Properties

Label 538.3.c.b.187.21
Level $538$
Weight $3$
Character 538.187
Analytic conductor $14.659$
Analytic rank $0$
Dimension $46$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,3,Mod(187,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.187");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(46\)
Relative dimension: \(23\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.21
Character \(\chi\) \(=\) 538.187
Dual form 538.3.c.b.351.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +(3.13497 + 3.13497i) q^{3} +2.00000i q^{4} -3.10542 q^{5} -6.26994i q^{6} +(1.53221 - 1.53221i) q^{7} +(2.00000 - 2.00000i) q^{8} +10.6560i q^{9} +(3.10542 + 3.10542i) q^{10} -18.9364i q^{11} +(-6.26994 + 6.26994i) q^{12} -14.4148i q^{13} -3.06442 q^{14} +(-9.73540 - 9.73540i) q^{15} -4.00000 q^{16} +(0.930364 + 0.930364i) q^{17} +(10.6560 - 10.6560i) q^{18} +(12.0460 - 12.0460i) q^{19} -6.21085i q^{20} +9.60687 q^{21} +(-18.9364 + 18.9364i) q^{22} +33.5498 q^{23} +12.5399 q^{24} -15.3563 q^{25} +(-14.4148 + 14.4148i) q^{26} +(-5.19165 + 5.19165i) q^{27} +(3.06442 + 3.06442i) q^{28} +(-14.4826 + 14.4826i) q^{29} +19.4708i q^{30} +(27.4178 - 27.4178i) q^{31} +(4.00000 + 4.00000i) q^{32} +(59.3650 - 59.3650i) q^{33} -1.86073i q^{34} +(-4.75816 + 4.75816i) q^{35} -21.3121 q^{36} -51.5072 q^{37} -24.0919 q^{38} +(45.1898 - 45.1898i) q^{39} +(-6.21085 + 6.21085i) q^{40} +18.4910 q^{41} +(-9.60687 - 9.60687i) q^{42} +41.3469i q^{43} +37.8728 q^{44} -33.0915i q^{45} +(-33.5498 - 33.5498i) q^{46} +73.3404 q^{47} +(-12.5399 - 12.5399i) q^{48} +44.3047i q^{49} +(15.3563 + 15.3563i) q^{50} +5.83332i q^{51} +28.8295 q^{52} +32.0050 q^{53} +10.3833 q^{54} +58.8056i q^{55} -6.12885i q^{56} +75.5275 q^{57} +28.9652 q^{58} +(32.0412 - 32.0412i) q^{59} +(19.4708 - 19.4708i) q^{60} -35.3265 q^{61} -54.8355 q^{62} +(16.3273 + 16.3273i) q^{63} -8.00000i q^{64} +44.7640i q^{65} -118.730 q^{66} -76.5063 q^{67} +(-1.86073 + 1.86073i) q^{68} +(105.177 + 105.177i) q^{69} +9.51633 q^{70} +(-9.32389 + 9.32389i) q^{71} +(21.3121 + 21.3121i) q^{72} +52.8575i q^{73} +(51.5072 + 51.5072i) q^{74} +(-48.1417 - 48.1417i) q^{75} +(24.0919 + 24.0919i) q^{76} +(-29.0146 - 29.0146i) q^{77} -90.3797 q^{78} -79.4315i q^{79} +12.4217 q^{80} +63.3531 q^{81} +(-18.4910 - 18.4910i) q^{82} +(77.1605 - 77.1605i) q^{83} +19.2137i q^{84} +(-2.88918 - 2.88918i) q^{85} +(41.3469 - 41.3469i) q^{86} -90.8051 q^{87} +(-37.8728 - 37.8728i) q^{88} -84.5435i q^{89} +(-33.0915 + 33.0915i) q^{90} +(-22.0865 - 22.0865i) q^{91} +67.0995i q^{92} +171.908 q^{93} +(-73.3404 - 73.3404i) q^{94} +(-37.4078 + 37.4078i) q^{95} +25.0797i q^{96} -29.7035i q^{97} +(44.3047 - 44.3047i) q^{98} +201.787 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q - 46 q^{2} - 6 q^{3} - 32 q^{5} + 4 q^{7} + 92 q^{8} + 32 q^{10} + 12 q^{12} - 8 q^{14} - 10 q^{15} - 184 q^{16} - 50 q^{17} + 118 q^{18} + 10 q^{19} + 16 q^{21} + 8 q^{22} - 124 q^{23} - 24 q^{24}+ \cdots + 508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) 3.13497 + 3.13497i 1.04499 + 1.04499i 0.998939 + 0.0460501i \(0.0146634\pi\)
0.0460501 + 0.998939i \(0.485337\pi\)
\(4\) 2.00000i 0.500000i
\(5\) −3.10542 −0.621085 −0.310542 0.950560i \(-0.600511\pi\)
−0.310542 + 0.950560i \(0.600511\pi\)
\(6\) 6.26994i 1.04499i
\(7\) 1.53221 1.53221i 0.218887 0.218887i −0.589142 0.808029i \(-0.700534\pi\)
0.808029 + 0.589142i \(0.200534\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 10.6560i 1.18400i
\(10\) 3.10542 + 3.10542i 0.310542 + 0.310542i
\(11\) 18.9364i 1.72149i −0.509035 0.860746i \(-0.669998\pi\)
0.509035 0.860746i \(-0.330002\pi\)
\(12\) −6.26994 + 6.26994i −0.522495 + 0.522495i
\(13\) 14.4148i 1.10883i −0.832241 0.554414i \(-0.812942\pi\)
0.832241 0.554414i \(-0.187058\pi\)
\(14\) −3.06442 −0.218887
\(15\) −9.73540 9.73540i −0.649027 0.649027i
\(16\) −4.00000 −0.250000
\(17\) 0.930364 + 0.930364i 0.0547273 + 0.0547273i 0.733941 0.679213i \(-0.237679\pi\)
−0.679213 + 0.733941i \(0.737679\pi\)
\(18\) 10.6560 10.6560i 0.592002 0.592002i
\(19\) 12.0460 12.0460i 0.633999 0.633999i −0.315070 0.949068i \(-0.602028\pi\)
0.949068 + 0.315070i \(0.102028\pi\)
\(20\) 6.21085i 0.310542i
\(21\) 9.60687 0.457470
\(22\) −18.9364 + 18.9364i −0.860746 + 0.860746i
\(23\) 33.5498 1.45869 0.729343 0.684148i \(-0.239826\pi\)
0.729343 + 0.684148i \(0.239826\pi\)
\(24\) 12.5399 0.522495
\(25\) −15.3563 −0.614254
\(26\) −14.4148 + 14.4148i −0.554414 + 0.554414i
\(27\) −5.19165 + 5.19165i −0.192283 + 0.192283i
\(28\) 3.06442 + 3.06442i 0.109444 + 0.109444i
\(29\) −14.4826 + 14.4826i −0.499401 + 0.499401i −0.911251 0.411851i \(-0.864883\pi\)
0.411851 + 0.911251i \(0.364883\pi\)
\(30\) 19.4708i 0.649027i
\(31\) 27.4178 27.4178i 0.884444 0.884444i −0.109538 0.993983i \(-0.534937\pi\)
0.993983 + 0.109538i \(0.0349372\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) 59.3650 59.3650i 1.79894 1.79894i
\(34\) 1.86073i 0.0547273i
\(35\) −4.75816 + 4.75816i −0.135948 + 0.135948i
\(36\) −21.3121 −0.592002
\(37\) −51.5072 −1.39209 −0.696044 0.718000i \(-0.745058\pi\)
−0.696044 + 0.718000i \(0.745058\pi\)
\(38\) −24.0919 −0.633999
\(39\) 45.1898 45.1898i 1.15871 1.15871i
\(40\) −6.21085 + 6.21085i −0.155271 + 0.155271i
\(41\) 18.4910 0.451000 0.225500 0.974243i \(-0.427598\pi\)
0.225500 + 0.974243i \(0.427598\pi\)
\(42\) −9.60687 9.60687i −0.228735 0.228735i
\(43\) 41.3469i 0.961556i 0.876842 + 0.480778i \(0.159646\pi\)
−0.876842 + 0.480778i \(0.840354\pi\)
\(44\) 37.8728 0.860746
\(45\) 33.0915i 0.735367i
\(46\) −33.5498 33.5498i −0.729343 0.729343i
\(47\) 73.3404 1.56043 0.780217 0.625509i \(-0.215109\pi\)
0.780217 + 0.625509i \(0.215109\pi\)
\(48\) −12.5399 12.5399i −0.261247 0.261247i
\(49\) 44.3047i 0.904177i
\(50\) 15.3563 + 15.3563i 0.307127 + 0.307127i
\(51\) 5.83332i 0.114379i
\(52\) 28.8295 0.554414
\(53\) 32.0050 0.603868 0.301934 0.953329i \(-0.402368\pi\)
0.301934 + 0.953329i \(0.402368\pi\)
\(54\) 10.3833 0.192283
\(55\) 58.8056i 1.06919i
\(56\) 6.12885i 0.109444i
\(57\) 75.5275 1.32504
\(58\) 28.9652 0.499401
\(59\) 32.0412 32.0412i 0.543071 0.543071i −0.381357 0.924428i \(-0.624543\pi\)
0.924428 + 0.381357i \(0.124543\pi\)
\(60\) 19.4708 19.4708i 0.324513 0.324513i
\(61\) −35.3265 −0.579124 −0.289562 0.957159i \(-0.593510\pi\)
−0.289562 + 0.957159i \(0.593510\pi\)
\(62\) −54.8355 −0.884444
\(63\) 16.3273 + 16.3273i 0.259164 + 0.259164i
\(64\) 8.00000i 0.125000i
\(65\) 44.7640i 0.688676i
\(66\) −118.730 −1.79894
\(67\) −76.5063 −1.14188 −0.570942 0.820990i \(-0.693422\pi\)
−0.570942 + 0.820990i \(0.693422\pi\)
