L(s) = 1 | + (1 + i)2-s + (0.991 + 0.991i)3-s + 2i·4-s − 6.41·5-s + 1.98i·6-s + (−6.33 + 6.33i)7-s + (−2 + 2i)8-s − 7.03i·9-s + (−6.41 − 6.41i)10-s + 6.36i·11-s + (−1.98 + 1.98i)12-s − 22.5i·13-s − 12.6·14-s + (−6.35 − 6.35i)15-s − 4·16-s + (−1.76 − 1.76i)17-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + (0.330 + 0.330i)3-s + 0.5i·4-s − 1.28·5-s + 0.330i·6-s + (−0.904 + 0.904i)7-s + (−0.250 + 0.250i)8-s − 0.781i·9-s + (−0.641 − 0.641i)10-s + 0.578i·11-s + (−0.165 + 0.165i)12-s − 1.73i·13-s − 0.904·14-s + (−0.423 − 0.423i)15-s − 0.250·16-s + (−0.103 − 0.103i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.157+0.987i)Λ(3−s)
Λ(s)=(=(538s/2ΓC(s+1)L(s)(0.157+0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.157+0.987i
|
Analytic conductor: |
14.6594 |
Root analytic conductor: |
3.82876 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(187,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1), 0.157+0.987i)
|
Particular Values
L(23) |
≈ |
0.5779481514 |
L(21) |
≈ |
0.5779481514 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1−i)T |
| 269 | 1+(219.−155.i)T |
good | 3 | 1+(−0.991−0.991i)T+9iT2 |
| 5 | 1+6.41T+25T2 |
| 7 | 1+(6.33−6.33i)T−49iT2 |
| 11 | 1−6.36iT−121T2 |
| 13 | 1+22.5iT−169T2 |
| 17 | 1+(1.76+1.76i)T+289iT2 |
| 19 | 1+(−21.8+21.8i)T−361iT2 |
| 23 | 1−10.5T+529T2 |
| 29 | 1+(15.1−15.1i)T−841iT2 |
| 31 | 1+(−1.42+1.42i)T−961iT2 |
| 37 | 1+51.9T+1.36e3T2 |
| 41 | 1+28.6T+1.68e3T2 |
| 43 | 1+49.5iT−1.84e3T2 |
| 47 | 1+57.7T+2.20e3T2 |
| 53 | 1−20.7T+2.80e3T2 |
| 59 | 1+(38.8−38.8i)T−3.48e3iT2 |
| 61 | 1+110.T+3.72e3T2 |
| 67 | 1+80.9T+4.48e3T2 |
| 71 | 1+(−34.1+34.1i)T−5.04e3iT2 |
| 73 | 1−3.81iT−5.32e3T2 |
| 79 | 1−62.5iT−6.24e3T2 |
| 83 | 1+(−55.4+55.4i)T−6.88e3iT2 |
| 89 | 1+78.4iT−7.92e3T2 |
| 97 | 1+42.6iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36025954836195047674373975914, −9.286411958846838136418105742103, −8.650933762325230164945078133649, −7.58798490695578250026068055013, −6.88337353434862238402948879981, −5.68319146633123051734548587178, −4.74894805227220285245321342598, −3.34228715168736484937896129537, −3.11044066753158905758004133749, −0.18376825165047844610796146593,
1.54852822126656550194672512865, 3.23052924517527015891164063763, 3.85722455824050093415146676074, 4.86541051821778984855117740800, 6.37210674803740797147185008422, 7.25178561628261495919797217884, 7.974513932306546381743877707093, 9.106310004667486199987392043960, 10.09072552100877206815568427143, 11.02949414040131225628762793361