L(s) = 1 | + (1 − i)2-s + (1.93 − 1.93i)3-s − 2i·4-s + 9.46·5-s − 3.87i·6-s + (−8.10 − 8.10i)7-s + (−2 − 2i)8-s + 1.51i·9-s + (9.46 − 9.46i)10-s − 1.78i·11-s + (−3.87 − 3.87i)12-s − 5.85i·13-s − 16.2·14-s + (18.3 − 18.3i)15-s − 4·16-s + (−3.08 + 3.08i)17-s + ⋯ |
L(s) = 1 | + (0.5 − 0.5i)2-s + (0.645 − 0.645i)3-s − 0.5i·4-s + 1.89·5-s − 0.645i·6-s + (−1.15 − 1.15i)7-s + (−0.250 − 0.250i)8-s + 0.167i·9-s + (0.946 − 0.946i)10-s − 0.162i·11-s + (−0.322 − 0.322i)12-s − 0.450i·13-s − 1.15·14-s + (1.22 − 1.22i)15-s − 0.250·16-s + (−0.181 + 0.181i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.466 + 0.884i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.466 + 0.884i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.387572909\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.387572909\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + i)T \) |
| 269 | \( 1 + (-157. - 217. i)T \) |
good | 3 | \( 1 + (-1.93 + 1.93i)T - 9iT^{2} \) |
| 5 | \( 1 - 9.46T + 25T^{2} \) |
| 7 | \( 1 + (8.10 + 8.10i)T + 49iT^{2} \) |
| 11 | \( 1 + 1.78iT - 121T^{2} \) |
| 13 | \( 1 + 5.85iT - 169T^{2} \) |
| 17 | \( 1 + (3.08 - 3.08i)T - 289iT^{2} \) |
| 19 | \( 1 + (13.1 + 13.1i)T + 361iT^{2} \) |
| 23 | \( 1 + 2.18T + 529T^{2} \) |
| 29 | \( 1 + (1.77 + 1.77i)T + 841iT^{2} \) |
| 31 | \( 1 + (-5.27 - 5.27i)T + 961iT^{2} \) |
| 37 | \( 1 - 11.7T + 1.36e3T^{2} \) |
| 41 | \( 1 - 38.1T + 1.68e3T^{2} \) |
| 43 | \( 1 - 61.6iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 65.9T + 2.20e3T^{2} \) |
| 53 | \( 1 - 82.5T + 2.80e3T^{2} \) |
| 59 | \( 1 + (49.0 + 49.0i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + 97.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + 33.0T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-18.4 - 18.4i)T + 5.04e3iT^{2} \) |
| 73 | \( 1 - 104. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 138. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (106. + 106. i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 42.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 100. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39523494378001859674289113302, −9.590794044502627811734011664673, −8.828867778965350308167185590342, −7.40209503407748429509490275753, −6.51347833284497536234272592415, −5.84568758280971946466050486191, −4.54173775205652796755190687255, −3.06436578937333718417239766242, −2.30827360156037364742093200806, −1.06483716049526429949223088122,
2.20183305945562029290432453938, 2.95669936021456496093109886469, 4.26538232615527459021314671958, 5.66232722200713744442415811442, 6.04708995395022883104058874577, 6.92372720470021171268325220680, 8.693585160311451596000748609801, 9.142107024395618751099674809220, 9.742583247087184806664439387649, 10.52640504377591832909349485179