\(68\) −1.86073 + 1.86073i −0.0273637 + 0.0273637i
\(69\) 105.177 + 105.177i 1.52431 + 1.52431i
\(70\) 9.51633 0.135948
\(71\) −9.32389 + 9.32389i −0.131322 + 0.131322i −0.769713 0.638390i \(-0.779601\pi\)
0.638390 + 0.769713i \(0.279601\pi\)
\(72\) 21.3121 + 21.3121i 0.296001 + 0.296001i
\(73\) 52.8575i 0.724076i 0.932163 + 0.362038i \(0.117919\pi\)
−0.932163 + 0.362038i \(0.882081\pi\)
\(74\) 51.5072 + 51.5072i 0.696044 + 0.696044i
\(75\) −48.1417 48.1417i −0.641889 0.641889i
\(76\) 24.0919 + 24.0919i 0.316999 + 0.316999i
\(77\) −29.0146 29.0146i −0.376813 0.376813i
\(78\) −90.3797 −1.15871
\(79\) 79.4315i 1.00546i −0.864443 0.502731i \(-0.832329\pi\)
0.864443 0.502731i \(-0.167671\pi\)
\(80\) 12.4217 0.155271
\(81\) 63.3531 0.782137
\(82\) −18.4910 18.4910i −0.225500 0.225500i
\(83\) 77.1605 77.1605i 0.929644 0.929644i −0.0680387 0.997683i \(-0.521674\pi\)
0.997683 + 0.0680387i \(0.0216741\pi\)
\(84\) 19.2137i 0.228735i
\(85\) −2.88918 2.88918i −0.0339903 0.0339903i
\(86\) 41.3469 41.3469i 0.480778 0.480778i
\(87\) −90.8051 −1.04374
\(88\) −37.8728 37.8728i −0.430373 0.430373i
\(89\) 84.5435i 0.949927i −0.880005 0.474964i \(-0.842461\pi\)
0.880005 0.474964i \(-0.157539\pi\)
\(90\) −33.0915 + 33.0915i −0.367684 + 0.367684i
\(91\) −22.0865 22.0865i −0.242708 0.242708i
\(92\) 67.0995i 0.729343i
\(93\) 171.908 1.84847
\(94\) −73.3404 73.3404i −0.780217 0.780217i
\(95\) −37.4078 + 37.4078i −0.393767 + 0.393767i
\(96\) 25.0797i 0.261247i
\(97\) 29.7035i 0.306222i −0.988209 0.153111i \(-0.951071\pi\)
0.988209 0.153111i \(-0.0489292\pi\)
\(98\) 44.3047 44.3047i 0.452088 0.452088i
\(99\) 201.787 2.03826
\(100\) 30.7127i 0.307127i
\(101\) −132.448 132.448i −1.31136 1.31136i −0.920410 0.390954i \(-0.872145\pi\)
−0.390954 0.920410i \(-0.627855\pi\)
\(102\) 5.83332 5.83332i 0.0571895 0.0571895i
\(103\) 163.138i 1.58386i −0.610609 0.791932i \(-0.709075\pi\)
0.610609 0.791932i \(-0.290925\pi\)
\(104\) −28.8295 28.8295i −0.277207 0.277207i
\(105\) −29.8334 −0.284127
\(106\) −32.0050 32.0050i −0.301934 0.301934i
\(107\) −123.938 + 123.938i −1.15830 + 1.15830i −0.173455 + 0.984842i \(0.555493\pi\)
−0.984842 + 0.173455i \(0.944507\pi\)
\(108\) −10.3833 10.3833i −0.0961416 0.0961416i
\(109\) 25.1483 25.1483i 0.230719 0.230719i −0.582274 0.812993i \(-0.697837\pi\)
0.812993 + 0.582274i \(0.197837\pi\)
\(110\) 58.8056 58.8056i 0.534596 0.534596i
\(111\) −161.473 161.473i −1.45472 1.45472i
\(112\) −6.12885 + 6.12885i −0.0547218 + 0.0547218i
\(113\) −66.1617 + 66.1617i −0.585502 + 0.585502i −0.936410 0.350908i \(-0.885873\pi\)
0.350908 + 0.936410i \(0.385873\pi\)
\(114\) −75.5275 75.5275i −0.662522 0.662522i
\(115\) −104.186 −0.905967
\(116\) −28.9652 28.9652i −0.249700 0.249700i
\(117\) 153.604 1.31286
\(118\) −64.0824 −0.543071
\(119\) 2.85103 0.0239582
\(120\) −38.9416 −0.324513
\(121\) −237.588 −1.96353
\(122\) 35.3265 + 35.3265i 0.289562 + 0.289562i
\(123\) 57.9687 + 57.9687i 0.471291 + 0.471291i
\(124\) 54.8355 + 54.8355i 0.442222 + 0.442222i
\(125\) 125.324 1.00259
\(126\) 32.6546i 0.259164i
\(127\) 100.087i 0.788090i −0.919091 0.394045i \(-0.871075\pi\)
0.919091 0.394045i \(-0.128925\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) −129.621 + 129.621i −1.00482 + 1.00482i
\(130\) 44.7640 44.7640i 0.344338 0.344338i
\(131\) 40.6002 0.309925 0.154963 0.987920i \(-0.450474\pi\)
0.154963 + 0.987920i \(0.450474\pi\)
\(132\) 118.730 + 118.730i 0.899470 + 0.899470i
\(133\) 36.9140i 0.277549i
\(134\) 76.5063 + 76.5063i 0.570942 + 0.570942i
\(135\) 16.1223 16.1223i 0.119424 0.119424i
\(136\) 3.72146 0.0273637
\(137\) 173.022 173.022i 1.26294 1.26294i 0.313275 0.949662i \(-0.398574\pi\)
0.949662 0.313275i \(-0.101426\pi\)
\(138\) 210.355i 1.52431i
\(139\) 21.4620 + 21.4620i 0.154403 + 0.154403i 0.780081 0.625678i \(-0.215178\pi\)
−0.625678 + 0.780081i \(0.715178\pi\)
\(140\) −9.51633 9.51633i −0.0679738 0.0679738i
\(141\) 229.920 + 229.920i 1.63064 + 1.63064i
\(142\) 18.6478 0.131322
\(143\) −272.964 −1.90884
\(144\) 42.6242i 0.296001i
\(145\) 44.9747 44.9747i 0.310170 0.310170i
\(146\) 52.8575 52.8575i 0.362038 0.362038i
\(147\) −138.894 + 138.894i −0.944855 + 0.944855i
\(148\) 103.014i 0.696044i
\(149\) 179.530i 1.20490i 0.798157 + 0.602450i \(0.205809\pi\)
−0.798157 + 0.602450i \(0.794191\pi\)
\(150\) 96.2833i 0.641889i
\(151\) 49.9023i 0.330479i 0.986253 + 0.165240i \(0.0528397\pi\)
−0.986253 + 0.165240i \(0.947160\pi\)
\(152\) 48.1839i 0.316999i
\(153\) −9.91400 + 9.91400i −0.0647974 + 0.0647974i
\(154\) 58.0292i 0.376813i
\(155\) −85.1438 + 85.1438i −0.549315 + 0.549315i
\(156\) 90.3797 + 90.3797i 0.579357 + 0.579357i
\(157\) 188.964 + 188.964i 1.20359 + 1.20359i 0.973067 + 0.230523i \(0.0740435\pi\)
0.230523 + 0.973067i \(0.425956\pi\)
\(158\) −79.4315 + 79.4315i −0.502731 + 0.502731i
\(159\) 100.335 + 100.335i 0.631035 + 0.631035i
\(160\) −12.4217 12.4217i −0.0776356 0.0776356i
\(161\) 51.4053 51.4053i 0.319288 0.319288i
\(162\) −63.3531 63.3531i −0.391069 0.391069i
\(163\) −159.069 + 159.069i −0.975881 + 0.975881i −0.999716 0.0238344i \(-0.992413\pi\)
0.0238344 + 0.999716i \(0.492413\pi\)
\(164\) 36.9820i 0.225500i
\(165\) −184.354 + 184.354i −1.11729 + 1.11729i
\(166\) −154.321 −0.929644
\(167\) 113.583 + 113.583i 0.680140 + 0.680140i 0.960032 0.279892i \(-0.0902986\pi\)
−0.279892 + 0.960032i \(0.590299\pi\)
\(168\) 19.2137 19.2137i 0.114367 0.114367i
\(169\) −38.7855 −0.229500
\(170\) 5.77835i 0.0339903i
\(171\) 128.362 + 128.362i 0.750658 + 0.750658i
\(172\) −82.6938 −0.480778
\(173\) −27.9682 −0.161666 −0.0808330 0.996728i \(-0.525758\pi\)
−0.0808330 + 0.996728i \(0.525758\pi\)
\(174\) 90.8051 + 90.8051i 0.521868 + 0.521868i
\(175\) −23.5292 + 23.5292i −0.134452 + 0.134452i
\(176\) 75.7456i 0.430373i
\(177\) 200.896 1.13501
\(178\) −84.5435 + 84.5435i −0.474964 + 0.474964i
\(179\) −2.40947 2.40947i −0.0134608 0.0134608i 0.700344 0.713805i \(-0.253030\pi\)
−0.713805 + 0.700344i \(0.753030\pi\)
\(180\) 66.1831 0.367684
\(181\) 41.5849 41.5849i 0.229751 0.229751i −0.582838 0.812589i \(-0.698058\pi\)
0.812589 + 0.582838i \(0.198058\pi\)
\(182\) 44.1729i 0.242708i
\(183\) −110.748 110.748i −0.605178 0.605178i
\(184\) 67.0995 67.0995i 0.364671 0.364671i
\(185\) 159.952 0.864604
\(186\) −171.908 171.908i −0.924235 0.924235i
\(187\) 17.6178 17.6178i 0.0942126 0.0942126i
\(188\) 146.681i 0.780217i
\(189\) 15.9094i 0.0841767i
\(190\) 74.8157 0.393767
\(191\) 136.365i 0.713954i −0.934113 0.356977i \(-0.883807\pi\)
0.934113 0.356977i \(-0.116193\pi\)
\(192\) 25.0797 25.0797i 0.130624 0.130624i
