{6} + \cdots + 5248 T 7 − 1 4 T 6 + ⋯ + 5 2 4 8
T^7 - 14*T^6 - 108*T^5 + 1336*T^4 + 5584*T^3 - 25632*T^2 - 79808*T + 5248
97 97 9 7
T 7 − 20 T 6 + ⋯ − 2227712 T^{7} - 20 T^{6} + \cdots - 2227712 T 7 − 2 0 T 6 + ⋯ − 2 2 2 7 7 1 2
T^7 - 20*T^6 - 252*T^5 + 6368*T^4 - 11200*T^3 - 290688*T^2 + 1587712*T - 2227712
show more
show less