Properties

Label 538.3.c.b.351.21
Level $538$
Weight $3$
Character 538.351
Analytic conductor $14.659$
Analytic rank $0$
Dimension $46$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,3,Mod(187,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.187");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(46\)
Relative dimension: \(23\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 351.21
Character \(\chi\) \(=\) 538.351
Dual form 538.3.c.b.187.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +(3.13497 - 3.13497i) q^{3} -2.00000i q^{4} -3.10542 q^{5} +6.26994i q^{6} +(1.53221 + 1.53221i) q^{7} +(2.00000 + 2.00000i) q^{8} -10.6560i q^{9} +(3.10542 - 3.10542i) q^{10} +18.9364i q^{11} +(-6.26994 - 6.26994i) q^{12} +14.4148i q^{13} -3.06442 q^{14} +(-9.73540 + 9.73540i) q^{15} -4.00000 q^{16} +(0.930364 - 0.930364i) q^{17} +(10.6560 + 10.6560i) q^{18} +(12.0460 + 12.0460i) q^{19} +6.21085i q^{20} +9.60687 q^{21} +(-18.9364 - 18.9364i) q^{22} +33.5498 q^{23} +12.5399 q^{24} -15.3563 q^{25} +(-14.4148 - 14.4148i) q^{26} +(-5.19165 - 5.19165i) q^{27} +(3.06442 - 3.06442i) q^{28} +(-14.4826 - 14.4826i) q^{29} -19.4708i q^{30} +(27.4178 + 27.4178i) q^{31} +(4.00000 - 4.00000i) q^{32} +(59.3650 + 59.3650i) q^{33} +1.86073i q^{34} +(-4.75816 - 4.75816i) q^{35} -21.3121 q^{36} -51.5072 q^{37} -24.0919 q^{38} +(45.1898 + 45.1898i) q^{39} +(-6.21085 - 6.21085i) q^{40} +18.4910 q^{41} +(-9.60687 + 9.60687i) q^{42} -41.3469i q^{43} +37.8728 q^{44} +33.0915i q^{45} +(-33.5498 + 33.5498i) q^{46} +73.3404 q^{47} +(-12.5399 + 12.5399i) q^{48} -44.3047i q^{49} +(15.3563 - 15.3563i) q^{50} -5.83332i q^{51} +28.8295 q^{52} +32.0050 q^{53} +10.3833 q^{54} -58.8056i q^{55} +6.12885i q^{56} +75.5275 q^{57} +28.9652 q^{58} +(32.0412 + 32.0412i) q^{59} +(19.4708 + 19.4708i) q^{60} -35.3265 q^{61} -54.8355 q^{62} +(16.3273 - 16.3273i) q^{63} +8.00000i q^{64} -44.7640i q^{65} -118.730 q^{66} -76.5063 q^{67} +(-1.86073 - 1.86073i) q^{68} +(105.177 - 105.177i) q^{69} +9.51633 q^{70} +(-9.32389 - 9.32389i) q^{71} +(21.3121 - 21.3121i) q^{72} -52.8575i q^{73} +(51.5072 - 51.5072i) q^{74} +(-48.1417 + 48.1417i) q^{75} +(24.0919 - 24.0919i) q^{76} +(-29.0146 + 29.0146i) q^{77} -90.3797 q^{78} +79.4315i q^{79} +12.4217 q^{80} +63.3531 q^{81} +(-18.4910 + 18.4910i) q^{82} +(77.1605 + 77.1605i) q^{83} -19.2137i q^{84} +(-2.88918 + 2.88918i) q^{85} +(41.3469 + 41.3469i) q^{86} -90.8051 q^{87} +(-37.8728 + 37.8728i) q^{88} +84.5435i q^{89} +(-33.0915 - 33.0915i) q^{90} +(-22.0865 + 22.0865i) q^{91} -67.0995i q^{92} +171.908 q^{93} +(-73.3404 + 73.3404i) q^{94} +(-37.4078 - 37.4078i) q^{95} -25.0797i q^{96} +29.7035i q^{97} +(44.3047 + 44.3047i) q^{98} +201.787 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q - 46 q^{2} - 6 q^{3} - 32 q^{5} + 4 q^{7} + 92 q^{8} + 32 q^{10} + 12 q^{12} - 8 q^{14} - 10 q^{15} - 184 q^{16} - 50 q^{17} + 118 q^{18} + 10 q^{19} + 16 q^{21} + 8 q^{22} - 124 q^{23} - 24 q^{24}+ \cdots + 508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) 3.13497 3.13497i 1.04499 1.04499i 0.0460501 0.998939i \(-0.485337\pi\)