\(193\) −247.200 + 247.200i −1.28083 + 1.28083i −0.340634 + 0.940196i \(0.610642\pi\)
−0.940196 + 0.340634i \(0.889358\pi\)
\(194\) −29.7035 + 29.7035i −0.153111 + 0.153111i
\(195\) −140.334 + 140.334i −0.719659 + 0.719659i
\(196\) −88.6093 −0.452088
\(197\) 9.66704 9.66704i 0.0490713 0.0490713i −0.682145 0.731217i \(-0.738953\pi\)
0.731217 + 0.682145i \(0.238953\pi\)
\(198\) −201.787 201.787i −1.01913 1.01913i
\(199\) 243.218i 1.22220i 0.791552 + 0.611102i \(0.209273\pi\)
−0.791552 + 0.611102i \(0.790727\pi\)
\(200\) −30.7127 + 30.7127i −0.153563 + 0.153563i
\(201\) −239.845 239.845i −1.19326 1.19326i
\(202\) 264.896i 1.31136i
\(203\) 44.3809i 0.218625i
\(204\) −11.6666 −0.0571895
\(205\) −57.4224 −0.280109
\(206\) −163.138 + 163.138i −0.791932 + 0.791932i
\(207\) 357.508i 1.72709i
\(208\) 57.6591i 0.277207i
\(209\) −228.108 228.108i −1.09142 1.09142i
\(210\) 29.8334 + 29.8334i 0.142064 + 0.142064i
\(211\) 117.950i 0.559004i −0.960145 0.279502i \(-0.909831\pi\)
0.960145 0.279502i \(-0.0901694\pi\)
\(212\) 64.0100i 0.301934i
\(213\) −58.4602 −0.274461
\(214\) 247.876 1.15830
\(215\) 128.400i 0.597208i
\(216\) 20.7666i 0.0961416i
\(217\) 84.0197i 0.387187i
\(218\) −50.2967 −0.230719
\(219\) −165.707 + 165.707i −0.756652 + 0.756652i
\(220\) −117.611 −0.534596
\(221\) 13.4110 13.4110i 0.0606832 0.0606832i
\(222\) 322.947i 1.45472i
\(223\) 96.7915 96.7915i 0.434043 0.434043i −0.455958 0.890001i \(-0.650703\pi\)
0.890001 + 0.455958i \(0.150703\pi\)
\(224\) 12.2577 0.0547218
\(225\) 163.638i 0.727280i
\(226\) 132.323 0.585502
\(227\) −193.589 + 193.589i −0.852817 + 0.852817i −0.990479 0.137663i \(-0.956041\pi\)
0.137663 + 0.990479i \(0.456041\pi\)
\(228\) 151.055i 0.662522i
\(229\) −53.4738 53.4738i −0.233510 0.233510i 0.580646 0.814156i \(-0.302800\pi\)
−0.814156 + 0.580646i \(0.802800\pi\)
\(230\) 104.186 + 104.186i 0.452984 + 0.452984i
\(231\) 181.920i 0.787531i
\(232\) 57.9305i 0.249700i
\(233\) 59.7154i 0.256289i 0.991755 + 0.128145i \(0.0409022\pi\)
−0.991755 + 0.128145i \(0.959098\pi\)
\(234\) −153.604 153.604i −0.656429 0.656429i
\(235\) −227.753 −0.969162
\(236\) 64.0824 + 64.0824i 0.271536 + 0.271536i
\(237\) 249.015 249.015i 1.05070 1.05070i
\(238\) −2.85103 2.85103i −0.0119791 0.0119791i
\(239\) 67.0954 0.280734 0.140367 0.990100i \(-0.455172\pi\)
0.140367 + 0.990100i \(0.455172\pi\)
\(240\) 38.9416 + 38.9416i 0.162257 + 0.162257i
\(241\) −169.514 + 169.514i −0.703379 + 0.703379i −0.965134 0.261755i \(-0.915699\pi\)
0.261755 + 0.965134i \(0.415699\pi\)
\(242\) 237.588 + 237.588i 0.981767 + 0.981767i
\(243\) 245.335 + 245.335i 1.00961 + 1.00961i
\(244\) 70.6531i 0.289562i
\(245\) 137.585i 0.561570i
\(246\) 115.937i 0.471291i
\(247\) −173.640 173.640i −0.702996 0.702996i
\(248\) 109.671i 0.442222i
\(249\) 483.791 1.94294
\(250\) −125.324 125.324i −0.501294 0.501294i
\(251\) 264.697 + 264.697i 1.05457 + 1.05457i 0.998423 + 0.0561455i \(0.0178811\pi\)
0.0561455 + 0.998423i \(0.482119\pi\)
\(252\) −32.6546 + 32.6546i −0.129582 + 0.129582i
\(253\) 635.312i 2.51112i
\(254\) −100.087 + 100.087i −0.394045 + 0.394045i
\(255\) 18.1149i 0.0710390i
\(256\) 16.0000 0.0625000
\(257\) 313.670 + 313.670i 1.22050 + 1.22050i 0.967453 + 0.253052i \(0.0814344\pi\)
0.253052 + 0.967453i \(0.418566\pi\)
\(258\) 259.243 1.00482
\(259\) −78.9199 + 78.9199i −0.304710 + 0.304710i
\(260\) −89.5279 −0.344338
\(261\) −154.327 154.327i −0.591293 0.591293i
\(262\) −40.6002 40.6002i −0.154963 0.154963i
\(263\) 283.691 1.07867 0.539336 0.842090i \(-0.318675\pi\)
0.539336 + 0.842090i \(0.318675\pi\)
\(264\) 237.460i 0.899470i
\(265\) −99.3891 −0.375053
\(266\) −36.9140 + 36.9140i −0.138774 + 0.138774i
\(267\) 265.041 265.041i 0.992664 0.992664i
\(268\) 153.013i 0.570942i
\(269\) 97.9596 250.529i 0.364162 0.931336i
\(270\) −32.2445 −0.119424
\(271\) −27.8872 27.8872i −0.102905 0.102905i 0.653780 0.756685i \(-0.273182\pi\)
−0.756685 + 0.653780i \(0.773182\pi\)
\(272\) −3.72146 3.72146i −0.0136818 0.0136818i
\(273\) 138.481i 0.507255i
\(274\) −346.045 −1.26294
\(275\) 290.794i 1.05743i
\(276\) −210.355 + 210.355i −0.762155 + 0.762155i
\(277\) −115.987 + 115.987i −0.418725 + 0.418725i −0.884764 0.466039i \(-0.845681\pi\)
0.466039 + 0.884764i \(0.345681\pi\)
\(278\) 42.9239i 0.154403i
\(279\) 292.165 + 292.165i 1.04719 + 1.04719i
\(280\) 19.0327i 0.0679738i
\(281\) −328.588 + 328.588i −1.16935 + 1.16935i −0.186989 + 0.982362i \(0.559873\pi\)
−0.982362 + 0.186989i \(0.940127\pi\)
\(282\) 459.840i 1.63064i
\(283\) −263.473 −0.931000 −0.465500 0.885048i \(-0.654125\pi\)
−0.465500 + 0.885048i \(0.654125\pi\)
\(284\) −18.6478 18.6478i −0.0656612 0.0656612i
\(285\) −234.545 −0.822964
\(286\) 272.964 + 272.964i 0.954420 + 0.954420i
\(287\) 28.3321 28.3321i 0.0987183 0.0987183i
\(288\) −42.6242 + 42.6242i −0.148001 + 0.148001i
\(289\) 287.269i 0.994010i
\(290\) −89.9493 −0.310170
\(291\) 93.1196 93.1196i 0.319999 0.319999i
\(292\) −105.715 −0.362038
\(293\) −43.1690 −0.147335 −0.0736673 0.997283i \(-0.523470\pi\)
−0.0736673 + 0.997283i \(0.523470\pi\)
\(294\) 277.787 0.944855
\(295\) −99.5015 + 99.5015i −0.337293 + 0.337293i
\(296\) −103.014 + 103.014i −0.348022 + 0.348022i
\(297\) 98.3112 + 98.3112i 0.331014 + 0.331014i
\(298\) 179.530 179.530i 0.602450 0.602450i
\(299\) 483.612i 1.61743i
\(300\) 96.2833 96.2833i 0.320944 0.320944i
\(301\) 63.3522 + 63.3522i 0.210473 + 0.210473i
\(302\) 49.9023 49.9023i 0.165240 0.165240i
\(303\) 830.439i 2.74072i
\(304\) −48.1839 + 48.1839i −0.158500 + 0.158500i
\(305\) 109.704 0.359685
\(306\) 19.8280 0.0647974
\(307\) −34.0861 −0.111029 −0.0555147 0.998458i \(-0.517680\pi\)
−0.0555147 + 0.998458i \(0.517680\pi\)
\(308\) 58.0292 58.0292i 0.188406 0.188406i
\(309\) 511.432 511.432i 1.65512 1.65512i
\(310\) 170.288 0.549315
\(311\) 424.256 + 424.256i 1.36417 + 1.36417i 0.868529 + 0.495638i \(0.165066\pi\)
0.495638 + 0.868529i \(0.334934\pi\)
\(312\) 180.759i 0.579357i
\(313\) −16.5274 −0.0528031 −0.0264016 0.999651i \(-0.508405\pi\)
−0.0264016 + 0.999651i \(0.508405\pi\)
\(314\) 377.927i 1.20359i
\(315\) −50.7032 50.7032i −0.160963 0.160963i
\(316\) 158.863 0.502731
\(317\) −133.688 133.688i −0.421730 0.421730i 0.464069 0.885799i \(-0.346389\pi\)
−0.885799 + 0.464069i \(0.846389\pi\)
\(318\) 200.669i 0.631035i
\(319\) 274.249 + 274.249i 0.859714 + 0.859714i
\(320\) 24.8434i 0.0776356i
\(321\) −777.082 −2.42082
\(322\) −102.811 −0.319288
\(323\) 22.4143 0.0693941
\(324\) 126.706i 0.391069i
\(325\) 221.358i 0.681102i
\(326\) 318.137 0.975881
\(327\) 157.678 0.482197
\(328\) 36.9820 36.9820i 0.112750 0.112750i
