Properties

Label 538.3.c.a.187.13
Level $538$
Weight $3$
Character 538.187
Analytic conductor $14.659$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,3,Mod(187,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.187");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.13
Character \(\chi\) \(=\) 538.187
Dual form 538.3.c.a.351.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +(0.991340 + 0.991340i) q^{3} +2.00000i q^{4} -6.41200 q^{5} +1.98268i q^{6} +(-6.33449 + 6.33449i) q^{7} +(-2.00000 + 2.00000i) q^{8} -7.03449i q^{9} +(-6.41200 - 6.41200i) q^{10} +6.36762i q^{11} +(-1.98268 + 1.98268i) q^{12} -22.5179i q^{13} -12.6690 q^{14} +(-6.35647 - 6.35647i) q^{15} -4.00000 q^{16} +(-1.76724 - 1.76724i) q^{17} +(7.03449 - 7.03449i) q^{18} +(21.8646 - 21.8646i) q^{19} -12.8240i q^{20} -12.5593 q^{21} +(-6.36762 + 6.36762i) q^{22} +10.5715 q^{23} -3.96536 q^{24} +16.1137 q^{25} +(22.5179 - 22.5179i) q^{26} +(15.8956 - 15.8956i) q^{27} +(-12.6690 - 12.6690i) q^{28} +(-15.1258 + 15.1258i) q^{29} -12.7129i q^{30} +(1.42750 - 1.42750i) q^{31} +(-4.00000 - 4.00000i) q^{32} +(-6.31248 + 6.31248i) q^{33} -3.53448i q^{34} +(40.6167 - 40.6167i) q^{35} +14.0690 q^{36} -51.9512 q^{37} +43.7292 q^{38} +(22.3229 - 22.3229i) q^{39} +(12.8240 - 12.8240i) q^{40} -28.6890 q^{41} +(-12.5593 - 12.5593i) q^{42} -49.5541i q^{43} -12.7352 q^{44} +45.1051i q^{45} +(10.5715 + 10.5715i) q^{46} -57.7822 q^{47} +(-3.96536 - 3.96536i) q^{48} -31.2514i q^{49} +(16.1137 + 16.1137i) q^{50} -3.50387i q^{51} +45.0358 q^{52} +20.7061 q^{53} +31.7913 q^{54} -40.8292i q^{55} -25.3379i q^{56} +43.3506 q^{57} -30.2516 q^{58} +(-38.8717 + 38.8717i) q^{59} +(12.7129 - 12.7129i) q^{60} -110.933 q^{61} +2.85501 q^{62} +(44.5599 + 44.5599i) q^{63} -8.00000i q^{64} +144.385i q^{65} -12.6250 q^{66} -80.9397 q^{67} +(3.53448 - 3.53448i) q^{68} +(10.4800 + 10.4800i) q^{69} +81.2334 q^{70} +(34.1676 - 34.1676i) q^{71} +(14.0690 + 14.0690i) q^{72} +3.81788i q^{73} +(-51.9512 - 51.9512i) q^{74} +(15.9742 + 15.9742i) q^{75} +(43.7292 + 43.7292i) q^{76} +(-40.3356 - 40.3356i) q^{77} +44.6458 q^{78} +62.5004i q^{79} +25.6480 q^{80} -31.7945 q^{81} +(-28.6890 - 28.6890i) q^{82} +(55.4429 - 55.4429i) q^{83} -25.1185i q^{84} +(11.3315 + 11.3315i) q^{85} +(49.5541 - 49.5541i) q^{86} -29.9896 q^{87} +(-12.7352 - 12.7352i) q^{88} -78.4368i q^{89} +(-45.1051 + 45.1051i) q^{90} +(142.639 + 142.639i) q^{91} +21.1431i q^{92} +2.83028 q^{93} +(-57.7822 - 57.7822i) q^{94} +(-140.196 + 140.196i) q^{95} -7.93072i q^{96} -42.6280i q^{97} +(31.2514 - 31.2514i) q^{98} +44.7930 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 44 q^{2} + 2 q^{3} + 4 q^{7} - 88 q^{8} - 4 q^{12} + 8 q^{14} + 38 q^{15} - 176 q^{16} - 120 q^{18} + 18 q^{19} - 16 q^{21} + 68 q^{23} - 8 q^{24} + 196 q^{25} + 16 q^{26} - 22 q^{27} + 8 q^{28}+ \cdots - 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) 0.991340 + 0.991340i 0.330447 + 0.330447i 0.852756 0.522309i \(-0.174929\pi\)
−0.522309 + 0.852756i \(0.674929\pi\)
\(4\) 2.00000i 0.500000i
\(5\) −6.41200 −1.28240 −0.641200 0.767374i \(-0.721563\pi\)
−0.641200 + 0.767374i \(0.721563\pi\)
\(6\) 1.98268i 0.330447i
\(7\) −6.33449 + 6.33449i −0.904927 + 0.904927i −0.995857 0.0909306i \(-0.971016\pi\)
0.0909306 + 0.995857i \(0.471016\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 7.03449i 0.781610i
\(10\) −6.41200 6.41200i −0.641200 0.641200i
\(11\) 6.36762i 0.578875i 0.957197 + 0.289437i \(0.0934682\pi\)
−0.957197 + 0.289437i \(0.906532\pi\)
\(12\) −1.98268 + 1.98268i −0.165223 + 0.165223i
\(13\) 22.5179i 1.73215i −0.499917 0.866073i \(-0.666636\pi\)
0.499917 0.866073i \(-0.333364\pi\)
\(14\) −12.6690 −0.904927
\(15\) −6.35647 6.35647i −0.423765 0.423765i
\(16\) −4.00000 −0.250000
\(17\) −1.76724 1.76724i −0.103955 0.103955i 0.653216 0.757171i \(-0.273419\pi\)
−0.757171 + 0.653216i \(0.773419\pi\)
\(18\) 7.03449 7.03449i 0.390805 0.390805i
\(19\) 21.8646 21.8646i 1.15077 1.15077i 0.164371 0.986399i \(-0.447441\pi\)
0.986399 0.164371i \(-0.0525595\pi\)
\(20\) 12.8240i 0.641200i
\(21\) −12.5593 −0.598060
\(22\) −6.36762 + 6.36762i −0.289437 + 0.289437i
\(23\) 10.5715 0.459632 0.229816 0.973234i \(-0.426188\pi\)
0.229816 + 0.973234i \(0.426188\pi\)
\(24\) −3.96536 −0.165223
\(25\) 16.1137 0.644548
\(26\) 22.5179 22.5179i 0.866073 0.866073i
\(27\) 15.8956 15.8956i 0.588727 0.588727i
\(28\) −12.6690 12.6690i −0.452463 0.452463i
\(29\) −15.1258 + 15.1258i −0.521579 + 0.521579i −0.918048 0.396469i \(-0.870235\pi\)
0.396469 + 0.918048i \(0.370235\pi\)
\(30\) 12.7129i 0.423765i
\(31\) 1.42750 1.42750i 0.0460485 0.0460485i −0.683708 0.729756i \(-0.739634\pi\)
0.729756 + 0.683708i \(0.239634\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) −6.31248 + 6.31248i −0.191287 + 0.191287i
\(34\) 3.53448i 0.103955i
\(35\) 40.6167 40.6167i 1.16048 1.16048i
\(36\) 14.0690 0.390805
\(37\) −51.9512 −1.40409 −0.702043 0.712135i \(-0.747728\pi\)
−0.702043 + 0.712135i \(0.747728\pi\)
\(38\) 43.7292 1.15077
\(39\) 22.3229 22.3229i 0.572382 0.572382i
\(40\) 12.8240 12.8240i 0.320600 0.320600i
\(41\) −28.6890 −0.699731 −0.349865 0.936800i \(-0.613773\pi\)
−0.349865 + 0.936800i \(0.613773\pi\)
\(42\) −12.5593 12.5593i −0.299030 0.299030i
\(43\) 49.5541i 1.15242i −0.817302 0.576210i \(-0.804531\pi\)
0.817302 0.576210i \(-0.195469\pi\)
\(44\) −12.7352 −0.289437
\(45\) 45.1051i 1.00234i
\(46\) 10.5715 + 10.5715i 0.229816 + 0.229816i
\(47\) −57.7822 −1.22941 −0.614704 0.788758i \(-0.710724\pi\)
−0.614704 + 0.788758i \(0.710724\pi\)
\(48\) −3.96536 3.96536i −0.0826117 0.0826117i
\(49\) 31.2514i 0.637785i
\(50\) 16.1137 + 16.1137i 0.322274 + 0.322274i
\(51\) 3.50387i 0.0687033i
\(52\) 45.0358 0.866073
\(53\) 20.7061 0.390680 0.195340 0.980736i \(-0.437419\pi\)
0.195340 + 0.980736i \(0.437419\pi\)
\(54\) 31.7913 0.588727
\(55\) 40.8292i 0.742349i
\(56\) 25.3379i 0.452463i
\(57\) 43.3506 0.760536
\(58\) −30.2516 −0.521579
\(59\) −38.8717 + 38.8717i −0.658843 + 0.658843i −0.955106 0.296263i \(-0.904259\pi\)
0.296263 + 0.955106i \(0.404259\pi\)
\(60\) 12.7129 12.7129i 0.211882 0.211882i
\(61\) −110.933 −1.81857 −0.909284 0.416177i \(-0.863370\pi\)
−0.909284 + 0.416177i \(0.863370\pi\)
\(62\) 2.85501 0.0460485
\(63\) 44.5599 + 44.5599i 0.707300 + 0.707300i
\(64\) 8.00000i 0.125000i
\(65\) 144.385i 2.22130i
\(66\) −12.6250 −0.191287
\(67\) −80.9397 −1.20806 −0.604028 0.796963i \(-0.706438\pi\)
−0.604028 + 0.796963i \(0.706438\pi\)
\(68\) 3.53448 3.53448i 0.0519776 0.0519776i
\(69\) 10.4800 + 10.4800i 0.151884 + 0.151884i
\(70\) 81.2334 1.16048