0.998939 0.0460501i \(-0.0146634\pi\)
\(4\) 2.00000i 0.500000i
\(5\) −3.10542 −0.621085 −0.310542 0.950560i \(-0.600511\pi\)
−0.310542 + 0.950560i \(0.600511\pi\)
\(6\) 6.26994i 1.04499i
\(7\) 1.53221 + 1.53221i 0.218887 + 0.218887i 0.808029 0.589142i \(-0.200534\pi\)
−0.589142 + 0.808029i \(0.700534\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 10.6560i 1.18400i
\(10\) 3.10542 3.10542i 0.310542 0.310542i
\(11\) 18.9364i 1.72149i 0.509035 + 0.860746i \(0.330002\pi\)
−0.509035 + 0.860746i \(0.669998\pi\)
\(12\) −6.26994 6.26994i −0.522495 0.522495i
\(13\) 14.4148i 1.10883i 0.832241 + 0.554414i \(0.187058\pi\)
−0.832241 + 0.554414i \(0.812942\pi\)
\(14\) −3.06442 −0.218887
\(15\) −9.73540 + 9.73540i −0.649027 + 0.649027i
\(16\) −4.00000 −0.250000
\(17\) 0.930364 0.930364i 0.0547273 0.0547273i −0.679213 0.733941i \(-0.737679\pi\)
0.733941 + 0.679213i \(0.237679\pi\)
\(18\) 10.6560 + 10.6560i 0.592002 + 0.592002i
\(19\) 12.0460 + 12.0460i 0.633999 + 0.633999i 0.949068 0.315070i \(-0.102028\pi\)
−0.315070 + 0.949068i \(0.602028\pi\)
\(20\) 6.21085i 0.310542i
\(21\) 9.60687 0.457470
\(22\) −18.9364 18.9364i −0.860746 0.860746i
\(23\) 33.5498 1.45869 0.729343 0.684148i \(-0.239826\pi\)
0.729343 + 0.684148i \(0.239826\pi\)
\(24\) 12.5399 0.522495
\(25\) −15.3563 −0.614254
\(26\) −14.4148 14.4148i −0.554414 0.554414i
\(27\) −5.19165 5.19165i −0.192283 0.192283i
\(28\) 3.06442 3.06442i 0.109444 0.109444i
\(29\) −14.4826 14.4826i −0.499401 0.499401i 0.411851 0.911251i \(-0.364883\pi\)
−0.911251 + 0.411851i \(0.864883\pi\)
\(30\) 19.4708i 0.649027i
\(31\) 27.4178 + 27.4178i 0.884444 + 0.884444i 0.993983 0.109538i \(-0.0349372\pi\)
−0.109538 + 0.993983i \(0.534937\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) 59.3650 + 59.3650i 1.79894 + 1.79894i
\(34\) 1.86073i 0.0547273i
\(35\) −4.75816 4.75816i −0.135948 0.135948i
\(36\) −21.3121 −0.592002
\(37\) −51.5072 −1.39209 −0.696044 0.718000i \(-0.745058\pi\)
−0.696044 + 0.718000i \(0.745058\pi\)
\(38\) −24.0919 −0.633999
\(39\) 45.1898 + 45.1898i 1.15871 + 1.15871i
\(40\) −6.21085 6.21085i −0.155271 0.155271i
\(41\) 18.4910 0.451000 0.225500 0.974243i \(-0.427598\pi\)
0.225500 + 0.974243i \(0.427598\pi\)
\(42\) −9.60687 + 9.60687i −0.228735 + 0.228735i
\(43\) 41.3469i 0.961556i −0.876842 0.480778i \(-0.840354\pi\)
0.876842 0.480778i \(-0.159646\pi\)
\(44\) 37.8728 0.860746
\(45\) 33.0915i 0.735367i
\(46\) −33.5498 + 33.5498i −0.729343 + 0.729343i
\(47\) 73.3404 1.56043 0.780217 0.625509i \(-0.215109\pi\)
0.780217 + 0.625509i \(0.215109\pi\)
\(48\) −12.5399 + 12.5399i −0.261247 + 0.261247i
\(49\) 44.3047i 0.904177i
\(50\) 15.3563 15.3563i 0.307127 0.307127i
\(51\) 5.83332i 0.114379i
\(52\) 28.8295 0.554414