\(329\) 112.373 112.373i 0.341559 0.341559i
\(330\) 368.707 1.11729
\(331\) −18.0652 −0.0545776 −0.0272888 0.999628i \(-0.508687\pi\)
−0.0272888 + 0.999628i \(0.508687\pi\)
\(332\) 154.321 + 154.321i 0.464822 + 0.464822i
\(333\) 548.863i 1.64824i
\(334\) 227.167i 0.680140i
\(335\) 237.584 0.709207
\(336\) −38.4275 −0.114367
\(337\) −90.1132 + 90.1132i −0.267398 + 0.267398i −0.828051 0.560653i \(-0.810550\pi\)
0.560653 + 0.828051i \(0.310550\pi\)
\(338\) 38.7855 + 38.7855i 0.114750 + 0.114750i
\(339\) −414.829 −1.22369
\(340\) 5.77835 5.77835i 0.0169951 0.0169951i
\(341\) −519.194 519.194i −1.52256 1.52256i
\(342\) 256.725i 0.750658i
\(343\) 142.962 + 142.962i 0.416800 + 0.416800i
\(344\) 82.6938 + 82.6938i 0.240389 + 0.240389i
\(345\) −326.620 326.620i −0.946726 0.946726i
\(346\) 27.9682 + 27.9682i 0.0808330 + 0.0808330i
\(347\) −96.5159 −0.278144 −0.139072 0.990282i \(-0.544412\pi\)
−0.139072 + 0.990282i \(0.544412\pi\)
\(348\) 181.610i 0.521868i
\(349\) −416.690 −1.19396 −0.596978 0.802258i \(-0.703632\pi\)
−0.596978 + 0.802258i \(0.703632\pi\)
\(350\) 47.0583 0.134452
\(351\) 74.8364 + 74.8364i 0.213209 + 0.213209i
\(352\) 75.7456 75.7456i 0.215187 0.215187i
\(353\) 266.525i 0.755027i 0.926004 + 0.377514i \(0.123221\pi\)
−0.926004 + 0.377514i \(0.876779\pi\)
\(354\) −200.896 200.896i −0.567504 0.567504i
\(355\) 28.9546 28.9546i 0.0815623 0.0815623i
\(356\) 169.087 0.474964
\(357\) 8.93789 + 8.93789i 0.0250361 + 0.0250361i
\(358\) 4.81895i 0.0134608i
\(359\) 307.773 307.773i 0.857306 0.857306i −0.133714 0.991020i \(-0.542690\pi\)
0.991020 + 0.133714i \(0.0426903\pi\)
\(360\) −66.1831 66.1831i −0.183842 0.183842i
\(361\) 70.7890i 0.196091i
\(362\) −83.1698 −0.229751
\(363\) −744.830 744.830i −2.05187 2.05187i
\(364\) 44.1729 44.1729i 0.121354 0.121354i
\(365\) 164.145i 0.449712i
\(366\) 221.495i 0.605178i
\(367\) −25.3251 + 25.3251i −0.0690057 + 0.0690057i −0.740767 0.671762i \(-0.765538\pi\)
0.671762 + 0.740767i \(0.265538\pi\)
\(368\) −134.199 −0.364671
\(369\) 197.041i 0.533987i
\(370\) −159.952 159.952i −0.432302 0.432302i
\(371\) 49.0384 49.0384i 0.132179 0.132179i
\(372\) 343.815i 0.924235i
\(373\) 286.373 + 286.373i 0.767757 + 0.767757i 0.977711 0.209954i \(-0.0673315\pi\)
−0.209954 + 0.977711i \(0.567332\pi\)
\(374\) −35.2355 −0.0942126
\(375\) 392.885 + 392.885i 1.04769 + 1.04769i
\(376\) 146.681 146.681i 0.390109 0.390109i
\(377\) 208.764 + 208.764i 0.553749 + 0.553749i
\(378\) 15.9094 15.9094i 0.0420884 0.0420884i
\(379\) −52.5935 + 52.5935i −0.138769 + 0.138769i −0.773079 0.634310i \(-0.781284\pi\)
0.634310 + 0.773079i \(0.281284\pi\)
\(380\) −74.8157 74.8157i −0.196883 0.196883i
\(381\) 313.771 313.771i 0.823545 0.823545i
\(382\) −136.365 + 136.365i −0.356977 + 0.356977i
\(383\) 148.999 + 148.999i 0.389032 + 0.389032i 0.874342 0.485310i \(-0.161293\pi\)
−0.485310 + 0.874342i \(0.661293\pi\)
\(384\) −50.1595 −0.130624
\(385\) 90.1026 + 90.1026i 0.234033 + 0.234033i
\(386\) 494.400 1.28083
\(387\) −440.595 −1.13849
\(388\) 59.4071 0.153111
\(389\) −573.341 −1.47389 −0.736943 0.675955i \(-0.763731\pi\)
−0.736943 + 0.675955i \(0.763731\pi\)
\(390\) 280.667 0.719659
\(391\) 31.2135 + 31.2135i 0.0798300 + 0.0798300i
\(392\) 88.6093 + 88.6093i 0.226044 + 0.226044i
\(393\) 127.280 + 127.280i 0.323868 + 0.323868i
\(394\) −19.3341 −0.0490713
\(395\) 246.669i 0.624477i
\(396\) 403.575i 1.01913i
\(397\) 233.627 233.627i 0.588480 0.588480i −0.348740 0.937220i \(-0.613390\pi\)
0.937220 + 0.348740i \(0.113390\pi\)
\(398\) 243.218 243.218i 0.611102 0.611102i
\(399\) 115.724 115.724i 0.290035 0.290035i
\(400\) 61.4254 0.153563
\(401\) −432.194 432.194i −1.07779 1.07779i −0.996707 0.0810836i \(-0.974162\pi\)
−0.0810836 0.996707i \(-0.525838\pi\)
\(402\) 479.689i 1.19326i
\(403\) −395.221 395.221i −0.980697 0.980697i
\(404\) 264.896 264.896i 0.655682 0.655682i
\(405\) −196.738 −0.485773
\(406\) 44.3809 44.3809i 0.109312 0.109312i
\(407\) 975.362i 2.39647i
\(408\) 11.6666 + 11.6666i 0.0285947 + 0.0285947i
\(409\) 237.474 + 237.474i 0.580622 + 0.580622i 0.935074 0.354452i \(-0.115333\pi\)
−0.354452 + 0.935074i \(0.615333\pi\)
\(410\) 57.4224 + 57.4224i 0.140055 + 0.140055i
\(411\) 1084.84 2.63951
\(412\) 326.276 0.791932
\(413\) 98.1878i 0.237743i
\(414\) 357.508 357.508i 0.863546 0.863546i
\(415\) −239.616 + 239.616i −0.577388 + 0.577388i
\(416\) 57.6591 57.6591i 0.138604 0.138604i
\(417\) 134.565i 0.322698i
\(418\) 456.215i 1.09142i
\(419\) 79.4467i 0.189610i 0.995496 + 0.0948051i \(0.0302228\pi\)
−0.995496 + 0.0948051i \(0.969777\pi\)
\(420\) 59.6668i 0.142064i
\(421\) 318.129i 0.755650i 0.925877 + 0.377825i \(0.123328\pi\)
−0.925877 + 0.377825i \(0.876672\pi\)
\(422\) −117.950 + 117.950i −0.279502 + 0.279502i
\(423\) 781.519i 1.84756i
\(424\) 64.0100 64.0100i 0.150967 0.150967i
\(425\) −14.2870 14.2870i −0.0336165 0.0336165i
\(426\) 58.4602 + 58.4602i 0.137231 + 0.137231i
\(427\) −54.1277 + 54.1277i −0.126763 + 0.126763i
\(428\) −247.876 247.876i −0.579148 0.579148i
\(429\) −855.733 855.733i −1.99472 1.99472i
\(430\) −128.400 + 128.400i −0.298604 + 0.298604i
\(431\) −207.897 207.897i −0.482360 0.482360i 0.423524 0.905885i \(-0.360793\pi\)
−0.905885 + 0.423524i \(0.860793\pi\)
\(432\) 20.7666 20.7666i 0.0480708 0.0480708i
\(433\) 566.939i 1.30933i −0.755920 0.654664i \(-0.772810\pi\)
0.755920 0.654664i \(-0.227190\pi\)
\(434\) −84.0197 + 84.0197i −0.193594 + 0.193594i
\(435\) 281.988 0.648249
\(436\) 50.2967 + 50.2967i 0.115359 + 0.115359i
\(437\) 404.140 404.140i 0.924805 0.924805i
\(438\) 331.413 0.756652
\(439\) 141.773i 0.322946i 0.986877 + 0.161473i \(0.0516245\pi\)
−0.986877 + 0.161473i \(0.948375\pi\)
\(440\) 117.611 + 117.611i 0.267298 + 0.267298i
\(441\) −472.112 −1.07055
\(442\) −26.8220 −0.0606832
\(443\) 46.6925 + 46.6925i 0.105401 + 0.105401i 0.757841 0.652440i \(-0.226254\pi\)
−0.652440 + 0.757841i \(0.726254\pi\)
\(444\) 322.947 322.947i 0.727358 0.727358i
\(445\) 262.543i 0.589985i
\(446\) −193.583 −0.434043
\(447\) −562.821 + 562.821i −1.25911 + 1.25911i
\(448\) −12.2577 12.2577i −0.0273609 0.0273609i
\(449\) 240.453 0.535531 0.267765 0.963484i \(-0.413715\pi\)
0.267765 + 0.963484i \(0.413715\pi\)
\(450\) −163.638 + 163.638i −0.363640 + 0.363640i
\(451\) 350.154i 0.776394i
\(452\) −132.323 132.323i −0.292751 0.292751i
\(453\) −156.442 + 156.442i −0.345347 + 0.345347i
\(454\) 387.179 0.852817
\(455\) 68.5878 + 68.5878i 0.150742 + 0.150742i
\(456\) 151.055 151.055i 0.331261 0.331261i
\(457\) 639.175i 1.39863i −0.714812 0.699316i \(-0.753488\pi\)
0.714812 0.699316i \(-0.246512\pi\)
\(458\) 106.948i 0.233510i