\(71\) 34.1676 34.1676i 0.481234 0.481234i −0.424292 0.905526i \(-0.639477\pi\)
0.905526 + 0.424292i \(0.139477\pi\)
\(72\) 14.0690 + 14.0690i 0.195402 + 0.195402i
\(73\) 3.81788i 0.0522998i 0.999658 + 0.0261499i \(0.00832472\pi\)
−0.999658 + 0.0261499i \(0.991675\pi\)
\(74\) −51.9512 51.9512i −0.702043 0.702043i
\(75\) 15.9742 + 15.9742i 0.212989 + 0.212989i
\(76\) 43.7292 + 43.7292i 0.575385 + 0.575385i
\(77\) −40.3356 40.3356i −0.523839 0.523839i
\(78\) 44.6458 0.572382
\(79\) 62.5004i 0.791145i 0.918435 + 0.395572i \(0.129454\pi\)
−0.918435 + 0.395572i \(0.870546\pi\)
\(80\) 25.6480 0.320600
\(81\) −31.7945 −0.392524
\(82\) −28.6890 28.6890i −0.349865 0.349865i
\(83\) 55.4429 55.4429i 0.667987 0.667987i −0.289263 0.957250i \(-0.593410\pi\)
0.957250 + 0.289263i \(0.0934101\pi\)
\(84\) 25.1185i 0.299030i
\(85\) 11.3315 + 11.3315i 0.133312 + 0.133312i
\(86\) 49.5541 49.5541i 0.576210 0.576210i
\(87\) −29.9896 −0.344708
\(88\) −12.7352 12.7352i −0.144719 0.144719i
\(89\) 78.4368i 0.881312i −0.897676 0.440656i \(-0.854746\pi\)
0.897676 0.440656i \(-0.145254\pi\)
\(90\) −45.1051 + 45.1051i −0.501168 + 0.501168i
\(91\) 142.639 + 142.639i 1.56747 + 1.56747i
\(92\) 21.1431i 0.229816i
\(93\) 2.83028 0.0304331
\(94\) −57.7822 57.7822i −0.614704 0.614704i
\(95\) −140.196 + 140.196i −1.47575 + 1.47575i
\(96\) 7.93072i 0.0826117i
\(97\) 42.6280i 0.439464i −0.975560 0.219732i \(-0.929482\pi\)
0.975560 0.219732i \(-0.0705183\pi\)
\(98\) 31.2514 31.2514i 0.318892 0.318892i
\(99\) 44.7930 0.452454
\(100\) 32.2274i 0.322274i
\(101\) −27.5749 27.5749i −0.273019 0.273019i 0.557295 0.830314i \(-0.311839\pi\)
−0.830314 + 0.557295i \(0.811839\pi\)
\(102\) 3.50387 3.50387i 0.0343517 0.0343517i
\(103\) 3.93602i 0.0382138i −0.999817 0.0191069i \(-0.993918\pi\)
0.999817 0.0191069i \(-0.00608229\pi\)
\(104\) 45.0358 + 45.0358i 0.433037 + 0.433037i
\(105\) 80.5299 0.766952
\(106\) 20.7061 + 20.7061i 0.195340 + 0.195340i
\(107\) 57.6823 57.6823i 0.539087 0.539087i −0.384174 0.923261i \(-0.625514\pi\)
0.923261 + 0.384174i \(0.125514\pi\)
\(108\) 31.7913 + 31.7913i 0.294364 + 0.294364i
\(109\) −2.94540 + 2.94540i −0.0270220 + 0.0270220i −0.720489 0.693467i \(-0.756082\pi\)
0.693467 + 0.720489i \(0.256082\pi\)
\(110\) 40.8292 40.8292i 0.371174 0.371174i
\(111\) −51.5013 51.5013i −0.463975 0.463975i
\(112\) 25.3379 25.3379i 0.226232 0.226232i
\(113\) 111.910 111.910i 0.990353 0.990353i −0.00960126 0.999954i \(-0.503056\pi\)
0.999954 + 0.00960126i \(0.00305622\pi\)
\(114\) 43.3506 + 43.3506i 0.380268 + 0.380268i
\(115\) −67.7847 −0.589432
\(116\) −30.2516 30.2516i −0.260789 0.260789i
\(117\) −158.402 −1.35386
\(118\) −77.7435 −0.658843
\(119\) 22.3891 0.188144
\(120\) 25.4259 0.211882
\(121\) 80.4534 0.664904
\(122\) −110.933 110.933i −0.909284 0.909284i
\(123\) −28.4405 28.4405i −0.231224 0.231224i
\(124\) 2.85501 + 2.85501i 0.0230242 + 0.0230242i
\(125\) 56.9789 0.455831
\(126\) 89.1198i 0.707300i
\(127\) 154.068i 1.21313i 0.795034 + 0.606565i \(0.207453\pi\)
−0.795034 + 0.606565i \(0.792547\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) 49.1249 49.1249i 0.380813 0.380813i
\(130\) −144.385 + 144.385i −1.11065 + 1.11065i
\(131\) −150.928 −1.15212 −0.576060 0.817407i \(-0.695411\pi\)
−0.576060 + 0.817407i \(0.695411\pi\)
\(132\) −12.6250 12.6250i −0.0956436 0.0956436i
\(133\) 277.002i 2.08272i
\(134\) −80.9397 80.9397i −0.604028 0.604028i
\(135\) −101.923 + 101.923i −0.754983 + 0.754983i
\(136\) 7.06896 0.0519776
\(137\) −25.2624 + 25.2624i −0.184397 + 0.184397i −0.793269 0.608872i \(-0.791622\pi\)
0.608872 + 0.793269i \(0.291622\pi\)
\(138\) 20.9600i 0.151884i
\(139\) −90.9388 90.9388i −0.654236 0.654236i 0.299774 0.954010i \(-0.403089\pi\)
−0.954010 + 0.299774i \(0.903089\pi\)
\(140\) 81.2334 + 81.2334i 0.580239 + 0.580239i
\(141\) −57.2818 57.2818i −0.406254 0.406254i
\(142\) 68.3352 0.481234
\(143\) 143.386 1.00270
\(144\) 28.1380i 0.195402i
\(145\) 96.9865 96.9865i 0.668872 0.668872i
\(146\) −3.81788 + 3.81788i −0.0261499 + 0.0261499i
\(147\) 30.9808 30.9808i 0.210754 0.210754i
\(148\) 103.902i 0.702043i
\(149\) 46.1538i 0.309757i 0.987934 + 0.154878i \(0.0494986\pi\)
−0.987934 + 0.154878i \(0.950501\pi\)
\(150\) 31.9483i 0.212989i
\(151\) 142.489i 0.943634i −0.881696 0.471817i \(-0.843598\pi\)
0.881696 0.471817i \(-0.156402\pi\)
\(152\) 87.4585i 0.575385i
\(153\) −12.4316 + 12.4316i −0.0812524 + 0.0812524i
\(154\) 80.6712i 0.523839i
\(155\) −9.15314 + 9.15314i −0.0590525 + 0.0590525i
\(156\) 44.6458 + 44.6458i 0.286191 + 0.286191i
\(157\) −73.3568 73.3568i −0.467241 0.467241i 0.433779 0.901019i \(-0.357180\pi\)
−0.901019 + 0.433779i \(0.857180\pi\)
\(158\) −62.5004 + 62.5004i −0.395572 + 0.395572i
\(159\) 20.5267 + 20.5267i 0.129099 + 0.129099i
\(160\) 25.6480 + 25.6480i 0.160300 + 0.160300i
\(161\) −66.9653 + 66.9653i −0.415933 + 0.415933i
\(162\) −31.7945 31.7945i −0.196262 0.196262i
\(163\) −65.1109 + 65.1109i −0.399453 + 0.399453i −0.878040 0.478587i \(-0.841149\pi\)
0.478587 + 0.878040i \(0.341149\pi\)
\(164\) 57.3779i 0.349865i
\(165\) 40.4756 40.4756i 0.245307 0.245307i
\(166\) 110.886 0.667987
\(167\) 62.5088 + 62.5088i 0.374304 + 0.374304i 0.869042 0.494738i \(-0.164736\pi\)
−0.494738 + 0.869042i \(0.664736\pi\)
\(168\) 25.1185 25.1185i 0.149515 0.149515i
\(169\) −338.056 −2.00033
\(170\) 22.6631i 0.133312i
\(171\) −153.806 153.806i −0.899453 0.899453i
\(172\) 99.1081 0.576210
\(173\) 325.926 1.88396 0.941982 0.335662i \(-0.108960\pi\)
0.941982 + 0.335662i \(0.108960\pi\)
\(174\) −29.9896 29.9896i −0.172354 0.172354i
\(175\) −102.072 + 102.072i −0.583269 + 0.583269i
\(176\) 25.4705i 0.144719i
\(177\) −77.0702 −0.435425
\(178\) 78.4368 78.4368i 0.440656 0.440656i
\(179\) 120.070 + 120.070i 0.670784 + 0.670784i 0.957897 0.287113i \(-0.0926955\pi\)
−0.287113 + 0.957897i \(0.592696\pi\)
\(180\) −90.2103 −0.501168
\(181\) 24.9854 24.9854i 0.138041 0.138041i −0.634710 0.772751i \(-0.718880\pi\)
0.772751 + 0.634710i \(0.218880\pi\)
\(182\) 285.279i 1.56747i
\(183\) −109.972 109.972i −0.600940 0.600940i
\(184\) −21.1431 + 21.1431i −0.114908 + 0.114908i
\(185\) 333.111 1.80060
\(186\) 2.83028 + 2.83028i 0.0152166 + 0.0152166i
\(187\) 11.2531 11.2531i 0.0601771 0.0601771i
\(188\) 115.564i 0.614704i
\(189\) 201.381i 1.06551i
\(190\) −280.392 −1.47575
\(191\) 280.960i 1.47099i 0.677528 + 0.735497i \(0.263051\pi\)
−0.677528 + 0.735497i \(0.736949\pi\)
\(192\) 7.93072 7.93072i 0.0413058 0.0413058i
\(193\) −252.488 + 252.488i −1.30823 + 1.30823i −0.385531 + 0.922695i \(0.625982\pi\)
−0.922695 + 0.385531i \(0.874018\pi\)
