L(s) = 1 | + (0.0702 + 0.997i)2-s + (1.38 + 0.262i)3-s + (−0.990 + 0.140i)4-s + (1.40 + 2.62i)5-s + (−0.164 + 1.39i)6-s + (3.20 + 0.764i)7-s + (−0.209 − 0.977i)8-s + (−0.951 − 0.374i)9-s + (−2.51 + 1.58i)10-s + (1.81 − 0.918i)11-s + (−1.40 − 0.0659i)12-s + (−0.642 + 0.405i)13-s + (−0.537 + 3.24i)14-s + (1.25 + 3.99i)15-s + (0.960 − 0.277i)16-s + (−1.43 − 0.724i)17-s + ⋯ |
L(s) = 1 | + (0.0496 + 0.705i)2-s + (0.797 + 0.151i)3-s + (−0.495 + 0.0701i)4-s + (0.629 + 1.17i)5-s + (−0.0671 + 0.570i)6-s + (1.20 + 0.288i)7-s + (−0.0740 − 0.345i)8-s + (−0.317 − 0.124i)9-s + (−0.796 + 0.502i)10-s + (0.546 − 0.277i)11-s + (−0.405 − 0.0190i)12-s + (−0.178 + 0.112i)13-s + (−0.143 + 0.867i)14-s + (0.324 + 1.03i)15-s + (0.240 − 0.0694i)16-s + (−0.347 − 0.175i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(−0.117−0.993i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(−0.117−0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
−0.117−0.993i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(21,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), −0.117−0.993i)
|
Particular Values
L(1) |
≈ |
1.42739+1.60638i |
L(21) |
≈ |
1.42739+1.60638i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0702−0.997i)T |
| 269 | 1+(−10.0−12.9i)T |
good | 3 | 1+(−1.38−0.262i)T+(2.79+1.09i)T2 |
| 5 | 1+(−1.40−2.62i)T+(−2.76+4.16i)T2 |
| 7 | 1+(−3.20−0.764i)T+(6.24+3.16i)T2 |
| 11 | 1+(−1.81+0.918i)T+(6.50−8.86i)T2 |
| 13 | 1+(0.642−0.405i)T+(5.60−11.7i)T2 |
| 17 | 1+(1.43+0.724i)T+(10.0+13.7i)T2 |
| 19 | 1+(−0.000188+0.00804i)T+(−18.9−0.890i)T2 |
| 23 | 1+(−2.02−0.384i)T+(21.4+8.42i)T2 |
| 29 | 1+(5.63+8.49i)T+(−11.2+26.7i)T2 |
| 31 | 1+(0.417−0.568i)T+(−9.30−29.5i)T2 |
| 37 | 1+(0.00525−0.00538i)T+(−0.867−36.9i)T2 |
| 41 | 1+(0.556−7.90i)T+(−40.5−5.74i)T2 |
| 43 | 1+(−3.96−5.97i)T+(−16.6+39.6i)T2 |
| 47 | 1+(3.57+4.42i)T+(−9.84+45.9i)T2 |
| 53 | 1+(1.30−3.56i)T+(−40.4−34.2i)T2 |
| 59 | 1+(1.38−0.195i)T+(56.6−16.3i)T2 |
| 61 | 1+(−4.35+4.90i)T+(−7.13−60.5i)T2 |
| 67 | 1+(−1.68−0.239i)T+(64.3+18.6i)T2 |
| 71 | 1+(0.507+3.06i)T+(−67.2+22.8i)T2 |
| 73 | 1+(−6.24−2.12i)T+(57.8+44.5i)T2 |
| 79 | 1+(1.53+2.56i)T+(−37.3+69.6i)T2 |
| 83 | 1+(4.39+4.09i)T+(5.83+82.7i)T2 |
| 89 | 1+(4.10+15.5i)T+(−77.4+43.8i)T2 |
| 97 | 1+(−4.08−4.59i)T+(−11.3+96.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.16862535747160176696894877305, −9.903386559097434671696854051679, −9.193040632250956574715031580772, −8.306705659626865049573182851059, −7.56535781325283350096359554195, −6.48950631284623813154433048925, −5.70949693445334167430551315821, −4.45200199904331949391475516914, −3.18647720189889933263904683739, −2.08304997783037481585523018891,
1.36316151361428011588022167869, 2.19895684125340067869421056243, 3.74443243090321511952502759907, 4.86471782466749605644576454313, 5.52077347757194306398988870546, 7.24103245705967536769882407170, 8.288751467066349220807838288015, 8.887083779669226731874795276456, 9.457556998375003008637786351962, 10.69762758077902887670899921929