Properties

Label 2-538-269.21-c1-0-13
Degree $2$
Conductor $538$
Sign $-0.117 - 0.993i$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0702 + 0.997i)2-s + (1.38 + 0.262i)3-s + (−0.990 + 0.140i)4-s + (1.40 + 2.62i)5-s + (−0.164 + 1.39i)6-s + (3.20 + 0.764i)7-s + (−0.209 − 0.977i)8-s + (−0.951 − 0.374i)9-s + (−2.51 + 1.58i)10-s + (1.81 − 0.918i)11-s + (−1.40 − 0.0659i)12-s + (−0.642 + 0.405i)13-s + (−0.537 + 3.24i)14-s + (1.25 + 3.99i)15-s + (0.960 − 0.277i)16-s + (−1.43 − 0.724i)17-s + ⋯
L(s)  = 1  + (0.0496 + 0.705i)2-s + (0.797 + 0.151i)3-s + (−0.495 + 0.0701i)4-s + (0.629 + 1.17i)5-s + (−0.0671 + 0.570i)6-s + (1.20 + 0.288i)7-s + (−0.0740 − 0.345i)8-s + (−0.317 − 0.124i)9-s + (−0.796 + 0.502i)10-s + (0.546 − 0.277i)11-s + (−0.405 − 0.0190i)12-s + (−0.178 + 0.112i)13-s + (−0.143 + 0.867i)14-s + (0.324 + 1.03i)15-s + (0.240 − 0.0694i)16-s + (−0.347 − 0.175i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.117 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.117 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $-0.117 - 0.993i$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{538} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ -0.117 - 0.993i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.42739 + 1.60638i\)
\(L(\frac12)\) \(\approx\) \(1.42739 + 1.60638i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.0702 - 0.997i)T \)
269 \( 1 + (-10.0 - 12.9i)T \)
good3 \( 1 + (-1.38 - 0.262i)T + (2.79 + 1.09i)T^{2} \)
5 \( 1 + (-1.40 - 2.62i)T + (-2.76 + 4.16i)T^{2} \)
7 \( 1 + (-3.20 - 0.764i)T + (6.24 + 3.16i)T^{2} \)
11 \( 1 + (-1.81 + 0.918i)T + (6.50 - 8.86i)T^{2} \)
13 \( 1 + (0.642 - 0.405i)T + (5.60 - 11.7i)T^{2} \)
17 \( 1 + (1.43 + 0.724i)T + (10.0 + 13.7i)T^{2} \)
19 \( 1 + (-0.000188 + 0.00804i)T + (-18.9 - 0.890i)T^{2} \)
23 \( 1 + (-2.02 - 0.384i)T + (21.4 + 8.42i)T^{2} \)
29 \( 1 + (5.63 + 8.49i)T + (-11.2 + 26.7i)T^{2} \)
31 \( 1 + (0.417 - 0.568i)T + (-9.30 - 29.5i)T^{2} \)
37 \( 1 + (0.00525 - 0.00538i)T + (-0.867 - 36.9i)T^{2} \)
41 \( 1 + (0.556 - 7.90i)T + (-40.5 - 5.74i)T^{2} \)
43 \( 1 + (-3.96 - 5.97i)T + (-16.6 + 39.6i)T^{2} \)
47 \( 1 + (3.57 + 4.42i)T + (-9.84 + 45.9i)T^{2} \)
53 \( 1 + (1.30 - 3.56i)T + (-40.4 - 34.2i)T^{2} \)
59 \( 1 + (1.38 - 0.195i)T + (56.6 - 16.3i)T^{2} \)
61 \( 1 + (-4.35 + 4.90i)T + (-7.13 - 60.5i)T^{2} \)
67 \( 1 + (-1.68 - 0.239i)T + (64.3 + 18.6i)T^{2} \)
71 \( 1 + (0.507 + 3.06i)T + (-67.2 + 22.8i)T^{2} \)
73 \( 1 + (-6.24 - 2.12i)T + (57.8 + 44.5i)T^{2} \)
79 \( 1 + (1.53 + 2.56i)T + (-37.3 + 69.6i)T^{2} \)
83 \( 1 + (4.39 + 4.09i)T + (5.83 + 82.7i)T^{2} \)
89 \( 1 + (4.10 + 15.5i)T + (-77.4 + 43.8i)T^{2} \)
97 \( 1 + (-4.08 - 4.59i)T + (-11.3 + 96.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.16862535747160176696894877305, −9.903386559097434671696854051679, −9.193040632250956574715031580772, −8.306705659626865049573182851059, −7.56535781325283350096359554195, −6.48950631284623813154433048925, −5.70949693445334167430551315821, −4.45200199904331949391475516914, −3.18647720189889933263904683739, −2.08304997783037481585523018891, 1.36316151361428011588022167869, 2.19895684125340067869421056243, 3.74443243090321511952502759907, 4.86471782466749605644576454313, 5.52077347757194306398988870546, 7.24103245705967536769882407170, 8.288751467066349220807838288015, 8.887083779669226731874795276456, 9.457556998375003008637786351962, 10.69762758077902887670899921929

Graph of the $Z$-function along the critical line