\(194\) 42.6280 42.6280i 0.219732 0.219732i
\(195\) −143.134 + 143.134i −0.734022 + 0.734022i
\(196\) 62.5029 0.318892
\(197\) −19.9644 + 19.9644i −0.101342 + 0.101342i −0.755960 0.654618i \(-0.772830\pi\)
0.654618 + 0.755960i \(0.272830\pi\)
\(198\) 44.7930 + 44.7930i 0.226227 + 0.226227i
\(199\) 117.670i 0.591305i 0.955296 + 0.295652i \(0.0955370\pi\)
−0.955296 + 0.295652i \(0.904463\pi\)
\(200\) −32.2274 + 32.2274i −0.161137 + 0.161137i
\(201\) −80.2388 80.2388i −0.399198 0.399198i
\(202\) 55.1498i 0.273019i
\(203\) 191.628i 0.943981i
\(204\) 7.00774 0.0343517
\(205\) 183.954 0.897334
\(206\) 3.93602 3.93602i 0.0191069 0.0191069i
\(207\) 74.3654i 0.359253i
\(208\) 90.0716i 0.433037i
\(209\) 139.226 + 139.226i 0.666152 + 0.666152i
\(210\) 80.5299 + 80.5299i 0.383476 + 0.383476i
\(211\) 224.155i 1.06235i 0.847263 + 0.531173i \(0.178249\pi\)
−0.847263 + 0.531173i \(0.821751\pi\)
\(212\) 41.4121i 0.195340i
\(213\) 67.7434 0.318044
\(214\) 115.365 0.539087
\(215\) 317.741i 1.47786i
\(216\) 63.5825i 0.294364i
\(217\) 18.0850i 0.0833410i
\(218\) −5.89081 −0.0270220
\(219\) −3.78482 + 3.78482i −0.0172823 + 0.0172823i
\(220\) 81.6584 0.371174
\(221\) −39.7945 + 39.7945i −0.180066 + 0.180066i
\(222\) 103.003i 0.463975i
\(223\) 158.366 158.366i 0.710163 0.710163i −0.256406 0.966569i \(-0.582538\pi\)
0.966569 + 0.256406i \(0.0825384\pi\)
\(224\) 50.6759 0.226232
\(225\) 113.352i 0.503785i
\(226\) 223.820 0.990353
\(227\) 101.337 101.337i 0.446417 0.446417i −0.447745 0.894162i \(-0.647773\pi\)
0.894162 + 0.447745i \(0.147773\pi\)
\(228\) 86.7011i 0.380268i
\(229\) −98.9733 98.9733i −0.432198 0.432198i 0.457178 0.889375i \(-0.348860\pi\)
−0.889375 + 0.457178i \(0.848860\pi\)
\(230\) −67.7847 67.7847i −0.294716 0.294716i
\(231\) 79.9726i 0.346202i
\(232\) 60.5031i 0.260789i
\(233\) 226.083i 0.970315i −0.874427 0.485157i \(-0.838762\pi\)
0.874427 0.485157i \(-0.161238\pi\)
\(234\) −158.402 158.402i −0.676932 0.676932i
\(235\) 370.499 1.57659
\(236\) −77.7435 77.7435i −0.329421 0.329421i
\(237\) −61.9592 + 61.9592i −0.261431 + 0.261431i
\(238\) 22.3891 + 22.3891i 0.0940719 + 0.0940719i
\(239\) −83.1841 −0.348051 −0.174025 0.984741i \(-0.555677\pi\)
−0.174025 + 0.984741i \(0.555677\pi\)
\(240\) 25.4259 + 25.4259i 0.105941 + 0.105941i
\(241\) −179.153 + 179.153i −0.743373 + 0.743373i −0.973225 0.229853i \(-0.926175\pi\)
0.229853 + 0.973225i \(0.426175\pi\)
\(242\) 80.4534 + 80.4534i 0.332452 + 0.332452i
\(243\) −174.580 174.580i −0.718435 0.718435i
\(244\) 221.865i 0.909284i
\(245\) 200.384i 0.817895i
\(246\) 56.8810i 0.231224i
\(247\) −492.346 492.346i −1.99330 1.99330i
\(248\) 5.71001i 0.0230242i
\(249\) 109.926 0.441468
\(250\) 56.9789 + 56.9789i 0.227916 + 0.227916i
\(251\) −4.04762 4.04762i −0.0161260 0.0161260i 0.698998 0.715124i \(-0.253630\pi\)
−0.715124 + 0.698998i \(0.753630\pi\)
\(252\) −89.1198 + 89.1198i −0.353650 + 0.353650i
\(253\) 67.3156i 0.266069i
\(254\) −154.068 + 154.068i −0.606565 + 0.606565i
\(255\) 22.4668i 0.0881051i
\(256\) 16.0000 0.0625000
\(257\) 252.824 + 252.824i 0.983752 + 0.983752i 0.999870 0.0161178i \(-0.00513067\pi\)
−0.0161178 + 0.999870i \(0.505131\pi\)
\(258\) 98.2499 0.380813
\(259\) 329.084 329.084i 1.27059 1.27059i
\(260\) −288.769 −1.11065
\(261\) 106.402 + 106.402i 0.407671 + 0.407671i
\(262\) −150.928 150.928i −0.576060 0.576060i
\(263\) −467.712 −1.77837 −0.889187 0.457543i \(-0.848729\pi\)
−0.889187 + 0.457543i \(0.848729\pi\)
\(264\) 25.2499i 0.0956436i
\(265\) −132.767 −0.501008
\(266\) −277.002 + 277.002i −1.04136 + 1.04136i
\(267\) 77.7575 77.7575i 0.291227 0.291227i
\(268\) 161.879i 0.604028i
\(269\) −219.678 + 155.251i −0.816645 + 0.577140i
\(270\) −203.845 −0.754983
\(271\) −262.448 262.448i −0.968443 0.968443i 0.0310742 0.999517i \(-0.490107\pi\)
−0.999517 + 0.0310742i \(0.990107\pi\)
\(272\) 7.06896 + 7.06896i 0.0259888 + 0.0259888i
\(273\) 282.808i 1.03593i
\(274\) −50.5249 −0.184397
\(275\) 102.606i 0.373113i
\(276\) −20.9600 + 20.9600i −0.0759420 + 0.0759420i
\(277\) 59.3242 59.3242i 0.214167 0.214167i −0.591868 0.806035i \(-0.701609\pi\)
0.806035 + 0.591868i \(0.201609\pi\)
\(278\) 181.878i 0.654236i
\(279\) −10.0418 10.0418i −0.0359920 0.0359920i
\(280\) 162.467i 0.580239i
\(281\) −277.019 + 277.019i −0.985832 + 0.985832i −0.999901 0.0140687i \(-0.995522\pi\)
0.0140687 + 0.999901i \(0.495522\pi\)
\(282\) 114.564i 0.406254i
\(283\) 128.710 0.454806 0.227403 0.973801i \(-0.426976\pi\)
0.227403 + 0.973801i \(0.426976\pi\)
\(284\) 68.3352 + 68.3352i 0.240617 + 0.240617i
\(285\) −277.964 −0.975311
\(286\) 143.386 + 143.386i 0.501348 + 0.501348i
\(287\) 181.730 181.730i 0.633205 0.633205i
\(288\) −28.1380 + 28.1380i −0.0977012 + 0.0977012i
\(289\) 282.754i 0.978387i
\(290\) 193.973 0.668872
\(291\) 42.2588 42.2588i 0.145219 0.145219i
\(292\) −7.63577 −0.0261499
\(293\) −133.570 −0.455872 −0.227936 0.973676i \(-0.573198\pi\)
−0.227936 + 0.973676i \(0.573198\pi\)
\(294\) 61.9616 0.210754
\(295\) 249.245 249.245i 0.844900 0.844900i
\(296\) 103.902 103.902i 0.351021 0.351021i
\(297\) 101.217 + 101.217i 0.340799 + 0.340799i
\(298\) −46.1538 + 46.1538i −0.154878 + 0.154878i
\(299\) 238.049i 0.796150i
\(300\) −31.9483 + 31.9483i −0.106494 + 0.106494i
\(301\) 313.900 + 313.900i 1.04286 + 1.04286i
\(302\) 142.489 142.489i 0.471817 0.471817i
\(303\) 54.6722i 0.180436i
\(304\) −87.4585 + 87.4585i −0.287692 + 0.287692i
\(305\) 711.300 2.33213
\(306\) −24.8632 −0.0812524
\(307\) 442.521 1.44144 0.720718 0.693229i \(-0.243812\pi\)
0.720718 + 0.693229i \(0.243812\pi\)
\(308\) 80.6712 80.6712i 0.261920 0.261920i
\(309\) 3.90194 3.90194i 0.0126276 0.0126276i
\(310\) −18.3063 −0.0590525
\(311\) −89.4245 89.4245i −0.287539 0.287539i 0.548568 0.836106i \(-0.315173\pi\)
−0.836106 + 0.548568i \(0.815173\pi\)
\(312\) 89.2916i 0.286191i
\(313\) 572.254 1.82829 0.914143 0.405392i \(-0.132865\pi\)
0.914143 + 0.405392i \(0.132865\pi\)
\(314\) 146.714i 0.467241i
\(315\) −285.718 285.718i −0.907041 0.907041i
\(316\) −125.001 −0.395572
\(317\) 272.380 + 272.380i 0.859242 + 0.859242i 0.991249 0.132007i \(-0.0421421\pi\)
−0.132007 + 0.991249i \(0.542142\pi\)
\(318\) 41.0535i 0.129099i
\(319\) −96.3153 96.3153i −0.301929 0.301929i
\(320\) 51.2960i 0.160300i
\(321\) 114.365 0.356279
\(322\) −133.931 −0.415933
\(323\) −77.2800 −0.239257
\(324\) 63.5889i 0.196262i
\(325\) 362.847i 1.11645i
\(326\) −130.222 −0.399453
\(327\) −5.83979 −0.0178587
\(328\) 57.3779 57.3779i 0.174933 0.174933i
\(329\) 366.020 366.020i 1.11252 1.11252i
\(330\) 80.9512 0.245307
\(331\) −288.089 −0.870360 −0.435180 0.900343i \(-0.643315\pi\)