\(459\) −9.66025 −0.0210463
\(460\) 208.372i 0.452984i
\(461\) 489.462 489.462i 1.06174 1.06174i 0.0637747 0.997964i \(-0.479686\pi\)
0.997964 0.0637747i \(-0.0203139\pi\)
\(462\) −181.920 + 181.920i −0.393765 + 0.393765i
\(463\) 416.736 416.736i 0.900077 0.900077i −0.0953650 0.995442i \(-0.530402\pi\)
0.995442 + 0.0953650i \(0.0304018\pi\)
\(464\) 57.9305 57.9305i 0.124850 0.124850i
\(465\) −533.846 −1.14806
\(466\) 59.7154 59.7154i 0.128145 0.128145i
\(467\) 246.123 + 246.123i 0.527031 + 0.527031i 0.919686 0.392655i \(-0.128443\pi\)
−0.392655 + 0.919686i \(0.628443\pi\)
\(468\) 307.209i 0.656429i
\(469\) −117.224 + 117.224i −0.249944 + 0.249944i
\(470\) 227.753 + 227.753i 0.484581 + 0.484581i
\(471\) 1184.79i 2.51548i
\(472\) 128.165i 0.271536i
\(473\) 782.962 1.65531
\(474\) −498.031 −1.05070
\(475\) −184.982 + 184.982i −0.389436 + 0.389436i
\(476\) 5.70206i 0.0119791i
\(477\) 341.047i 0.714983i
\(478\) −67.0954 67.0954i −0.140367 0.140367i
\(479\) −405.375 405.375i −0.846295 0.846295i 0.143374 0.989669i \(-0.454205\pi\)
−0.989669 + 0.143374i \(0.954205\pi\)
\(480\) 77.8832i 0.162257i
\(481\) 742.465i 1.54359i
\(482\) 339.029 0.703379
\(483\) 322.308 0.667305
\(484\) 475.175i 0.981767i
\(485\) 92.2421i 0.190190i
\(486\) 490.670i 1.00961i
\(487\) −85.8008 −0.176182 −0.0880911 0.996112i \(-0.528077\pi\)
−0.0880911 + 0.996112i \(0.528077\pi\)
\(488\) −70.6531 + 70.6531i −0.144781 + 0.144781i
\(489\) −997.350 −2.03957
\(490\) −137.585 + 137.585i −0.280785 + 0.280785i
\(491\) 765.799i 1.55967i 0.625983 + 0.779836i \(0.284698\pi\)
−0.625983 + 0.779836i \(0.715302\pi\)
\(492\) −115.937 + 115.937i −0.235645 + 0.235645i
\(493\) −26.9482 −0.0546617
\(494\) 347.280i 0.702996i
\(495\) −626.635 −1.26593
\(496\) −109.671 + 109.671i −0.221111 + 0.221111i
\(497\) 28.5723i 0.0574896i
\(498\) −483.791 483.791i −0.971468 0.971468i
\(499\) −405.675 405.675i −0.812976 0.812976i 0.172103 0.985079i \(-0.444944\pi\)
−0.985079 + 0.172103i \(0.944944\pi\)
\(500\) 250.647i 0.501294i
\(501\) 712.160i 1.42148i
\(502\) 529.393i 1.05457i
\(503\) 242.673 + 242.673i 0.482452 + 0.482452i 0.905914 0.423462i \(-0.139185\pi\)
−0.423462 + 0.905914i \(0.639185\pi\)
\(504\) 65.3093 0.129582
\(505\) 411.306 + 411.306i 0.814468 + 0.814468i
\(506\) −635.312 + 635.312i −1.25556 + 1.25556i
\(507\) −121.591 121.591i −0.239825 0.239825i
\(508\) 200.175 0.394045
\(509\) 494.674 + 494.674i 0.971854 + 0.971854i 0.999615 0.0277604i \(-0.00883756\pi\)
−0.0277604 + 0.999615i \(0.508838\pi\)
\(510\) −18.1149 + 18.1149i −0.0355195 + 0.0355195i
\(511\) 80.9889 + 80.9889i 0.158491 + 0.158491i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 125.077i 0.243815i
\(514\) 627.339i 1.22050i
\(515\) 506.613i 0.983714i
\(516\) −259.243 259.243i −0.502408 0.502408i
\(517\) 1388.80i 2.68628i
\(518\) 157.840 0.304710
\(519\) −87.6794 87.6794i −0.168939 0.168939i
\(520\) 89.5279 + 89.5279i 0.172169 + 0.172169i
\(521\) −87.6064 + 87.6064i −0.168150 + 0.168150i −0.786166 0.618015i \(-0.787937\pi\)
0.618015 + 0.786166i \(0.287937\pi\)
\(522\) 308.655i 0.591293i
\(523\) −473.039 + 473.039i −0.904473 + 0.904473i −0.995819 0.0913465i \(-0.970883\pi\)
0.0913465 + 0.995819i \(0.470883\pi\)
\(524\) 81.2004i 0.154963i
\(525\) −147.526 −0.281003
\(526\) −283.691 283.691i −0.539336 0.539336i
\(527\) 51.0170 0.0968065
\(528\) −237.460 + 237.460i −0.449735 + 0.449735i
\(529\) 596.587 1.12776
\(530\) 99.3891 + 99.3891i 0.187527 + 0.187527i
\(531\) 341.433 + 341.433i 0.642999 + 0.642999i
\(532\) 73.8279 0.138774
\(533\) 266.544i 0.500082i
\(534\) −530.082 −0.992664
\(535\) 384.879 384.879i 0.719400 0.719400i
\(536\) −153.013 + 153.013i −0.285471 + 0.285471i
\(537\) 15.1073i 0.0281327i
\(538\) −348.489 + 152.570i −0.647749 + 0.283587i
\(539\) 838.971 1.55653
\(540\) 32.2445 + 32.2445i 0.0597121 + 0.0597121i
\(541\) 428.008 + 428.008i 0.791142 + 0.791142i 0.981680 0.190538i \(-0.0610231\pi\)
−0.190538 + 0.981680i \(0.561023\pi\)
\(542\) 55.7745i 0.102905i
\(543\) 260.735 0.480175
\(544\) 7.44292i 0.0136818i
\(545\) −78.0962 + 78.0962i −0.143296 + 0.143296i
\(546\) −138.481 + 138.481i −0.253628 + 0.253628i
\(547\) 390.526i 0.713941i 0.934116 + 0.356970i \(0.116190\pi\)
−0.934116 + 0.356970i \(0.883810\pi\)
\(548\) 346.045 + 346.045i 0.631469 + 0.631469i
\(549\) 376.441i 0.685685i
\(550\) 290.794 290.794i 0.528717 0.528717i
\(551\) 348.914i 0.633239i
\(552\) 420.710 0.762155
\(553\) −121.706 121.706i −0.220083 0.220083i
\(554\) 231.974 0.418725
\(555\) 501.443 + 501.443i 0.903502 + 0.903502i
\(556\) −42.9239 + 42.9239i −0.0772013 + 0.0772013i
\(557\) 130.732 130.732i 0.234708 0.234708i −0.579947 0.814655i \(-0.696927\pi\)
0.814655 + 0.579947i \(0.196927\pi\)
\(558\) 584.330i 1.04719i
\(559\) 596.006 1.06620
\(560\) 19.0327 19.0327i 0.0339869 0.0339869i
\(561\) 110.462 0.196902
\(562\) 657.175 1.16935
\(563\) −423.905 −0.752940 −0.376470 0.926429i \(-0.622862\pi\)
−0.376470 + 0.926429i \(0.622862\pi\)
\(564\) −459.840 + 459.840i −0.815319 + 0.815319i
\(565\) 205.460 205.460i 0.363646 0.363646i
\(566\) 263.473 + 263.473i 0.465500 + 0.465500i
\(567\) 97.0704 97.0704i 0.171200 0.171200i
\(568\) 37.2956i 0.0656612i
\(569\) −417.398 + 417.398i −0.733565 + 0.733565i −0.971324 0.237759i \(-0.923587\pi\)
0.237759 + 0.971324i \(0.423587\pi\)
\(570\) 234.545 + 234.545i 0.411482 + 0.411482i
\(571\) 183.766 183.766i 0.321832 0.321832i −0.527637 0.849470i \(-0.676922\pi\)
0.849470 + 0.527637i \(0.176922\pi\)
\(572\) 545.928i 0.954420i
\(573\) 427.501 427.501i 0.746074 0.746074i
\(574\) −56.6643 −0.0987183
\(575\) −515.202 −0.896003
\(576\) 85.2484 0.148001
\(577\) −25.5743 + 25.5743i −0.0443229 + 0.0443229i −0.728921 0.684598i \(-0.759978\pi\)
0.684598 + 0.728921i \(0.259978\pi\)
\(578\) −287.269 + 287.269i −0.497005 + 0.497005i
\(579\) −1549.93 −2.67691
\(580\) 89.9493 + 89.9493i 0.155085 + 0.155085i
\(581\) 236.452i 0.406975i
\(582\) −186.239 −0.319999
\(583\) 606.060i 1.03955i
\(584\) 105.715 + 105.715i 0.181019 + 0.181019i
\(585\) −477.007 −0.815396
\(586\) 43.1690 + 43.1690i 0.0736673 + 0.0736673i
\(587\) 425.068i 0.724137i 0.932152 + 0.362068i \(0.117929\pi\)
−0.932152 + 0.362068i \(0.882071\pi\)
\(588\) −277.787 277.787i −0.472427 0.472427i
\(589\) 660.548i 1.12147i
\(590\) 199.003 0.337293
\(591\) 60.6117 0.102558
\(592\) 206.029 0.348022
\(593\) 446.633i 0.753175i −0.926381 0.376588i \(-0.877097\pi\)
0.926381 0.376588i \(-0.122903\pi\)
\(594\) 196.622i 0.331014i
\(595\) −8.85365 −0.0148801
\(596\) −359.060 −0.602450
\(597\) −762.482 + 762.482i −1.27719 + 1.27719i
