Properties

Label 5355.2.a.bx
Level 53555355
Weight 22
Character orbit 5355.a
Self dual yes
Analytic conductor 42.76042.760
Analytic rank 00
Dimension 77
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5355,2,Mod(1,5355)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5355, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5355.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 5355=325717 5355 = 3^{2} \cdot 5 \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5355.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-1,0,11,-7,0,7,-9,0,1,-6,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 42.759890282442.7598902824
Analytic rank: 00
Dimension: 77
Coefficient field: Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x7x612x5+8x4+43x315x244x+8 x^{7} - x^{6} - 12x^{5} + 8x^{4} + 43x^{3} - 15x^{2} - 44x + 8 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β61,\beta_1,\ldots,\beta_{6} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β2+2)q4q5+q7+(β3β2β12)q8+β1q10+(β3+β2)q11+(β6+β1+2)q13β1q14+β1q98+O(q100) q - \beta_1 q^{2} + (\beta_{2} + 2) q^{4} - q^{5} + q^{7} + ( - \beta_{3} - \beta_{2} - \beta_1 - 2) q^{8} + \beta_1 q^{10} + (\beta_{3} + \beta_{2}) q^{11} + ( - \beta_{6} + \beta_1 + 2) q^{13} - \beta_1 q^{14}+ \cdots - \beta_1 q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 7qq2+11q47q5+7q79q8+q106q11+16q13q14+11q167q17+6q1911q206q2214q23+7q2516q26+11q2812q29+q98+O(q100) 7 q - q^{2} + 11 q^{4} - 7 q^{5} + 7 q^{7} - 9 q^{8} + q^{10} - 6 q^{11} + 16 q^{13} - q^{14} + 11 q^{16} - 7 q^{17} + 6 q^{19} - 11 q^{20} - 6 q^{22} - 14 q^{23} + 7 q^{25} - 16 q^{26} + 11 q^{28} - 12 q^{29}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x7x612x5+8x4+43x315x244x+8 x^{7} - x^{6} - 12x^{5} + 8x^{4} + 43x^{3} - 15x^{2} - 44x + 8 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24 \nu^{2} - 4 Copy content Toggle raw display
β3\beta_{3}== ν3ν25ν+2 \nu^{3} - \nu^{2} - 5\nu + 2 Copy content Toggle raw display
β4\beta_{4}== ν48ν2ν+10 \nu^{4} - 8\nu^{2} - \nu + 10 Copy content Toggle raw display
β5\beta_{5}== (ν6ν510ν4+6ν3+25ν23ν10)/2 ( \nu^{6} - \nu^{5} - 10\nu^{4} + 6\nu^{3} + 25\nu^{2} - 3\nu - 10 ) / 2 Copy content Toggle raw display
β6\beta_{6}== (ν6+3ν5+8ν424ν313ν2+39ν2)/2 ( -\nu^{6} + 3\nu^{5} + 8\nu^{4} - 24\nu^{3} - 13\nu^{2} + 39\nu - 2 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4 \beta_{2} + 4 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+5β1+2 \beta_{3} + \beta_{2} + 5\beta _1 + 2 Copy content Toggle raw display
ν4\nu^{4}== β4+8β2+β1+22 \beta_{4} + 8\beta_{2} + \beta _1 + 22 Copy content Toggle raw display
ν5\nu^{5}== β6+β5+β4+9β3+11β2+28β1+22 \beta_{6} + \beta_{5} + \beta_{4} + 9\beta_{3} + 11\beta_{2} + 28\beta _1 + 22 Copy content Toggle raw display
ν6\nu^{6}== β6+3β5+11β4+3β3+60β2+11β1+140 \beta_{6} + 3\beta_{5} + 11\beta_{4} + 3\beta_{3} + 60\beta_{2} + 11\beta _1 + 140 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.77731
2.22224
1.30741
0.176696
−1.36925
−1.69076
−2.42366
−2.77731 0 5.71348 −1.00000 0 1.00000 −10.3135 0 2.77731
1.2 −2.22224 0 2.93835 −1.00000 0 1.00000 −2.08524 0 2.22224
1.3 −1.30741 0 −0.290667 −1.00000 0 1.00000 2.99485 0 1.30741
1.4 −0.176696 0 −1.96878 −1.00000 0 1.00000 0.701265 0 0.176696
1.5 1.36925 0 −0.125160 −1.00000 0 1.00000 −2.90987 0 −1.36925