−0.435180 + 0.900343i \(0.643315\pi\)
\(332\) 110.886 + 110.886i 0.333994 + 0.333994i
\(333\) 365.450i 1.09745i
\(334\) 125.018i 0.374304i
\(335\) 518.985 1.54921
\(336\) 50.2370 0.149515
\(337\) 182.866 182.866i 0.542629 0.542629i −0.381670 0.924299i \(-0.624651\pi\)
0.924299 + 0.381670i \(0.124651\pi\)
\(338\) −338.056 338.056i −1.00017 1.00017i
\(339\) 221.881 0.654517
\(340\) −22.6631 + 22.6631i −0.0666561 + 0.0666561i
\(341\) 9.08980 + 9.08980i 0.0266563 + 0.0266563i
\(342\) 307.613i 0.899453i
\(343\) −112.428 112.428i −0.327778 0.327778i
\(344\) 99.1081 + 99.1081i 0.288105 + 0.288105i
\(345\) −67.1977 67.1977i −0.194776 0.194776i
\(346\) 325.926 + 325.926i 0.941982 + 0.941982i
\(347\) 373.550 1.07651 0.538257 0.842781i \(-0.319083\pi\)
0.538257 + 0.842781i \(0.319083\pi\)
\(348\) 59.9792i 0.172354i
\(349\) −160.856 −0.460906 −0.230453 0.973083i \(-0.574021\pi\)
−0.230453 + 0.973083i \(0.574021\pi\)
\(350\) −204.144 −0.583269
\(351\) −357.936 357.936i −1.01976 1.01976i
\(352\) 25.4705 25.4705i 0.0723593 0.0723593i
\(353\) 378.801i 1.07309i 0.843871 + 0.536546i \(0.180271\pi\)
−0.843871 + 0.536546i \(0.819729\pi\)
\(354\) −77.0702 77.0702i −0.217712 0.217712i
\(355\) −219.083 + 219.083i −0.617134 + 0.617134i
\(356\) 156.874 0.440656
\(357\) 22.1952 + 22.1952i 0.0621715 + 0.0621715i
\(358\) 240.141i 0.670784i
\(359\) −355.250 + 355.250i −0.989554 + 0.989554i −0.999946 0.0103919i \(-0.996692\pi\)
0.0103919 + 0.999946i \(0.496692\pi\)
\(360\) −90.2103 90.2103i −0.250584 0.250584i
\(361\) 595.124i 1.64854i
\(362\) 49.9708 0.138041
\(363\) 79.7567 + 79.7567i 0.219715 + 0.219715i
\(364\) −285.279 + 285.279i −0.783733 + 0.783733i
\(365\) 24.4803i 0.0670692i
\(366\) 219.944i 0.600940i
\(367\) 335.691 335.691i 0.914690 0.914690i −0.0819464 0.996637i \(-0.526114\pi\)
0.996637 + 0.0819464i \(0.0261136\pi\)
\(368\) −42.2862 −0.114908
\(369\) 201.812i 0.546917i
\(370\) 333.111 + 333.111i 0.900299 + 0.900299i
\(371\) −131.162 + 131.162i −0.353537 + 0.353537i
\(372\) 5.66056i 0.0152166i
\(373\) −493.944 493.944i −1.32425 1.32425i −0.910303 0.413944i \(-0.864151\pi\)
−0.413944 0.910303i \(-0.635849\pi\)
\(374\) 22.5062 0.0601771
\(375\) 56.4854 + 56.4854i 0.150628 + 0.150628i
\(376\) 115.564 115.564i 0.307352 0.307352i
\(377\) 340.601 + 340.601i 0.903451 + 0.903451i
\(378\) −201.381 + 201.381i −0.532755 + 0.532755i
\(379\) 438.979 438.979i 1.15825 1.15825i 0.173404 0.984851i \(-0.444523\pi\)
0.984851 0.173404i \(-0.0554767\pi\)
\(380\) −280.392 280.392i −0.737873 0.737873i
\(381\) −152.733 + 152.733i −0.400875 + 0.400875i
\(382\) −280.960 + 280.960i −0.735497 + 0.735497i
\(383\) 11.3128 + 11.3128i 0.0295373 + 0.0295373i 0.721721 0.692184i \(-0.243351\pi\)
−0.692184 + 0.721721i \(0.743351\pi\)
\(384\) 15.8614 0.0413058
\(385\) 258.632 + 258.632i 0.671771 + 0.671771i
\(386\) −504.975 −1.30823
\(387\) −348.588 −0.900743
\(388\) 85.2560 0.219732
\(389\) 645.474 1.65932 0.829659 0.558271i \(-0.188535\pi\)
0.829659 + 0.558271i \(0.188535\pi\)
\(390\) −286.269 −0.734022
\(391\) −18.6824 18.6824i −0.0477812 0.0477812i
\(392\) 62.5029 + 62.5029i 0.159446 + 0.159446i
\(393\) −149.621 149.621i −0.380714 0.380714i
\(394\) −39.9288 −0.101342
\(395\) 400.753i 1.01456i
\(396\) 89.5859i 0.226227i
\(397\) −121.715 + 121.715i −0.306588 + 0.306588i −0.843585 0.536996i \(-0.819559\pi\)
0.536996 + 0.843585i \(0.319559\pi\)
\(398\) −117.670 + 117.670i −0.295652 + 0.295652i
\(399\) −274.604 + 274.604i −0.688229 + 0.688229i
\(400\) −64.4548 −0.161137
\(401\) −442.617 442.617i −1.10378 1.10378i −0.993950 0.109832i \(-0.964969\pi\)
−0.109832 0.993950i \(-0.535031\pi\)
\(402\) 160.478i 0.399198i
\(403\) −32.1444 32.1444i −0.0797627 0.0797627i
\(404\) 55.1498 55.1498i 0.136509 0.136509i
\(405\) 203.866 0.503373
\(406\) 191.628 191.628i 0.471991 0.471991i
\(407\) 330.805i 0.812790i
\(408\) 7.00774 + 7.00774i 0.0171758 + 0.0171758i
\(409\) −140.975 140.975i −0.344681 0.344681i 0.513443 0.858124i \(-0.328370\pi\)
−0.858124 + 0.513443i \(0.828370\pi\)
\(410\) 183.954 + 183.954i 0.448667 + 0.448667i
\(411\) −50.0873 −0.121867
\(412\) 7.87205 0.0191069
\(413\) 492.465i 1.19241i
\(414\) 74.3654 74.3654i 0.179627 0.179627i
\(415\) −355.500 + 355.500i −0.856627 + 0.856627i
\(416\) −90.0716 + 90.0716i −0.216518 + 0.216518i
\(417\) 180.302i 0.432380i
\(418\) 278.451i 0.666152i
\(419\) 13.3616i 0.0318893i −0.999873 0.0159447i \(-0.994924\pi\)
0.999873 0.0159447i \(-0.00507556\pi\)
\(420\) 161.060i 0.383476i
\(421\) 737.559i 1.75192i −0.482382 0.875961i \(-0.660228\pi\)
0.482382 0.875961i \(-0.339772\pi\)
\(422\) −224.155 + 224.155i −0.531173 + 0.531173i
\(423\) 406.468i 0.960917i
\(424\) −41.4121 + 41.4121i −0.0976701 + 0.0976701i
\(425\) −28.4768 28.4768i −0.0670042 0.0670042i
\(426\) 67.7434 + 67.7434i 0.159022 + 0.159022i
\(427\) 702.701 702.701i 1.64567 1.64567i
\(428\) 115.365 + 115.365i 0.269543 + 0.269543i
\(429\) 142.144 + 142.144i 0.331338 + 0.331338i
\(430\) −317.741 + 317.741i −0.738931 + 0.738931i
\(431\) −203.971 203.971i −0.473250 0.473250i 0.429715 0.902965i \(-0.358614\pi\)
−0.902965 + 0.429715i \(0.858614\pi\)
\(432\) −63.5825 + 63.5825i −0.147182 + 0.147182i
\(433\) 274.696i 0.634401i 0.948359 + 0.317200i \(0.102743\pi\)
−0.948359 + 0.317200i \(0.897257\pi\)
\(434\) −18.0850 + 18.0850i −0.0416705 + 0.0416705i
\(435\) 192.293 0.442053
\(436\) −5.89081 5.89081i −0.0135110 0.0135110i
\(437\) 231.143 231.143i 0.528931 0.528931i
\(438\) −7.56964 −0.0172823
\(439\) 117.275i 0.267141i 0.991039 + 0.133571i \(0.0426443\pi\)
−0.991039 + 0.133571i \(0.957356\pi\)
\(440\) 81.6584 + 81.6584i 0.185587 + 0.185587i
\(441\) −219.838 −0.498499
\(442\) −79.5890 −0.180066
\(443\) 123.642 + 123.642i 0.279102 + 0.279102i 0.832751 0.553648i \(-0.186765\pi\)
−0.553648 + 0.832751i \(0.686765\pi\)
\(444\) 103.003 103.003i 0.231988 0.231988i
\(445\) 502.936i 1.13019i
\(446\) 316.733 0.710163
\(447\) −45.7541 + 45.7541i −0.102358 + 0.102358i
\(448\) 50.6759 + 50.6759i 0.113116 + 0.113116i
\(449\) −156.476 −0.348499 −0.174250 0.984701i \(-0.555750\pi\)
−0.174250 + 0.984701i \(0.555750\pi\)
\(450\) 113.352 113.352i 0.251893 0.251893i
\(451\) 182.680i 0.405056i
\(452\) 223.820 + 223.820i 0.495176 + 0.495176i
\(453\) 141.255 141.255i 0.311821 0.311821i
\(454\) 202.673 0.446417
\(455\) −914.603 914.603i −2.01012 2.01012i
\(456\) −86.7011 + 86.7011i −0.190134 + 0.190134i
\(457\) 285.962i 0.625738i 0.949796 + 0.312869i \(0.101290\pi\)
−0.949796 + 0.312869i \(0.898710\pi\)
\(458\) 197.947i 0.432198i
\(459\) −56.1828 −0.122403