\(598\) −483.612 + 483.612i −0.808716 + 0.808716i
\(599\) −653.142 −1.09039 −0.545193 0.838310i \(-0.683544\pi\)
−0.545193 + 0.838310i \(0.683544\pi\)
\(600\) −192.567 −0.320944
\(601\) −126.331 126.331i −0.210202 0.210202i 0.594152 0.804353i \(-0.297488\pi\)
−0.804353 + 0.594152i \(0.797488\pi\)
\(602\) 126.704i 0.210473i
\(603\) 815.254i 1.35200i
\(604\) −99.8047 −0.165240
\(605\) 737.810 1.21952
\(606\) −830.439 + 830.439i −1.37036 + 1.37036i
\(607\) −8.96170 8.96170i −0.0147639 0.0147639i 0.699686 0.714450i \(-0.253323\pi\)
−0.714450 + 0.699686i \(0.753323\pi\)
\(608\) 96.3678 0.158500
\(609\) −139.133 + 139.133i −0.228461 + 0.228461i
\(610\) −109.704 109.704i −0.179842 0.179842i
\(611\) 1057.19i 1.73025i
\(612\) −19.8280 19.8280i −0.0323987 0.0323987i
\(613\) 366.405 + 366.405i 0.597724 + 0.597724i 0.939706 0.341982i \(-0.111098\pi\)
−0.341982 + 0.939706i \(0.611098\pi\)
\(614\) 34.0861 + 34.0861i 0.0555147 + 0.0555147i
\(615\) −180.017 180.017i −0.292711 0.292711i
\(616\) −116.058 −0.188406
\(617\) 934.344i 1.51433i 0.653221 + 0.757167i \(0.273417\pi\)
−0.653221 + 0.757167i \(0.726583\pi\)
\(618\) −1022.86 −1.65512
\(619\) −210.208 −0.339593 −0.169797 0.985479i \(-0.554311\pi\)
−0.169797 + 0.985479i \(0.554311\pi\)
\(620\) −170.288 170.288i −0.274657 0.274657i
\(621\) −174.179 + 174.179i −0.280481 + 0.280481i
\(622\) 848.512i 1.36417i
\(623\) −129.539 129.539i −0.207927 0.207927i
\(624\) −180.759 + 180.759i −0.289678 + 0.289678i
\(625\) −5.27391 −0.00843825
\(626\) 16.5274 + 16.5274i 0.0264016 + 0.0264016i
\(627\) 1430.22i 2.28105i
\(628\) −377.927 + 377.927i −0.601795 + 0.601795i
\(629\) −47.9205 47.9205i −0.0761852 0.0761852i
\(630\) 101.406i 0.160963i
\(631\) 568.563 0.901050 0.450525 0.892764i \(-0.351237\pi\)
0.450525 + 0.892764i \(0.351237\pi\)
\(632\) −158.863 158.863i −0.251366 0.251366i
\(633\) 369.769 369.769i 0.584153 0.584153i
\(634\) 267.377i 0.421730i
\(635\) 310.814i 0.489470i
\(636\) −200.669 + 200.669i −0.315518 + 0.315518i
\(637\) 638.641 1.00258
\(638\) 548.498i 0.859714i
\(639\) −99.3558 99.3558i −0.155486 0.155486i
\(640\) 24.8434 24.8434i 0.0388178 0.0388178i
\(641\) 341.953i 0.533468i 0.963770 + 0.266734i \(0.0859446\pi\)
−0.963770 + 0.266734i \(0.914055\pi\)
\(642\) 777.082 + 777.082i 1.21041 + 1.21041i
\(643\) 960.068 1.49311 0.746554 0.665325i \(-0.231707\pi\)
0.746554 + 0.665325i \(0.231707\pi\)
\(644\) 102.811 + 102.811i 0.159644 + 0.159644i
\(645\) 402.529 402.529i 0.624076 0.624076i
\(646\) −22.4143 22.4143i −0.0346970 0.0346970i
\(647\) 152.256 152.256i 0.235327 0.235327i −0.579585 0.814912i \(-0.696785\pi\)
0.814912 + 0.579585i \(0.196785\pi\)
\(648\) 126.706 126.706i 0.195534 0.195534i
\(649\) −606.746 606.746i −0.934893 0.934893i
\(650\) 221.358 221.358i 0.340551 0.340551i
\(651\) 263.399 263.399i 0.404607 0.404607i
\(652\) −318.137 318.137i −0.487941 0.487941i
\(653\) 40.5452 0.0620907 0.0310453 0.999518i \(-0.490116\pi\)
0.0310453 + 0.999518i \(0.490116\pi\)
\(654\) −157.678 157.678i −0.241098 0.241098i
\(655\) −126.081 −0.192490
\(656\) −73.9641 −0.112750
\(657\) −563.252 −0.857310
\(658\) −224.746 −0.341559
\(659\) −97.3853 −0.147777 −0.0738887 0.997266i \(-0.523541\pi\)
−0.0738887 + 0.997266i \(0.523541\pi\)
\(660\) −368.707 368.707i −0.558647 0.558647i
\(661\) −401.769 401.769i −0.607821 0.607821i 0.334555 0.942376i \(-0.391414\pi\)
−0.942376 + 0.334555i \(0.891414\pi\)
\(662\) 18.0652 + 18.0652i 0.0272888 + 0.0272888i
\(663\) 84.0860 0.126827
\(664\) 308.642i 0.464822i
\(665\) 114.633i 0.172381i
\(666\) −548.863 + 548.863i −0.824119 + 0.824119i
\(667\) −485.888 + 485.888i −0.728468 + 0.728468i
\(668\) −227.167 + 227.167i −0.340070 + 0.340070i
\(669\) 606.877 0.907140
\(670\) −237.584 237.584i −0.354604 0.354604i
\(671\) 668.958i 0.996957i
\(672\) 38.4275 + 38.4275i 0.0571837 + 0.0571837i
\(673\) 808.262 808.262i 1.20098 1.20098i 0.227116 0.973868i \(-0.427071\pi\)
0.973868 0.227116i \(-0.0729295\pi\)
\(674\) 180.226 0.267398
\(675\) 79.7247 79.7247i 0.118111 0.118111i
\(676\) 77.5710i 0.114750i
\(677\) −758.637 758.637i −1.12059 1.12059i −0.991653 0.128933i \(-0.958845\pi\)
−0.128933 0.991653i \(-0.541155\pi\)
\(678\) 414.829 + 414.829i 0.611843 + 0.611843i
\(679\) −45.5121 45.5121i −0.0670281 0.0670281i
\(680\) −11.5567 −0.0169951
\(681\) −1213.79 −1.78237
\(682\) 1038.39i 1.52256i
\(683\) 812.479 812.479i 1.18957 1.18957i 0.212389 0.977185i \(-0.431876\pi\)
0.977185 0.212389i \(-0.0681244\pi\)
\(684\) −256.725 + 256.725i −0.375329 + 0.375329i
\(685\) −537.308 + 537.308i −0.784391 + 0.784391i
\(686\) 285.925i 0.416800i
\(687\) 335.277i 0.488031i
\(688\) 165.388i 0.240389i
\(689\) 461.345i 0.669586i
\(690\) 653.241i 0.946726i
\(691\) −791.102 + 791.102i −1.14487 + 1.14487i −0.157318 + 0.987548i \(0.550285\pi\)
−0.987548 + 0.157318i \(0.949715\pi\)
\(692\) 55.9364i 0.0808330i
\(693\) 309.181 309.181i 0.446148 0.446148i
\(694\) 96.5159 + 96.5159i 0.139072 + 0.139072i
\(695\) −66.6485 66.6485i −0.0958971 0.0958971i
\(696\) −181.610 + 181.610i −0.260934 + 0.260934i
\(697\) 17.2034 + 17.2034i 0.0246820 + 0.0246820i
\(698\) 416.690 + 416.690i 0.596978 + 0.596978i
\(699\) −187.206 + 187.206i −0.267820 + 0.267820i
\(700\) −47.0583 47.0583i −0.0672262 0.0672262i
\(701\) 280.903 280.903i 0.400718 0.400718i −0.477768 0.878486i \(-0.658554\pi\)
0.878486 + 0.477768i \(0.158554\pi\)
\(702\) 149.673i 0.213209i
\(703\) −620.455 + 620.455i −0.882581 + 0.882581i
\(704\) −151.491 −0.215187
\(705\) −713.998 713.998i −1.01276 1.01276i
\(706\) 266.525 266.525i 0.377514 0.377514i
\(707\) −405.876 −0.574082
\(708\) 401.793i 0.567504i
\(709\) 767.643 + 767.643i 1.08271 + 1.08271i 0.996256 + 0.0864567i \(0.0275544\pi\)
0.0864567 + 0.996256i \(0.472446\pi\)
\(710\) −57.9093 −0.0815623
\(711\) 846.426 1.19047
\(712\) −169.087 169.087i −0.237482 0.237482i
\(713\) 919.860 919.860i 1.29013 1.29013i
\(714\) 17.8758i 0.0250361i
\(715\) 847.669 1.18555
\(716\) 4.81895 4.81895i 0.00673038 0.00673038i
\(717\) 210.342 + 210.342i 0.293364 + 0.293364i
\(718\) −615.546 −0.857306
\(719\) −602.179 + 602.179i −0.837523 + 0.837523i −0.988532 0.151010i \(-0.951748\pi\)
0.151010 + 0.988532i \(0.451748\pi\)
\(720\) 132.366i 0.183842i
\(721\) −249.962 249.962i −0.346688 0.346688i
\(722\) 70.7890 70.7890i 0.0980457 0.0980457i
\(723\) −1062.84 −1.47005
\(724\) 83.1698 + 83.1698i 0.114875 + 0.114875i
\(725\) 222.400 222.400i 0.306759 0.306759i
\(726\) 1489.66i 2.05187i
\(727\) 186.199i 0.256120i 0.991766 + 0.128060i \(0.0408749\pi\)
−0.991766 + 0.128060i \(0.959125\pi\)
\(728\) −88.3459 −0.121354
\(729\) 968.055i 1.32792i