1.6 1.69076 0 0.858669 −1.00000 0 1.00000 −1.92972 0 −1.69076
1.7 2.42366 0 3.87411 −1.00000 0 1.00000 4.54220 0 −2.42366
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 +1 +1
77 1 -1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5355.2.a.bx 7
3.b odd 2 1 5355.2.a.by yes 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5355.2.a.bx 7 1.a even 1 1 trivial
5355.2.a.by yes 7 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5355))S_{2}^{\mathrm{new}}(\Gamma_0(5355)):

T27+T2612T258T24+43T23+15T2244T28 T_{2}^{7} + T_{2}^{6} - 12T_{2}^{5} - 8T_{2}^{4} + 43T_{2}^{3} + 15T_{2}^{2} - 44T_{2} - 8 Copy content Toggle raw display
T117+6T11636T115232T114+144T113+1680T112+64T113264 T_{11}^{7} + 6T_{11}^{6} - 36T_{11}^{5} - 232T_{11}^{4} + 144T_{11}^{3} + 1680T_{11}^{2} + 64T_{11} - 3264 Copy content Toggle raw display
T13716T136+57T135+284T1342396T133+5496T1324112T1316 T_{13}^{7} - 16T_{13}^{6} + 57T_{13}^{5} + 284T_{13}^{4} - 2396T_{13}^{3} + 5496T_{13}^{2} - 4112T_{13} - 16 Copy content Toggle raw display
T1976T19684T195+536T194+1584T19312384T192+6976T19+23424 T_{19}^{7} - 6T_{19}^{6} - 84T_{19}^{5} + 536T_{19}^{4} + 1584T_{19}^{3} - 12384T_{19}^{2} + 6976T_{19} + 23424 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T7+T612T5+8 T^{7} + T^{6} - 12 T^{5} + \cdots - 8 Copy content Toggle raw display
33 T7 T^{7} Copy content Toggle raw display
55 (T+1)7 (T + 1)^{7} Copy content Toggle raw display
77 (T1)7 (T - 1)^{7} Copy content Toggle raw display
1111 T7+6T6+3264 T^{7} + 6 T^{6} + \cdots - 3264 Copy content Toggle raw display
1313 T716T6+16 T^{7} - 16 T^{6} + \cdots - 16 Copy content Toggle raw display
1717 (T+1)7 (T + 1)^{7} Copy content Toggle raw display
1919 T76T6++23424 T^{7} - 6 T^{6} + \cdots + 23424 Copy content Toggle raw display
2323 T7+14T6++70688 T^{7} + 14 T^{6} + \cdots + 70688 Copy content Toggle raw display
2929 T7+12T6+233472 T^{7} + 12 T^{6} + \cdots - 233472 Copy content Toggle raw display
3131 T712T6++1968 T^{7} - 12 T^{6} + \cdots + 1968 Copy content Toggle raw display
3737 T74T6++45152 T^{7} - 4 T^{6} + \cdots + 45152 Copy content Toggle raw display
4141 T736T6++397728 T^{7} - 36 T^{6} + \cdots + 397728 Copy content Toggle raw display
4343 T76T6++1541376 T^{7} - 6 T^{6} + \cdots + 1541376 Copy content Toggle raw display
4747 T78T6++481696 T^{7} - 8 T^{6} + \cdots + 481696 Copy content Toggle raw display
5353 T718T6+41472 T^{7} - 18 T^{6} + \cdots - 41472 Copy content Toggle raw display
5959 T7+12T6+165888 T^{7} + 12 T^{6} + \cdots - 165888 Copy content Toggle raw display
6161 T738T6++15088 T^{7} - 38 T^{6} + \cdots + 15088 Copy content Toggle raw display
6767 T726T6+1536 T^{7} - 26 T^{6} + \cdots - 1536 Copy content Toggle raw display
7171 T7+6T6+3264 T^{7} + 6 T^{6} + \cdots - 3264 Copy content Toggle raw display
7373 T7+8T6++275456 T^{7} + 8 T^{6} + \cdots + 275456 Copy content Toggle raw display
7979 T76T6++3294336 T^{7} - 6 T^{6} + \cdots + 3294336 Copy content Toggle raw display
8383 T7255T5++291168 T^{7} - 255 T^{5} + \cdots + 291168 Copy content Toggle raw display
8989 T714T6++5248 T^{7} - 14 T^{6} + \cdots + 5248 Copy content Toggle raw display
9797 T720T6+2227712 T^{7} - 20 T^{6} + \cdots - 2227712 Copy content Toggle raw display
show more
show less