\(460\) 135.569i 0.294716i
\(461\) 285.686 285.686i 0.619709 0.619709i −0.325748 0.945457i \(-0.605616\pi\)
0.945457 + 0.325748i \(0.105616\pi\)
\(462\) 79.9726 79.9726i 0.173101 0.173101i
\(463\) −496.650 + 496.650i −1.07268 + 1.07268i −0.0755346 + 0.997143i \(0.524066\pi\)
−0.997143 + 0.0755346i \(0.975934\pi\)
\(464\) 60.5031 60.5031i 0.130395 0.130395i
\(465\) −18.1478 −0.0390274
\(466\) 226.083 226.083i 0.485157 0.485157i
\(467\) −156.516 156.516i −0.335152 0.335152i 0.519387 0.854539i \(-0.326160\pi\)
−0.854539 + 0.519387i \(0.826160\pi\)
\(468\) 316.804i 0.676932i
\(469\) 512.712 512.712i 1.09320 1.09320i
\(470\) 370.499 + 370.499i 0.788296 + 0.788296i
\(471\) 145.443i 0.308796i
\(472\) 155.487i 0.329421i
\(473\) 315.542 0.667107
\(474\) −123.918 −0.261431
\(475\) 352.320 352.320i 0.741727 0.741727i
\(476\) 44.7782i 0.0940719i
\(477\) 145.657i 0.305360i
\(478\) −83.1841 83.1841i −0.174025 0.174025i
\(479\) −320.044 320.044i −0.668150 0.668150i 0.289137 0.957288i \(-0.406632\pi\)
−0.957288 + 0.289137i \(0.906632\pi\)
\(480\) 50.8518i 0.105941i
\(481\) 1169.83i 2.43208i
\(482\) −358.306 −0.743373
\(483\) −132.771 −0.274888
\(484\) 160.907i 0.332452i
\(485\) 273.331i 0.563568i
\(486\) 349.160i 0.718435i
\(487\) 95.3811 0.195855 0.0979273 0.995194i \(-0.468779\pi\)
0.0979273 + 0.995194i \(0.468779\pi\)
\(488\) 221.865 221.865i 0.454642 0.454642i
\(489\) −129.094 −0.263996
\(490\) −200.384 + 200.384i −0.408947 + 0.408947i
\(491\) 493.132i 1.00434i −0.864768 0.502171i \(-0.832535\pi\)
0.864768 0.502171i \(-0.167465\pi\)
\(492\) 56.8810 56.8810i 0.115612 0.115612i
\(493\) 53.4618 0.108442
\(494\) 984.691i 1.99330i
\(495\) −287.212 −0.580227
\(496\) −5.71001 + 5.71001i −0.0115121 + 0.0115121i
\(497\) 432.869i 0.870963i
\(498\) 109.926 + 109.926i 0.220734 + 0.220734i
\(499\) −357.308 357.308i −0.716048 0.716048i 0.251746 0.967793i \(-0.418995\pi\)
−0.967793 + 0.251746i \(0.918995\pi\)
\(500\) 113.958i 0.227916i
\(501\) 123.935i 0.247375i
\(502\) 8.09523i 0.0161260i
\(503\) 541.782 + 541.782i 1.07710 + 1.07710i 0.996768 + 0.0803332i \(0.0255984\pi\)
0.0803332 + 0.996768i \(0.474402\pi\)
\(504\) −178.240 −0.353650
\(505\) 176.810 + 176.810i 0.350119 + 0.350119i
\(506\) −67.3156 + 67.3156i −0.133035 + 0.133035i
\(507\) −335.129 335.129i −0.661003 0.661003i
\(508\) −308.135 −0.606565
\(509\) 163.757 + 163.757i 0.321723 + 0.321723i 0.849428 0.527705i \(-0.176947\pi\)
−0.527705 + 0.849428i \(0.676947\pi\)
\(510\) −22.4668 + 22.4668i −0.0440525 + 0.0440525i
\(511\) −24.1843 24.1843i −0.0473275 0.0473275i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 695.104i 1.35498i
\(514\) 505.649i 0.983752i
\(515\) 25.2378i 0.0490054i
\(516\) 98.2499 + 98.2499i 0.190407 + 0.190407i
\(517\) 367.935i 0.711673i
\(518\) 658.168 1.27059
\(519\) 323.103 + 323.103i 0.622550 + 0.622550i
\(520\) −288.769 288.769i −0.555326 0.555326i
\(521\) 486.022 486.022i 0.932863 0.932863i −0.0650210 0.997884i \(-0.520711\pi\)
0.997884 + 0.0650210i \(0.0207114\pi\)
\(522\) 212.804i 0.407671i
\(523\) 223.919 223.919i 0.428144 0.428144i −0.459852 0.887996i \(-0.652097\pi\)
0.887996 + 0.459852i \(0.152097\pi\)
\(524\) 301.856i 0.576060i
\(525\) −202.376 −0.385479
\(526\) −467.712 467.712i −0.889187 0.889187i
\(527\) −5.04548 −0.00957396
\(528\) 25.2499 25.2499i 0.0478218 0.0478218i
\(529\) −417.243 −0.788738
\(530\) −132.767 132.767i −0.250504 0.250504i
\(531\) 273.443 + 273.443i 0.514958 + 0.514958i
\(532\) −554.005 −1.04136
\(533\) 646.015i 1.21204i
\(534\) 155.515 0.291227
\(535\) −369.858 + 369.858i −0.691324 + 0.691324i
\(536\) 161.879 161.879i 0.302014 0.302014i
\(537\) 238.061i 0.443317i
\(538\) −374.928 64.4269i −0.696893 0.119753i
\(539\) 198.997 0.369197
\(540\) −203.845 203.845i −0.377492 0.377492i
\(541\) 487.266 + 487.266i 0.900677 + 0.900677i 0.995495 0.0948180i \(-0.0302269\pi\)
−0.0948180 + 0.995495i \(0.530227\pi\)
\(542\) 524.896i 0.968443i
\(543\) 49.5380 0.0912303
\(544\) 14.1379i 0.0259888i
\(545\) 18.8859 18.8859i 0.0346531 0.0346531i
\(546\) −282.808 + 282.808i −0.517964 + 0.517964i
\(547\) 395.005i 0.722129i −0.932541 0.361064i \(-0.882413\pi\)
0.932541 0.361064i \(-0.117587\pi\)
\(548\) −50.5249 50.5249i −0.0921986 0.0921986i
\(549\) 780.354i 1.42141i
\(550\) −102.606 + 102.606i −0.186556 + 0.186556i
\(551\) 661.439i 1.20043i
\(552\) −41.9200 −0.0759420
\(553\) −395.908 395.908i −0.715928 0.715928i
\(554\) 118.648 0.214167
\(555\) 330.226 + 330.226i 0.595002 + 0.595002i
\(556\) 181.878 181.878i 0.327118 0.327118i
\(557\) 267.835 267.835i 0.480854 0.480854i −0.424551 0.905404i \(-0.639568\pi\)
0.905404 + 0.424551i \(0.139568\pi\)
\(558\) 20.0835i 0.0359920i
\(559\) −1115.85 −1.99616
\(560\) −162.467 + 162.467i −0.290119 + 0.290119i
\(561\) 22.3113 0.0397706
\(562\) −554.038 −0.985832
\(563\) 259.253 0.460485 0.230242 0.973133i \(-0.426048\pi\)
0.230242 + 0.973133i \(0.426048\pi\)
\(564\) 114.564 114.564i 0.203127 0.203127i
\(565\) −717.566 + 717.566i −1.27003 + 1.27003i
\(566\) 128.710 + 128.710i 0.227403 + 0.227403i
\(567\) 201.402 201.402i 0.355206 0.355206i
\(568\) 136.670i 0.240617i
\(569\) 379.163 379.163i 0.666367 0.666367i −0.290506 0.956873i \(-0.593824\pi\)
0.956873 + 0.290506i \(0.0938237\pi\)
\(570\) −277.964 277.964i −0.487656 0.487656i
\(571\) −335.093 + 335.093i −0.586853 + 0.586853i −0.936778 0.349925i \(-0.886207\pi\)
0.349925 + 0.936778i \(0.386207\pi\)
\(572\) 286.771i 0.501348i
\(573\) −278.527 + 278.527i −0.486085 + 0.486085i
\(574\) 363.460 0.633205
\(575\) 170.347 0.296255
\(576\) −56.2759 −0.0977012
\(577\) −532.363 + 532.363i −0.922639 + 0.922639i −0.997215 0.0745759i \(-0.976240\pi\)
0.0745759 + 0.997215i \(0.476240\pi\)
\(578\) 282.754 282.754i 0.489193 0.489193i
\(579\) −500.602 −0.864598
\(580\) 193.973 + 193.973i 0.334436 + 0.334436i
\(581\) 702.405i 1.20896i
\(582\) 84.5177 0.145219
\(583\) 131.848i 0.226155i
\(584\) −7.63577 7.63577i −0.0130749 0.0130749i
\(585\) 1015.67 1.73619
\(586\) −133.570 133.570i −0.227936 0.227936i
\(587\) 827.681i 1.41002i 0.709198 + 0.705010i \(0.249057\pi\)
−0.709198 + 0.705010i \(0.750943\pi\)
\(588\) 61.9616 + 61.9616i 0.105377 + 0.105377i
\(589\) 62.4236i 0.105982i
\(590\) 498.491 0.844900
\(591\) −39.5830 −0.0669763
\(592\) 207.805 0.351021
\(593\) 94.0788i 0.158649i −0.996849 0.0793244i \(-0.974724\pi\)
0.996849 0.0793244i \(-0.0252763\pi\)
\(594\) 202.435i 0.340799i
\(595\) −143.559 −0.241275
\(596\) −92.3075 −0.154878
\(597\) −116.651 + 116.651i −0.195395 + 0.195395i
\(598\) 238.049 238.049i 0.398075 0.398075i
\(599\) 208.432 0.347966 0.173983 0.984749i \(-0.444336\pi\)
