L(s) = 1 | + (−1 − i)2-s + (3.13 + 3.13i)3-s + 2i·4-s − 3.10·5-s − 6.26i·6-s + (1.53 − 1.53i)7-s + (2 − 2i)8-s + 10.6i·9-s + (3.10 + 3.10i)10-s − 18.9i·11-s + (−6.26 + 6.26i)12-s − 14.4i·13-s − 3.06·14-s + (−9.73 − 9.73i)15-s − 4·16-s + (0.930 + 0.930i)17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (1.04 + 1.04i)3-s + 0.5i·4-s − 0.621·5-s − 1.04i·6-s + (0.218 − 0.218i)7-s + (0.250 − 0.250i)8-s + 1.18i·9-s + (0.310 + 0.310i)10-s − 1.72i·11-s + (−0.522 + 0.522i)12-s − 1.10i·13-s − 0.218·14-s + (−0.649 − 0.649i)15-s − 0.250·16-s + (0.0547 + 0.0547i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.674+0.738i)Λ(3−s)
Λ(s)=(=(538s/2ΓC(s+1)L(s)(0.674+0.738i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.674+0.738i
|
Analytic conductor: |
14.6594 |
Root analytic conductor: |
3.82876 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(187,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1), 0.674+0.738i)
|
Particular Values
L(23) |
≈ |
1.675907587 |
L(21) |
≈ |
1.675907587 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1+i)T |
| 269 | 1+(−97.9+250.i)T |
good | 3 | 1+(−3.13−3.13i)T+9iT2 |
| 5 | 1+3.10T+25T2 |
| 7 | 1+(−1.53+1.53i)T−49iT2 |
| 11 | 1+18.9iT−121T2 |
| 13 | 1+14.4iT−169T2 |
| 17 | 1+(−0.930−0.930i)T+289iT2 |
| 19 | 1+(−12.0+12.0i)T−361iT2 |
| 23 | 1−33.5T+529T2 |
| 29 | 1+(14.4−14.4i)T−841iT2 |
| 31 | 1+(−27.4+27.4i)T−961iT2 |
| 37 | 1+51.5T+1.36e3T2 |
| 41 | 1−18.4T+1.68e3T2 |
| 43 | 1−41.3iT−1.84e3T2 |
| 47 | 1−73.3T+2.20e3T2 |
| 53 | 1−32.0T+2.80e3T2 |
| 59 | 1+(−32.0+32.0i)T−3.48e3iT2 |
| 61 | 1+35.3T+3.72e3T2 |
| 67 | 1+76.5T+4.48e3T2 |
| 71 | 1+(9.32−9.32i)T−5.04e3iT2 |
| 73 | 1−52.8iT−5.32e3T2 |
| 79 | 1+79.4iT−6.24e3T2 |
| 83 | 1+(−77.1+77.1i)T−6.88e3iT2 |
| 89 | 1+84.5iT−7.92e3T2 |
| 97 | 1+29.7iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.58862907509601506813165500710, −9.501156852358923944567198014088, −8.789586318616803142607108154000, −8.174428663915889170912851658163, −7.37525162627273400020908620230, −5.65964398049391510491112171782, −4.41349766319451109308314963210, −3.34128030802501250788312474639, −2.92506482783089798914960716548, −0.74249137586371558283404848791,
1.43081925862586820565266088153, 2.38242473075919721398577249538, 3.94858918170318408684334990426, 5.18261390705458828358292872019, 6.80971820369316564903122206305, 7.21417806971195392843615937314, 7.908047241743502993561719577368, 8.837136357494936680149841786433, 9.441759407641860254229333990275, 10.54711174565177684632263535576