\(730\) −164.145 + 164.145i −0.224856 + 0.224856i
\(731\) −38.4677 + 38.4677i −0.0526234 + 0.0526234i
\(732\) 221.495 221.495i 0.302589 0.302589i
\(733\) −240.640 + 240.640i −0.328295 + 0.328295i −0.851938 0.523643i \(-0.824573\pi\)
0.523643 + 0.851938i \(0.324573\pi\)
\(734\) 50.6502 0.0690057
\(735\) 431.324 431.324i 0.586835 0.586835i
\(736\) 134.199 + 134.199i 0.182336 + 0.182336i
\(737\) 1448.75i 1.96575i
\(738\) 197.041 197.041i 0.266993 0.266993i
\(739\) 548.108 + 548.108i 0.741688 + 0.741688i 0.972903 0.231215i \(-0.0742699\pi\)
−0.231215 + 0.972903i \(0.574270\pi\)
\(740\) 319.903i 0.432302i
\(741\) 1088.71i 1.46925i
\(742\) −98.0769 −0.132179
\(743\) 1004.35 1.35175 0.675876 0.737016i \(-0.263766\pi\)
0.675876 + 0.737016i \(0.263766\pi\)
\(744\) 343.815 343.815i 0.462117 0.462117i
\(745\) 557.517i 0.748345i
\(746\) 572.747i 0.767757i
\(747\) 822.225 + 822.225i 1.10070 + 1.10070i
\(748\) 35.2355 + 35.2355i 0.0471063 + 0.0471063i
\(749\) 379.798i 0.507073i
\(750\) 785.770i 1.04769i
\(751\) −157.505 −0.209727 −0.104863 0.994487i \(-0.533441\pi\)
−0.104863 + 0.994487i \(0.533441\pi\)
\(752\) −293.362 −0.390109
\(753\) 1659.63i 2.20402i
\(754\) 417.527i 0.553749i
\(755\) 154.968i 0.205255i
\(756\) −31.8188 −0.0420884
\(757\) 903.972 903.972i 1.19415 1.19415i 0.218260 0.975891i \(-0.429962\pi\)
0.975891 0.218260i \(-0.0700379\pi\)
\(758\) 105.187 0.138769
\(759\) 1991.68 1991.68i 2.62409 2.62409i
\(760\) 149.631i 0.196883i
\(761\) −404.650 + 404.650i −0.531735 + 0.531735i −0.921088 0.389354i \(-0.872698\pi\)
0.389354 + 0.921088i \(0.372698\pi\)
\(762\) −627.542 −0.823545
\(763\) 77.0651i 0.101003i
\(764\) 272.730 0.356977
\(765\) 30.7872 30.7872i 0.0402447 0.0402447i
\(766\) 297.998i 0.389032i
\(767\) −461.867 461.867i −0.602173 0.602173i
\(768\) 50.1595 + 50.1595i 0.0653118 + 0.0653118i
\(769\) 1258.73i 1.63684i 0.574622 + 0.818419i \(0.305149\pi\)
−0.574622 + 0.818419i \(0.694851\pi\)
\(770\) 180.205i 0.234033i
\(771\) 1966.69i 2.55083i
\(772\) −494.400 494.400i −0.640415 0.640415i
\(773\) 203.913 0.263794 0.131897 0.991263i \(-0.457893\pi\)
0.131897 + 0.991263i \(0.457893\pi\)
\(774\) 440.595 + 440.595i 0.569244 + 0.569244i
\(775\) −421.037 + 421.037i −0.543273 + 0.543273i
\(776\) −59.4071 59.4071i −0.0765555 0.0765555i
\(777\) −494.823 −0.636838
\(778\) 573.341 + 573.341i 0.736943 + 0.736943i
\(779\) 222.742 222.742i 0.285934 0.285934i
\(780\) −280.667 280.667i −0.359830 0.359830i
\(781\) 176.561 + 176.561i 0.226070 + 0.226070i
\(782\) 62.4270i 0.0798300i
\(783\) 150.377i 0.192053i
\(784\) 177.219i 0.226044i
\(785\) −586.812 586.812i −0.747531 0.747531i
\(786\) 254.561i 0.323868i
\(787\) −824.518 −1.04767 −0.523836 0.851819i \(-0.675500\pi\)
−0.523836 + 0.851819i \(0.675500\pi\)
\(788\) 19.3341 + 19.3341i 0.0245356 + 0.0245356i
\(789\) 889.362 + 889.362i 1.12720 + 1.12720i
\(790\) 246.669 246.669i 0.312239 0.312239i
\(791\) 202.747i 0.256318i
\(792\) 403.575 403.575i 0.509564 0.509564i
\(793\) 509.224i 0.642149i
\(794\) −467.253 −0.588480
\(795\) −311.582 311.582i −0.391926 0.391926i
\(796\) −486.437 −0.611102
\(797\) −865.427 + 865.427i −1.08586 + 1.08586i −0.0899054 + 0.995950i \(0.528656\pi\)
−0.995950 + 0.0899054i \(0.971344\pi\)
\(798\) −231.448 −0.290035
\(799\) 68.2333 + 68.2333i 0.0853984 + 0.0853984i
\(800\) −61.4254 61.4254i −0.0767817 0.0767817i
\(801\) 900.899 1.12472
\(802\) 864.388i 1.07779i
\(803\) 1000.93 1.24649
\(804\) 479.689 479.689i 0.596629 0.596629i
\(805\) −159.635 + 159.635i −0.198305 + 0.198305i
\(806\) 790.442i 0.980697i
\(807\) 1092.50 478.301i 1.35378 0.592690i
\(808\) −529.791 −0.655682
\(809\) 492.072 + 492.072i 0.608247 + 0.608247i 0.942488 0.334241i \(-0.108480\pi\)
−0.334241 + 0.942488i \(0.608480\pi\)
\(810\) 196.738 + 196.738i 0.242887 + 0.242887i
\(811\) 1239.46i 1.52831i 0.645035 + 0.764153i \(0.276843\pi\)
−0.645035 + 0.764153i \(0.723157\pi\)
\(812\) −88.7617 −0.109312
\(813\) 174.851i 0.215069i
\(814\) 975.362 975.362i 1.19823 1.19823i
\(815\) 493.976 493.976i 0.606105 0.606105i
\(816\) 23.3333i 0.0285947i
\(817\) 498.064 + 498.064i 0.609625 + 0.609625i
\(818\) 474.949i 0.580622i
\(819\) 235.354 235.354i 0.287368 0.287368i
\(820\) 114.845i 0.140055i
\(821\) −1271.41 −1.54861 −0.774304 0.632813i \(-0.781900\pi\)
−0.774304 + 0.632813i \(0.781900\pi\)
\(822\) −1084.84 1084.84i −1.31976 1.31976i
\(823\) −370.372 −0.450027 −0.225013 0.974356i \(-0.572243\pi\)
−0.225013 + 0.974356i \(0.572243\pi\)
\(824\) −326.276 326.276i −0.395966 0.395966i
\(825\) −911.630 + 911.630i −1.10501 + 1.10501i
\(826\) −98.1878 + 98.1878i −0.118871 + 0.118871i
\(827\) 1309.96i 1.58399i −0.610527 0.791996i \(-0.709042\pi\)
0.610527 0.791996i \(-0.290958\pi\)
\(828\) −715.016 −0.863546
\(829\) 278.811 278.811i 0.336323 0.336323i −0.518659 0.854981i \(-0.673568\pi\)
0.854981 + 0.518659i \(0.173568\pi\)
\(830\) 479.232 0.577388
\(831\) −727.231 −0.875127
\(832\) −115.318 −0.138604
\(833\) −41.2195 + 41.2195i −0.0494832 + 0.0494832i
\(834\) 134.565 134.565i 0.161349 0.161349i
\(835\) −352.724 352.724i −0.422424 0.422424i
\(836\) 456.215 456.215i 0.545712 0.545712i
\(837\) 284.687i 0.340128i
\(838\) 79.4467 79.4467i 0.0948051 0.0948051i
\(839\) 568.841 + 568.841i 0.677999 + 0.677999i 0.959547 0.281548i \(-0.0908480\pi\)
−0.281548 + 0.959547i \(0.590848\pi\)
\(840\) −59.6668 + 59.6668i −0.0710319 + 0.0710319i
\(841\) 421.508i 0.501198i
\(842\) 318.129 318.129i 0.377825 0.377825i
\(843\) −2060.22 −2.44392
\(844\) 235.900 0.279502
\(845\) 120.445 0.142539
\(846\) 781.519 781.519i 0.923781 0.923781i
\(847\) −364.035 + 364.035i −0.429793 + 0.429793i
\(848\) −128.020 −0.150967
\(849\) −825.979 825.979i −0.972885 0.972885i
\(850\) 28.5740i 0.0336165i
\(851\) −1728.06 −2.03062
\(852\) 116.920i 0.137231i
\(853\) −874.585 874.585i −1.02530 1.02530i −0.999671 0.0256336i \(-0.991840\pi\)
−0.0256336 0.999671i \(-0.508160\pi\)
\(854\) 108.255 0.126763
\(855\) −398.620 398.620i −0.466222 0.466222i
\(856\) 495.751i 0.579148i
\(857\) 736.735 + 736.735i 0.859668 + 0.859668i 0.991299 0.131631i \(-0.0420214\pi\)
−0.131631 + 0.991299i \(0.542021\pi\)
\(858\) 1711.47i 1.99472i
\(859\) 432.328 0.503293 0.251646 0.967819i \(-0.419028\pi\)
0.251646 + 0.967819i \(0.419028\pi\)
\(860\) 256.799 0.298604
\(861\) 177.641 0.206319
\(862\) 415.795i 0.482360i
\(863\) 1335.43i 1.54743i 0.633534 + 0.773715i \(0.281604\pi\)
−0.633534 + 0.773715i \(0.718396\pi\)
\(864\) −41.5332 −0.0480708
\(865\) 86.8531 0.100408
\(866\) −566.939 + 566.939i −0.654664 + 0.654664i
\(867\) 900.579 900.579i 1.03873 1.03873i