0.173983 + 0.984749i \(0.444336\pi\)
\(600\) −63.8967 −0.106494
\(601\) −202.970 202.970i −0.337720 0.337720i 0.517789 0.855509i \(-0.326755\pi\)
−0.855509 + 0.517789i \(0.826755\pi\)
\(602\) 627.799i 1.04286i
\(603\) 569.370i 0.944228i
\(604\) 284.977 0.471817
\(605\) −515.867 −0.852673
\(606\) 54.6722 54.6722i 0.0902182 0.0902182i
\(607\) −93.8072 93.8072i −0.154542 0.154542i 0.625601 0.780143i \(-0.284854\pi\)
−0.780143 + 0.625601i \(0.784854\pi\)
\(608\) −174.917 −0.287692
\(609\) 189.969 189.969i 0.311935 0.311935i
\(610\) 711.300 + 711.300i 1.16607 + 1.16607i
\(611\) 1301.13i 2.12951i
\(612\) −24.8632 24.8632i −0.0406262 0.0406262i
\(613\) −414.113 414.113i −0.675552 0.675552i 0.283439 0.958990i \(-0.408525\pi\)
−0.958990 + 0.283439i \(0.908525\pi\)
\(614\) 442.521 + 442.521i 0.720718 + 0.720718i
\(615\) 182.361 + 182.361i 0.296521 + 0.296521i
\(616\) 161.342 0.261920
\(617\) 730.500i 1.18395i 0.805955 + 0.591977i \(0.201653\pi\)
−0.805955 + 0.591977i \(0.798347\pi\)
\(618\) 7.80388 0.0126276
\(619\) 764.675 1.23534 0.617670 0.786437i \(-0.288077\pi\)
0.617670 + 0.786437i \(0.288077\pi\)
\(620\) −18.3063 18.3063i −0.0295263 0.0295263i
\(621\) 168.041 168.041i 0.270598 0.270598i
\(622\) 178.849i 0.287539i
\(623\) 496.857 + 496.857i 0.797523 + 0.797523i
\(624\) −89.2916 + 89.2916i −0.143096 + 0.143096i
\(625\) −768.191 −1.22911
\(626\) 572.254 + 572.254i 0.914143 + 0.914143i
\(627\) 276.040i 0.440255i
\(628\) 146.714 146.714i 0.233620 0.233620i
\(629\) 91.8101 + 91.8101i 0.145962 + 0.145962i
\(630\) 571.436i 0.907041i
\(631\) −789.308 −1.25088 −0.625442 0.780270i \(-0.715081\pi\)
−0.625442 + 0.780270i \(0.715081\pi\)
\(632\) −125.001 125.001i −0.197786 0.197786i
\(633\) −222.214 + 222.214i −0.351049 + 0.351049i
\(634\) 544.759i 0.859242i
\(635\) 987.881i 1.55572i
\(636\) −41.0535 + 41.0535i −0.0645495 + 0.0645495i
\(637\) −703.717 −1.10474
\(638\) 192.631i 0.301929i
\(639\) −240.352 240.352i −0.376137 0.376137i
\(640\) −51.2960 + 51.2960i −0.0801500 + 0.0801500i
\(641\) 890.796i 1.38970i 0.719156 + 0.694849i \(0.244529\pi\)
−0.719156 + 0.694849i \(0.755471\pi\)
\(642\) 114.365 + 114.365i 0.178139 + 0.178139i
\(643\) 881.166 1.37040 0.685199 0.728356i \(-0.259715\pi\)
0.685199 + 0.728356i \(0.259715\pi\)
\(644\) −133.931 133.931i −0.207967 0.207967i
\(645\) −314.989 + 314.989i −0.488355 + 0.488355i
\(646\) −77.2800 77.2800i −0.119629 0.119629i
\(647\) −376.475 + 376.475i −0.581878 + 0.581878i −0.935419 0.353541i \(-0.884978\pi\)
0.353541 + 0.935419i \(0.384978\pi\)
\(648\) 63.5889 63.5889i 0.0981310 0.0981310i
\(649\) −247.521 247.521i −0.381388 0.381388i
\(650\) 362.847 362.847i 0.558226 0.558226i
\(651\) −17.9284 + 17.9284i −0.0275398 + 0.0275398i
\(652\) −130.222 130.222i −0.199727 0.199727i
\(653\) −293.323 −0.449193 −0.224597 0.974452i \(-0.572106\pi\)
−0.224597 + 0.974452i \(0.572106\pi\)
\(654\) −5.83979 5.83979i −0.00892934 0.00892934i
\(655\) 967.748 1.47748
\(656\) 114.756 0.174933
\(657\) 26.8569 0.0408780
\(658\) 732.041 1.11252
\(659\) −859.697 −1.30455 −0.652274 0.757983i \(-0.726185\pi\)
−0.652274 + 0.757983i \(0.726185\pi\)
\(660\) 80.9512 + 80.9512i 0.122653 + 0.122653i
\(661\) 311.082 + 311.082i 0.470624 + 0.470624i 0.902116 0.431493i \(-0.142013\pi\)
−0.431493 + 0.902116i \(0.642013\pi\)
\(662\) −288.089 288.089i −0.435180 0.435180i
\(663\) −78.8998 −0.119004
\(664\) 221.772i 0.333994i
\(665\) 1776.14i 2.67088i
\(666\) −365.450 + 365.450i −0.548724 + 0.548724i
\(667\) −159.903 + 159.903i −0.239734 + 0.239734i
\(668\) −125.018 + 125.018i −0.187152 + 0.187152i
\(669\) 313.990 0.469342
\(670\) 518.985 + 518.985i 0.774605 + 0.774605i
\(671\) 706.377i 1.05272i
\(672\) 50.2370 + 50.2370i 0.0747575 + 0.0747575i
\(673\) −634.052 + 634.052i −0.942127 + 0.942127i −0.998415 0.0562875i \(-0.982074\pi\)
0.0562875 + 0.998415i \(0.482074\pi\)
\(674\) 365.732 0.542629
\(675\) 256.138 256.138i 0.379463 0.379463i
\(676\) 676.112i 1.00017i
\(677\) 154.111 + 154.111i 0.227638 + 0.227638i 0.811705 0.584067i \(-0.198540\pi\)
−0.584067 + 0.811705i \(0.698540\pi\)
\(678\) 221.881 + 221.881i 0.327259 + 0.327259i
\(679\) 270.026 + 270.026i 0.397682 + 0.397682i
\(680\) −45.3261 −0.0666561
\(681\) 200.918 0.295034
\(682\) 18.1796i 0.0266563i
\(683\) −87.9359 + 87.9359i −0.128750 + 0.128750i −0.768545 0.639796i \(-0.779019\pi\)
0.639796 + 0.768545i \(0.279019\pi\)
\(684\) 307.613 307.613i 0.449727 0.449727i
\(685\) 161.983 161.983i 0.236471 0.236471i
\(686\) 224.856i 0.327778i
\(687\) 196.232i 0.285637i
\(688\) 198.216i 0.288105i
\(689\) 466.257i 0.676716i
\(690\) 134.395i 0.194776i
\(691\) −362.360 + 362.360i −0.524399 + 0.524399i −0.918897 0.394498i \(-0.870919\pi\)
0.394498 + 0.918897i \(0.370919\pi\)
\(692\) 651.852i 0.941982i
\(693\) −283.740 + 283.740i −0.409438 + 0.409438i
\(694\) 373.550 + 373.550i 0.538257 + 0.538257i
\(695\) 583.099 + 583.099i 0.838992 + 0.838992i
\(696\) 59.9792 59.9792i 0.0861770 0.0861770i
\(697\) 50.7002 + 50.7002i 0.0727407 + 0.0727407i
\(698\) −160.856 160.856i −0.230453 0.230453i
\(699\) 224.126 224.126i 0.320637 0.320637i
\(700\) −204.144 204.144i −0.291634 0.291634i
\(701\) −219.488 + 219.488i −0.313107 + 0.313107i −0.846112 0.533005i \(-0.821063\pi\)
0.533005 + 0.846112i \(0.321063\pi\)
\(702\) 715.873i 1.01976i
\(703\) −1135.89 + 1135.89i −1.61578 + 1.61578i
\(704\) 50.9410 0.0723593
\(705\) 367.291 + 367.291i 0.520979 + 0.520979i
\(706\) −378.801 + 378.801i −0.536546 + 0.536546i
\(707\) 349.346 0.494124
\(708\) 154.140i 0.217712i
\(709\) −816.923 816.923i −1.15222 1.15222i −0.986107 0.166111i \(-0.946879\pi\)
−0.166111 0.986107i \(-0.553121\pi\)
\(710\) −438.165 −0.617134
\(711\) 439.659 0.618367
\(712\) 156.874 + 156.874i 0.220328 + 0.220328i
\(713\) 15.0909 15.0909i 0.0211654 0.0211654i
\(714\) 44.3904i 0.0621715i
\(715\) −919.388 −1.28586
\(716\) −240.141 + 240.141i −0.335392 + 0.335392i
\(717\) −82.4637 82.4637i −0.115012 0.115012i
\(718\) −710.500 −0.989554
\(719\) 656.173 656.173i 0.912619 0.912619i −0.0838582 0.996478i \(-0.526724\pi\)
0.996478 + 0.0838582i \(0.0267243\pi\)
\(720\) 180.421i 0.250584i
\(721\) 24.9327 + 24.9327i 0.0345807 + 0.0345807i
\(722\) 595.124 595.124i 0.824271 0.824271i
\(723\) −355.203 −0.491290
\(724\) 49.9708 + 49.9708i 0.0690204 + 0.0690204i
\(725\) −243.733 + 243.733i −0.336183 + 0.336183i
\(726\) 159.513i 0.219715i
\(727\) 1148.36i 1.57959i −0.613373 0.789793i \(-0.710188\pi\)
0.613373 0.789793i \(-0.289812\pi\)
\(728\) −570.557 −0.783733
\(729\) 59.9858i 0.0822850i
\(730\) 24.4803 24.4803i 0.0335346 0.0335346i
