L(s) = 1 | + (1 − i)2-s + (1.93 − 1.93i)3-s − 2i·4-s + 9.46·5-s − 3.87i·6-s + (−8.10 − 8.10i)7-s + (−2 − 2i)8-s + 1.51i·9-s + (9.46 − 9.46i)10-s − 1.78i·11-s + (−3.87 − 3.87i)12-s − 5.85i·13-s − 16.2·14-s + (18.3 − 18.3i)15-s − 4·16-s + (−3.08 + 3.08i)17-s + ⋯ |
L(s) = 1 | + (0.5 − 0.5i)2-s + (0.645 − 0.645i)3-s − 0.5i·4-s + 1.89·5-s − 0.645i·6-s + (−1.15 − 1.15i)7-s + (−0.250 − 0.250i)8-s + 0.167i·9-s + (0.946 − 0.946i)10-s − 0.162i·11-s + (−0.322 − 0.322i)12-s − 0.450i·13-s − 1.15·14-s + (1.22 − 1.22i)15-s − 0.250·16-s + (−0.181 + 0.181i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(−0.466+0.884i)Λ(3−s)
Λ(s)=(=(538s/2ΓC(s+1)L(s)(−0.466+0.884i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
−0.466+0.884i
|
Analytic conductor: |
14.6594 |
Root analytic conductor: |
3.82876 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(351,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1), −0.466+0.884i)
|
Particular Values
L(23) |
≈ |
3.387572909 |
L(21) |
≈ |
3.387572909 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1+i)T |
| 269 | 1+(−157.−217.i)T |
good | 3 | 1+(−1.93+1.93i)T−9iT2 |
| 5 | 1−9.46T+25T2 |
| 7 | 1+(8.10+8.10i)T+49iT2 |
| 11 | 1+1.78iT−121T2 |
| 13 | 1+5.85iT−169T2 |
| 17 | 1+(3.08−3.08i)T−289iT2 |
| 19 | 1+(13.1+13.1i)T+361iT2 |
| 23 | 1+2.18T+529T2 |
| 29 | 1+(1.77+1.77i)T+841iT2 |
| 31 | 1+(−5.27−5.27i)T+961iT2 |
| 37 | 1−11.7T+1.36e3T2 |
| 41 | 1−38.1T+1.68e3T2 |
| 43 | 1−61.6iT−1.84e3T2 |
| 47 | 1−65.9T+2.20e3T2 |
| 53 | 1−82.5T+2.80e3T2 |
| 59 | 1+(49.0+49.0i)T+3.48e3iT2 |
| 61 | 1+97.6T+3.72e3T2 |
| 67 | 1+33.0T+4.48e3T2 |
| 71 | 1+(−18.4−18.4i)T+5.04e3iT2 |
| 73 | 1−104.iT−5.32e3T2 |
| 79 | 1+138.iT−6.24e3T2 |
| 83 | 1+(106.+106.i)T+6.88e3iT2 |
| 89 | 1−42.1iT−7.92e3T2 |
| 97 | 1−100.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39523494378001859674289113302, −9.590794044502627811734011664673, −8.828867778965350308167185590342, −7.40209503407748429509490275753, −6.51347833284497536234272592415, −5.84568758280971946466050486191, −4.54173775205652796755190687255, −3.06436578937333718417239766242, −2.30827360156037364742093200806, −1.06483716049526429949223088122,
2.20183305945562029290432453938, 2.95669936021456496093109886469, 4.26538232615527459021314671958, 5.66232722200713744442415811442, 6.04708995395022883104058874577, 6.92372720470021171268325220680, 8.693585160311451596000748609801, 9.142107024395618751099674809220, 9.742583247087184806664439387649, 10.52640504377591832909349485179