L(s) = 1 | + (−1 − i)2-s + (3.13 + 3.13i)3-s + 2i·4-s − 3.10·5-s − 6.26i·6-s + (1.53 − 1.53i)7-s + (2 − 2i)8-s + 10.6i·9-s + (3.10 + 3.10i)10-s − 18.9i·11-s + (−6.26 + 6.26i)12-s − 14.4i·13-s − 3.06·14-s + (−9.73 − 9.73i)15-s − 4·16-s + (0.930 + 0.930i)17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (1.04 + 1.04i)3-s + 0.5i·4-s − 0.621·5-s − 1.04i·6-s + (0.218 − 0.218i)7-s + (0.250 − 0.250i)8-s + 1.18i·9-s + (0.310 + 0.310i)10-s − 1.72i·11-s + (−0.522 + 0.522i)12-s − 1.10i·13-s − 0.218·14-s + (−0.649 − 0.649i)15-s − 0.250·16-s + (0.0547 + 0.0547i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.674 + 0.738i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.674 + 0.738i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.675907587\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.675907587\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 269 | \( 1 + (-97.9 + 250. i)T \) |
good | 3 | \( 1 + (-3.13 - 3.13i)T + 9iT^{2} \) |
| 5 | \( 1 + 3.10T + 25T^{2} \) |
| 7 | \( 1 + (-1.53 + 1.53i)T - 49iT^{2} \) |
| 11 | \( 1 + 18.9iT - 121T^{2} \) |
| 13 | \( 1 + 14.4iT - 169T^{2} \) |
| 17 | \( 1 + (-0.930 - 0.930i)T + 289iT^{2} \) |
| 19 | \( 1 + (-12.0 + 12.0i)T - 361iT^{2} \) |
| 23 | \( 1 - 33.5T + 529T^{2} \) |
| 29 | \( 1 + (14.4 - 14.4i)T - 841iT^{2} \) |
| 31 | \( 1 + (-27.4 + 27.4i)T - 961iT^{2} \) |
| 37 | \( 1 + 51.5T + 1.36e3T^{2} \) |
| 41 | \( 1 - 18.4T + 1.68e3T^{2} \) |
| 43 | \( 1 - 41.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 73.3T + 2.20e3T^{2} \) |
| 53 | \( 1 - 32.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-32.0 + 32.0i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + 35.3T + 3.72e3T^{2} \) |
| 67 | \( 1 + 76.5T + 4.48e3T^{2} \) |
| 71 | \( 1 + (9.32 - 9.32i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 - 52.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 79.4iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-77.1 + 77.1i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 84.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 29.7iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58862907509601506813165500710, −9.501156852358923944567198014088, −8.789586318616803142607108154000, −8.174428663915889170912851658163, −7.37525162627273400020908620230, −5.65964398049391510491112171782, −4.41349766319451109308314963210, −3.34128030802501250788312474639, −2.92506482783089798914960716548, −0.74249137586371558283404848791,
1.43081925862586820565266088153, 2.38242473075919721398577249538, 3.94858918170318408684334990426, 5.18261390705458828358292872019, 6.80971820369316564903122206305, 7.21417806971195392843615937314, 7.908047241743502993561719577368, 8.837136357494936680149841786433, 9.441759407641860254229333990275, 10.54711174565177684632263535576