\(731\) −87.5739 + 87.5739i −0.119800 + 0.119800i
\(732\) 219.944 219.944i 0.300470 0.300470i
\(733\) 169.128 169.128i 0.230733 0.230733i −0.582265 0.812999i \(-0.697834\pi\)
0.812999 + 0.582265i \(0.197834\pi\)
\(734\) 671.383 0.914690
\(735\) −198.649 + 198.649i −0.270271 + 0.270271i
\(736\) −42.2862 42.2862i −0.0574540 0.0574540i
\(737\) 515.393i 0.699313i
\(738\) −201.812 + 201.812i −0.273458 + 0.273458i
\(739\) 581.492 + 581.492i 0.786863 + 0.786863i 0.980979 0.194115i \(-0.0621836\pi\)
−0.194115 + 0.980979i \(0.562184\pi\)
\(740\) 666.221i 0.900299i
\(741\) 976.164i 1.31736i
\(742\) −262.324 −0.353537
\(743\) −990.308 −1.33285 −0.666425 0.745572i \(-0.732177\pi\)
−0.666425 + 0.745572i \(0.732177\pi\)
\(744\) −5.66056 + 5.66056i −0.00760828 + 0.00760828i
\(745\) 295.938i 0.397232i
\(746\) 987.888i 1.32425i
\(747\) −390.013 390.013i −0.522106 0.522106i
\(748\) 22.5062 + 22.5062i 0.0300885 + 0.0300885i
\(749\) 730.775i 0.975668i
\(750\) 112.971i 0.150628i
\(751\) 359.197 0.478292 0.239146 0.970984i \(-0.423133\pi\)
0.239146 + 0.970984i \(0.423133\pi\)
\(752\) 231.129 0.307352
\(753\) 8.02513i 0.0106575i
\(754\) 681.202i 0.903451i
\(755\) 913.637i 1.21012i
\(756\) −402.763 −0.532755
\(757\) −356.772 + 356.772i −0.471298 + 0.471298i −0.902334 0.431037i \(-0.858148\pi\)
0.431037 + 0.902334i \(0.358148\pi\)
\(758\) 877.957 1.15825
\(759\) −66.7326 + 66.7326i −0.0879218 + 0.0879218i
\(760\) 560.784i 0.737873i
\(761\) 662.285 662.285i 0.870282 0.870282i −0.122220 0.992503i \(-0.539002\pi\)
0.992503 + 0.122220i \(0.0390015\pi\)
\(762\) −305.467 −0.400875
\(763\) 37.3152i 0.0489059i
\(764\) −561.919 −0.735497
\(765\) 79.7115 79.7115i 0.104198 0.104198i
\(766\) 22.6256i 0.0295373i
\(767\) 875.310 + 875.310i 1.14121 + 1.14121i
\(768\) 15.8614 + 15.8614i 0.0206529 + 0.0206529i
\(769\) 767.929i 0.998607i −0.866427 0.499303i \(-0.833589\pi\)
0.866427 0.499303i \(-0.166411\pi\)
\(770\) 517.264i 0.671771i
\(771\) 501.270i 0.650155i
\(772\) −504.975 504.975i −0.654113 0.654113i
\(773\) 1510.48 1.95405 0.977023 0.213132i \(-0.0683665\pi\)
0.977023 + 0.213132i \(0.0683665\pi\)
\(774\) −348.588 348.588i −0.450372 0.450372i
\(775\) 23.0024 23.0024i 0.0296805 0.0296805i
\(776\) 85.2560 + 85.2560i 0.109866 + 0.109866i
\(777\) 652.468 0.839727
\(778\) 645.474 + 645.474i 0.829659 + 0.829659i
\(779\) −627.273 + 627.273i −0.805229 + 0.805229i
\(780\) −286.269 286.269i −0.367011 0.367011i
\(781\) 217.566 + 217.566i 0.278574 + 0.278574i
\(782\) 37.3649i 0.0477812i
\(783\) 480.868i 0.614135i
\(784\) 125.006i 0.159446i
\(785\) 470.363 + 470.363i 0.599189 + 0.599189i
\(786\) 299.241i 0.380714i
\(787\) 699.447 0.888751 0.444376 0.895841i \(-0.353426\pi\)
0.444376 + 0.895841i \(0.353426\pi\)
\(788\) −39.9288 39.9288i −0.0506711 0.0506711i
\(789\) −463.662 463.662i −0.587658 0.587658i
\(790\) 400.753 400.753i 0.507282 0.507282i
\(791\) 1417.78i 1.79239i
\(792\) −89.5859 + 89.5859i −0.113114 + 0.113114i
\(793\) 2497.97i 3.15003i
\(794\) −243.431 −0.306588
\(795\) −131.617 131.617i −0.165557 0.165557i
\(796\) −235.339 −0.295652
\(797\) 218.570 218.570i 0.274241 0.274241i −0.556564 0.830805i \(-0.687881\pi\)
0.830805 + 0.556564i \(0.187881\pi\)
\(798\) −549.207 −0.688229
\(799\) 102.115 + 102.115i 0.127803 + 0.127803i
\(800\) −64.4548 64.4548i −0.0805685 0.0805685i
\(801\) −551.763 −0.688842
\(802\) 885.233i 1.10378i
\(803\) −24.3108 −0.0302750
\(804\) 160.478 160.478i 0.199599 0.199599i
\(805\) 429.381 429.381i 0.533393 0.533393i
\(806\) 64.2887i 0.0797627i
\(807\) −371.681 63.8689i −0.460572 0.0791437i
\(808\) 110.300 0.136509
\(809\) −244.778 244.778i −0.302568 0.302568i 0.539450 0.842018i \(-0.318632\pi\)
−0.842018 + 0.539450i \(0.818632\pi\)
\(810\) 203.866 + 203.866i 0.251686 + 0.251686i
\(811\) 167.379i 0.206386i −0.994661 0.103193i \(-0.967094\pi\)
0.994661 0.103193i \(-0.0329060\pi\)
\(812\) 383.256 0.471991
\(813\) 520.350i 0.640037i
\(814\) 330.805 330.805i 0.406395 0.406395i
\(815\) 417.491 417.491i 0.512259 0.512259i
\(816\) 14.0155i 0.0171758i
\(817\) −1083.48 1083.48i −1.32617 1.32617i
\(818\) 281.949i 0.344681i
\(819\) 1003.40 1003.40i 1.22515 1.22515i
\(820\) 367.907i 0.448667i
\(821\) −127.525 −0.155329 −0.0776644 0.996980i \(-0.524746\pi\)
−0.0776644 + 0.996980i \(0.524746\pi\)
\(822\) −50.0873 50.0873i −0.0609335 0.0609335i
\(823\) 1216.65 1.47831 0.739154 0.673536i \(-0.235225\pi\)
0.739154 + 0.673536i \(0.235225\pi\)
\(824\) 7.87205 + 7.87205i 0.00955346 + 0.00955346i
\(825\) −101.717 + 101.717i −0.123294 + 0.123294i
\(826\) 492.465 492.465i 0.596205 0.596205i
\(827\) 1139.01i 1.37728i −0.725101 0.688642i \(-0.758207\pi\)
0.725101 0.688642i \(-0.241793\pi\)
\(828\) 148.731 0.179627
\(829\) 28.8369 28.8369i 0.0347851 0.0347851i −0.689500 0.724285i \(-0.742170\pi\)
0.724285 + 0.689500i \(0.242170\pi\)
\(830\) −711.000 −0.856627
\(831\) 117.621 0.141541
\(832\) −180.143 −0.216518
\(833\) −55.2288 + 55.2288i −0.0663010 + 0.0663010i
\(834\) 180.302 180.302i 0.216190 0.216190i
\(835\) −400.806 400.806i −0.480007 0.480007i
\(836\) −278.451 + 278.451i −0.333076 + 0.333076i
\(837\) 45.3821i 0.0542200i
\(838\) 13.3616 13.3616i 0.0159447 0.0159447i
\(839\) −757.495 757.495i −0.902855 0.902855i 0.0928276 0.995682i \(-0.470409\pi\)
−0.995682 + 0.0928276i \(0.970409\pi\)
\(840\) −161.060 + 161.060i −0.191738 + 0.191738i
\(841\) 383.421i 0.455911i
\(842\) 737.559 737.559i 0.875961 0.875961i
\(843\) −549.240 −0.651530
\(844\) −448.310 −0.531173
\(845\) 2167.61 2.56522
\(846\) −406.468 + 406.468i −0.480459 + 0.480459i
\(847\) −509.631 + 509.631i −0.601689 + 0.601689i
\(848\) −82.8242 −0.0976701
\(849\) 127.596 + 127.596i 0.150289 + 0.150289i
\(850\) 56.9535i 0.0670042i
\(851\) −549.204 −0.645363
\(852\) 135.487i 0.159022i
\(853\) 622.712 + 622.712i 0.730026 + 0.730026i 0.970625 0.240599i \(-0.0773438\pi\)
−0.240599 + 0.970625i \(0.577344\pi\)
\(854\) 1405.40 1.64567
\(855\) 986.207 + 986.207i 1.15346 + 1.15346i
\(856\) 230.729i 0.269543i
\(857\) −239.663 239.663i −0.279653 0.279653i 0.553317 0.832971i \(-0.313362\pi\)
−0.832971 + 0.553317i \(0.813362\pi\)
\(858\) 284.288i 0.331338i
\(859\) 7.61446 0.00886433 0.00443217 0.999990i \(-0.498589\pi\)
0.00443217 + 0.999990i \(0.498589\pi\)
\(860\) −635.481 −0.738931
\(861\) 360.312 0.418481
\(862\) 407.941i 0.473250i
\(863\) 759.625i 0.880215i 0.897945 + 0.440107i \(0.145060\pi\)
−0.897945 + 0.440107i \(0.854940\pi\)
\(864\) −127.165 −0.147182
\(865\) −2089.84 −2.41600
\(866\) −274.696 + 274.696i −0.317200 + 0.317200i
\(867\) 280.305 280.305i 0.323305 0.323305i