\(868\) 168.039 0.193594
\(869\) −1504.15 −1.73090
\(870\) −281.988 281.988i −0.324124 0.324124i
\(871\) 1102.82i 1.26615i
\(872\) 100.593i 0.115359i
\(873\) 316.522 0.362568
\(874\) −808.279 −0.924805
\(875\) 192.022 192.022i 0.219454 0.219454i
\(876\) −331.413 331.413i −0.378326 0.378326i
\(877\) −52.8766 −0.0602926 −0.0301463 0.999545i \(-0.509597\pi\)
−0.0301463 + 0.999545i \(0.509597\pi\)
\(878\) 141.773 141.773i 0.161473 0.161473i
\(879\) −135.334 135.334i −0.153963 0.153963i
\(880\) 235.222i 0.267298i
\(881\) 415.858 + 415.858i 0.472029 + 0.472029i 0.902571 0.430542i \(-0.141677\pi\)
−0.430542 + 0.902571i \(0.641677\pi\)
\(882\) 472.112 + 472.112i 0.535275 + 0.535275i
\(883\) −274.673 274.673i −0.311068 0.311068i 0.534256 0.845323i \(-0.320592\pi\)
−0.845323 + 0.534256i \(0.820592\pi\)
\(884\) 26.8220 + 26.8220i 0.0303416 + 0.0303416i
\(885\) −623.868 −0.704936
\(886\) 93.3850i 0.105401i
\(887\) 1094.34 1.23375 0.616876 0.787060i \(-0.288398\pi\)
0.616876 + 0.787060i \(0.288398\pi\)
\(888\) −645.894 −0.727358
\(889\) −153.355 153.355i −0.172503 0.172503i
\(890\) 262.543 262.543i 0.294993 0.294993i
\(891\) 1199.68i 1.34644i
\(892\) 193.583 + 193.583i 0.217021 + 0.217021i
\(893\) 883.457 883.457i 0.989313 0.989313i
\(894\) 1125.64 1.25911
\(895\) 7.48244 + 7.48244i 0.00836027 + 0.00836027i
\(896\) 24.5154i 0.0273609i
\(897\) 1516.11 1516.11i 1.69020 1.69020i
\(898\) −240.453 240.453i −0.267765 0.267765i
\(899\) 794.162i 0.883384i
\(900\) 327.276 0.363640
\(901\) 29.7763 + 29.7763i 0.0330481 + 0.0330481i
\(902\) −350.154 + 350.154i −0.388197 + 0.388197i
\(903\) 397.214i 0.439883i
\(904\) 264.647i 0.292751i
\(905\) −129.139 + 129.139i −0.142695 + 0.142695i
\(906\) 312.884 0.345347
\(907\) 75.0436i 0.0827382i 0.999144 + 0.0413691i \(0.0131720\pi\)
−0.999144 + 0.0413691i \(0.986828\pi\)
\(908\) −387.179 387.179i −0.426408 0.426408i
\(909\) 1411.37 1411.37i 1.55266 1.55266i
\(910\) 137.176i 0.150742i
\(911\) 719.327 + 719.327i 0.789602 + 0.789602i 0.981429 0.191827i \(-0.0614413\pi\)
−0.191827 + 0.981429i \(0.561441\pi\)
\(912\) −302.110 −0.331261
\(913\) −1461.14 1461.14i −1.60037 1.60037i
\(914\) −639.175 + 639.175i −0.699316 + 0.699316i
\(915\) 343.918 + 343.918i 0.375867 + 0.375867i
\(916\) 106.948 106.948i 0.116755 0.116755i
\(917\) 62.2081 62.2081i 0.0678387 0.0678387i
\(918\) 9.66025 + 9.66025i 0.0105231 + 0.0105231i
\(919\) 934.065 934.065i 1.01639 1.01639i 0.0165293 0.999863i \(-0.494738\pi\)
0.999863 0.0165293i \(-0.00526168\pi\)
\(920\) −208.372 + 208.372i −0.226492 + 0.226492i
\(921\) −106.859 106.859i −0.116025 0.116025i
\(922\) −978.923 −1.06174
\(923\) 134.402 + 134.402i 0.145614 + 0.145614i
\(924\) 363.839 0.393765
\(925\) 790.963 0.855095
\(926\) −833.472 −0.900077
\(927\) 1738.41 1.87530
\(928\) −115.861 −0.124850
\(929\) 870.898 + 870.898i 0.937458 + 0.937458i 0.998156 0.0606982i \(-0.0193327\pi\)
−0.0606982 + 0.998156i \(0.519333\pi\)
\(930\) 533.846 + 533.846i 0.574028 + 0.574028i
\(931\) 533.693 + 533.693i 0.573247 + 0.573247i
\(932\) −119.431 −0.128145
\(933\) 2660.06i 2.85108i
\(934\) 492.247i 0.527031i
\(935\) −54.7106 + 54.7106i −0.0585140 + 0.0585140i
\(936\) 307.209 307.209i 0.328215 0.328215i
\(937\) −812.128 + 812.128i −0.866732 + 0.866732i −0.992109 0.125377i \(-0.959986\pi\)
0.125377 + 0.992109i \(0.459986\pi\)
\(938\) 234.448 0.249944
\(939\) −51.8128 51.8128i −0.0551787 0.0551787i
\(940\) 455.506i 0.484581i
\(941\) −111.721 111.721i −0.118726 0.118726i 0.645248 0.763974i \(-0.276754\pi\)
−0.763974 + 0.645248i \(0.776754\pi\)
\(942\) 1184.79 1184.79i 1.25774 1.25774i
\(943\) 620.369 0.657868
\(944\) −128.165 + 128.165i −0.135768 + 0.135768i
\(945\) 49.4054i 0.0522809i
\(946\) −782.962 782.962i −0.827656 0.827656i
\(947\) −1142.95 1142.95i −1.20692 1.20692i −0.972020 0.234898i \(-0.924524\pi\)
−0.234898 0.972020i \(-0.575476\pi\)
\(948\) 498.031 + 498.031i 0.525349 + 0.525349i
\(949\) 761.929 0.802876
\(950\) 369.964 0.389436
\(951\) 838.217i 0.881406i
\(952\) 5.70206 5.70206i 0.00598956 0.00598956i
\(953\) 835.348 835.348i 0.876546 0.876546i −0.116629 0.993176i \(-0.537209\pi\)
0.993176 + 0.116629i \(0.0372090\pi\)
\(954\) 341.047 341.047i 0.357491 0.357491i
\(955\) 423.472i 0.443426i
\(956\) 134.191i 0.140367i
\(957\) 1719.52i 1.79678i
\(958\) 810.751i 0.846295i
\(959\) 530.214i 0.552882i
\(960\) −77.8832 + 77.8832i −0.0811283 + 0.0811283i
\(961\) 542.469i 0.564484i
\(962\) 742.465 742.465i 0.771793 0.771793i
\(963\) −1320.69 1320.69i −1.37143 1.37143i
\(964\) −339.029 339.029i −0.351690 0.351690i
\(965\) 767.661 767.661i 0.795504 0.795504i
\(966\) −322.308 322.308i −0.333652 0.333652i
\(967\) 593.614 + 593.614i 0.613872 + 0.613872i 0.943953 0.330081i \(-0.107076\pi\)
−0.330081 + 0.943953i \(0.607076\pi\)
\(968\) −475.175 + 475.175i −0.490884 + 0.490884i
\(969\) 70.2681 + 70.2681i 0.0725161 + 0.0725161i
\(970\) 92.2421 92.2421i 0.0950949 0.0950949i
\(971\) 1481.69i 1.52595i −0.646430 0.762973i \(-0.723739\pi\)
0.646430 0.762973i \(-0.276261\pi\)
\(972\) −490.670 + 490.670i −0.504804 + 0.504804i
\(973\) 65.7685 0.0675936
\(974\) 85.8008 + 85.8008i 0.0880911 + 0.0880911i
\(975\) −693.951 + 693.951i −0.711744 + 0.711744i
\(976\) 141.306 0.144781
\(977\) 1175.76i 1.20344i −0.798709 0.601718i \(-0.794483\pi\)
0.798709 0.601718i \(-0.205517\pi\)
\(978\) 997.350 + 997.350i 1.01979 + 1.01979i
\(979\) −1600.95 −1.63529
\(980\) 275.169 0.280785
\(981\) 267.982 + 267.982i 0.273172 + 0.273172i
\(982\) 765.799 765.799i 0.779836 0.779836i
\(983\) 1308.53i 1.33116i −0.746328 0.665578i \(-0.768185\pi\)
0.746328 0.665578i \(-0.231815\pi\)
\(984\) 231.875 0.235645
\(985\) −30.0203 + 30.0203i −0.0304774 + 0.0304774i
\(986\) 26.9482 + 26.9482i 0.0273309 + 0.0273309i
\(987\) 704.572 0.713852
\(988\) 347.280 347.280i 0.351498 0.351498i
\(989\) 1387.18i 1.40261i
\(990\) 626.635 + 626.635i 0.632964 + 0.632964i
\(991\) −396.364 + 396.364i −0.399964 + 0.399964i −0.878220 0.478257i \(-0.841269\pi\)
0.478257 + 0.878220i \(0.341269\pi\)
\(992\) 219.342 0.221111
\(993\) −56.6337 56.6337i −0.0570330 0.0570330i
\(994\) 28.5723 28.5723i 0.0287448 0.0287448i
\(995\) 755.296i 0.759092i
\(996\) 967.582i 0.971468i
\(997\) 1170.53 1.17405 0.587027 0.809567i \(-0.300298\pi\)
0.587027 + 0.809567i \(0.300298\pi\)
\(998\) 811.350i 0.812976i
\(999\) 267.407 267.407i 0.267675 0.267675i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.b.187.21 46
269.82 odd 4 inner 538.3.c.b.351.21 yes 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.b.187.21 46 1.1 even 1 trivial
538.3.c.b.351.21 yes 46 269.82 odd 4 inner