\(868\) −36.1700 −0.0416705
\(869\) −397.979 −0.457974
\(870\) 192.293 + 192.293i 0.221027 + 0.221027i
\(871\) 1822.59i 2.09253i
\(872\) 11.7816i 0.0135110i
\(873\) −299.866 −0.343489
\(874\) 462.286 0.528931
\(875\) −360.932 + 360.932i −0.412494 + 0.412494i
\(876\) −7.56964 7.56964i −0.00864114 0.00864114i
\(877\) −875.408 −0.998185 −0.499093 0.866549i \(-0.666333\pi\)
−0.499093 + 0.866549i \(0.666333\pi\)
\(878\) −117.275 + 117.275i −0.133571 + 0.133571i
\(879\) −132.414 132.414i −0.150641 0.150641i
\(880\) 163.317i 0.185587i
\(881\) −344.009 344.009i −0.390476 0.390476i 0.484381 0.874857i \(-0.339045\pi\)
−0.874857 + 0.484381i \(0.839045\pi\)
\(882\) −219.838 219.838i −0.249249 0.249249i
\(883\) −958.578 958.578i −1.08559 1.08559i −0.995976 0.0896154i \(-0.971436\pi\)
−0.0896154 0.995976i \(-0.528564\pi\)
\(884\) −79.5890 79.5890i −0.0900328 0.0900328i
\(885\) 494.174 0.558389
\(886\) 247.284i 0.279102i
\(887\) −209.839 −0.236571 −0.118286 0.992980i \(-0.537740\pi\)
−0.118286 + 0.992980i \(0.537740\pi\)
\(888\) 206.005 0.231988
\(889\) −975.939 975.939i −1.09779 1.09779i
\(890\) −502.936 + 502.936i −0.565097 + 0.565097i
\(891\) 202.455i 0.227222i
\(892\) 316.733 + 316.733i 0.355082 + 0.355082i
\(893\) −1263.39 + 1263.39i −1.41477 + 1.41477i
\(894\) −91.5081 −0.102358
\(895\) −769.890 769.890i −0.860213 0.860213i
\(896\) 101.352i 0.113116i
\(897\) 235.987 235.987i 0.263085 0.263085i
\(898\) −156.476 156.476i −0.174250 0.174250i
\(899\) 43.1842i 0.0480358i
\(900\) 226.703 0.251893
\(901\) −36.5925 36.5925i −0.0406133 0.0406133i
\(902\) 182.680 182.680i 0.202528 0.202528i
\(903\) 622.362i 0.689216i
\(904\) 447.639i 0.495176i
\(905\) −160.206 + 160.206i −0.177023 + 0.177023i
\(906\) 282.510 0.311821
\(907\) 1101.62i 1.21457i −0.794482 0.607287i \(-0.792258\pi\)
0.794482 0.607287i \(-0.207742\pi\)
\(908\) 202.673 + 202.673i 0.223208 + 0.223208i
\(909\) −193.975 + 193.975i −0.213394 + 0.213394i
\(910\) 1829.21i 2.01012i
\(911\) −575.563 575.563i −0.631792 0.631792i 0.316725 0.948517i \(-0.397417\pi\)
−0.948517 + 0.316725i \(0.897417\pi\)
\(912\) −173.402 −0.190134
\(913\) 353.040 + 353.040i 0.386681 + 0.386681i
\(914\) −285.962 + 285.962i −0.312869 + 0.312869i
\(915\) 705.140 + 705.140i 0.770645 + 0.770645i
\(916\) 197.947 197.947i 0.216099 0.216099i
\(917\) 956.050 956.050i 1.04258 1.04258i
\(918\) −56.1828 56.1828i −0.0612013 0.0612013i
\(919\) 918.539 918.539i 0.999498 0.999498i −0.000501941 1.00000i \(-0.500160\pi\)
1.00000 0.000501941i \(0.000159773\pi\)
\(920\) 135.569 135.569i 0.147358 0.147358i
\(921\) 438.688 + 438.688i 0.476317 + 0.476317i
\(922\) 571.372 0.619709
\(923\) −769.383 769.383i −0.833568 0.833568i
\(924\) 159.945 0.173101
\(925\) −837.126 −0.905001
\(926\) −993.300 −1.07268
\(927\) −27.6879 −0.0298683
\(928\) 121.006 0.130395
\(929\) −318.878 318.878i −0.343249 0.343249i 0.514338 0.857587i \(-0.328038\pi\)
−0.857587 + 0.514338i \(0.828038\pi\)
\(930\) −18.1478 18.1478i −0.0195137 0.0195137i
\(931\) −683.301 683.301i −0.733943 0.733943i
\(932\) 452.167 0.485157
\(933\) 177.300i 0.190032i
\(934\) 313.032i 0.335152i
\(935\) −72.1549 + 72.1549i −0.0771710 + 0.0771710i
\(936\) 316.804 316.804i 0.338466 0.338466i
\(937\) −81.3745 + 81.3745i −0.0868458 + 0.0868458i −0.749195 0.662349i \(-0.769559\pi\)
0.662349 + 0.749195i \(0.269559\pi\)
\(938\) 1025.42 1.09320
\(939\) 567.298 + 567.298i 0.604151 + 0.604151i
\(940\) 740.998i 0.788296i
\(941\) 1144.64 + 1144.64i 1.21641 + 1.21641i 0.968880 + 0.247531i \(0.0796192\pi\)
0.247531 + 0.968880i \(0.420381\pi\)
\(942\) 145.443 145.443i 0.154398 0.154398i
\(943\) −303.286 −0.321619
\(944\) 155.487 155.487i 0.164711 0.164711i
\(945\) 1291.26i 1.36641i
\(946\) 315.542 + 315.542i 0.333553 + 0.333553i
\(947\) −482.785 482.785i −0.509805 0.509805i 0.404662 0.914466i \(-0.367389\pi\)
−0.914466 + 0.404662i \(0.867389\pi\)
\(948\) −123.918 123.918i −0.130716 0.130716i
\(949\) 85.9707 0.0905909
\(950\) 704.640 0.741727
\(951\) 540.042i 0.567867i
\(952\) −44.7782 + 44.7782i −0.0470359 + 0.0470359i
\(953\) 1239.51 1239.51i 1.30064 1.30064i 0.372672 0.927963i \(-0.378442\pi\)
0.927963 0.372672i \(-0.121558\pi\)
\(954\) 145.657 145.657i 0.152680 0.152680i
\(955\) 1801.51i 1.88640i
\(956\) 166.368i 0.174025i
\(957\) 190.962i 0.199543i
\(958\) 640.088i 0.668150i
\(959\) 320.049i 0.333732i
\(960\) −50.8518 + 50.8518i −0.0529706 + 0.0529706i
\(961\) 956.924i 0.995759i
\(962\) −1169.83 + 1169.83i −1.21604 + 1.21604i
\(963\) −405.765 405.765i −0.421355 0.421355i
\(964\) −358.306 358.306i −0.371686 0.371686i
\(965\) 1618.95 1618.95i 1.67767 1.67767i
\(966\) −132.771 132.771i −0.137444 0.137444i
\(967\) −372.529 372.529i −0.385242 0.385242i 0.487745 0.872986i \(-0.337820\pi\)
−0.872986 + 0.487745i \(0.837820\pi\)
\(968\) −160.907 + 160.907i −0.166226 + 0.166226i
\(969\) −76.6108 76.6108i −0.0790617 0.0790617i
\(970\) −273.331 + 273.331i −0.281784 + 0.281784i
\(971\) 1446.27i 1.48947i −0.667361 0.744734i \(-0.732576\pi\)
0.667361 0.744734i \(-0.267424\pi\)
\(972\) 349.160 349.160i 0.359218 0.359218i
\(973\) 1152.10 1.18407
\(974\) 95.3811 + 95.3811i 0.0979273 + 0.0979273i
\(975\) 359.705 359.705i 0.368928 0.368928i
\(976\) 443.730 0.454642
\(977\) 1718.78i 1.75924i −0.475675 0.879621i \(-0.657796\pi\)
0.475675 0.879621i \(-0.342204\pi\)
\(978\) −129.094 129.094i −0.131998 0.131998i
\(979\) 499.456 0.510169
\(980\) −400.768 −0.408947
\(981\) 20.7194 + 20.7194i 0.0211207 + 0.0211207i
\(982\) 493.132 493.132i 0.502171 0.502171i
\(983\) 1189.38i 1.20995i −0.796243 0.604977i \(-0.793182\pi\)
0.796243 0.604977i \(-0.206818\pi\)
\(984\) 113.762 0.115612
\(985\) 128.012 128.012i 0.129961 0.129961i
\(986\) 53.4618 + 53.4618i 0.0542208 + 0.0542208i
\(987\) 725.701 0.735260
\(988\) 984.691 984.691i 0.996651 0.996651i
\(989\) 523.863i 0.529689i
\(990\) −287.212 287.212i −0.290114 0.290114i
\(991\) 838.159 838.159i 0.845771 0.845771i −0.143832 0.989602i \(-0.545942\pi\)
0.989602 + 0.143832i \(0.0459424\pi\)
\(992\) −11.4200 −0.0115121
\(993\) −285.594 285.594i −0.287608 0.287608i
\(994\) −432.869 + 432.869i −0.435481 + 0.435481i
\(995\) 754.498i 0.758289i
\(996\) 219.851i 0.220734i
\(997\) −1918.11 −1.92389 −0.961943 0.273251i \(-0.911901\pi\)
−0.961943 + 0.273251i \(0.911901\pi\)
\(998\) 714.616i 0.716048i
\(999\) −825.796 + 825.796i −0.826623 + 0.826623i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.a.187.13 44
269.82 odd 4 inner 538.3.c.a.351.13 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.a.187.13 44 1.1 even 1 trivial
538.3.c.a.351.13 yes 44 269.82 odd 4 inner