\(53\) 32.0050 0.603868 0.301934 0.953329i \(-0.402368\pi\)
0.301934 + 0.953329i \(0.402368\pi\)
\(54\) 10.3833 0.192283
\(55\) 58.8056i 1.06919i
\(56\) 6.12885i 0.109444i
\(57\) 75.5275 1.32504
\(58\) 28.9652 0.499401
\(59\) 32.0412 + 32.0412i 0.543071 + 0.543071i 0.924428 0.381357i \(-0.124543\pi\)
−0.381357 + 0.924428i \(0.624543\pi\)
\(60\) 19.4708 + 19.4708i 0.324513 + 0.324513i
\(61\) −35.3265 −0.579124 −0.289562 0.957159i \(-0.593510\pi\)
−0.289562 + 0.957159i \(0.593510\pi\)
\(62\) −54.8355 −0.884444
\(63\) 16.3273 16.3273i 0.259164 0.259164i
\(64\) 8.00000i 0.125000i
\(65\) 44.7640i 0.688676i
\(66\) −118.730 −1.79894
\(67\) −76.5063 −1.14188 −0.570942 0.820990i \(-0.693422\pi\)
−0.570942 + 0.820990i \(0.693422\pi\)
\(68\) −1.86073 1.86073i −0.0273637 0.0273637i
\(69\) 105.177 105.177i 1.52431 1.52431i
\(70\) 9.51633 0.135948
\(71\) −9.32389 9.32389i −0.131322 0.131322i 0.638390 0.769713i \(-0.279601\pi\)
−0.769713 + 0.638390i \(0.779601\pi\)
\(72\) 21.3121 21.3121i 0.296001 0.296001i
\(73\) 52.8575i 0.724076i −0.932163 0.362038i \(-0.882081\pi\)
0.932163 0.362038i \(-0.117919\pi\)
\(74\) 51.5072 51.5072i 0.696044 0.696044i
\(75\) −48.1417 + 48.1417i −0.641889 + 0.641889i
\(76\) 24.0919 24.0919i 0.316999 0.316999i
\(77\) −29.0146 + 29.0146i −0.376813 + 0.376813i
\(78\) −90.3797 −1.15871
\(79\) 79.4315i 1.00546i 0.864443 + 0.502731i \(0.167671\pi\)
−0.864443 + 0.502731i \(0.832329\pi\)
\(80\) 12.4217 0.155271
\(81\) 63.3531 0.782137
\(82\) −18.4910 + 18.4910i −0.225500 + 0.225500i
\(83\) 77.1605 + 77.1605i 0.929644 + 0.929644i 0.997683 0.0680387i \(-0.0216741\pi\)
−0.0680387 + 0.997683i \(0.521674\pi\)
\(84\) 19.2137i 0.228735i
\(85\) −2.88918 + 2.88918i −0.0339903 + 0.0339903i
\(86\) 41.3469 + 41.3469i 0.480778 + 0.480778i
\(87\) −90.8051 −1.04374
\(88\) −37.8728 + 37.8728i −0.430373 + 0.430373i
\(89\) 84.5435i 0.949927i 0.880005 + 0.474964i \(0.157539\pi\)
−0.880005 + 0.474964i \(0.842461\pi\)
\(90\) −33.0915 33.0915i −0.367684 0.367684i
\(91\) −22.0865 + 22.0865i −0.242708 + 0.242708i
\(92\) 67.0995i 0.729343i
\(93\) 171.908 1.84847
\(94\) −73.3404 + 73.3404i −0.780217 + 0.780217i
\(95\) −37.4078 37.4078i −0.393767 0.393767i
\(96\) 25.0797i 0.261247i
\(97\) 29.7035i 0.306222i 0.988209 + 0.153111i \(0.0489292\pi\)
−0.988209 + 0.153111i \(0.951071\pi\)
\(98\) 44.3047 + 44.3047i 0.452088 + 0.452088i
\(99\) 201.787 2.03826
\(100\) 30.7127i 0.307127i
\(101\) −132.448 + 132.448i −1.31136 + 1.31136i −0.390954 + 0.920410i \(0.627855\pi\)
−0.920410 + 0.390954i \(0.872145\pi\)
\(102\) 5.83332 + 5.83332i 0.0571895 + 0.0571895i
\(103\) 163.138i 1.58386i 0.610609 + 0.791932i \(0.290925\pi\)
−0.610609 + 0.791932i \(0.709075\pi\)
\(104\) −28.8295 + 28.8295i −0.277207 + 0.277207i
\(105\) −29.8334 −0.284127
\(106\) −32.0050 + 32.0050i −0.301934 + 0.301934i
\(107\) −123.938 123.938i −1.15830 1.15830i −0.984842 0.173455i \(-0.944507\pi\)
−0.173455 0.984842i \(-0.555493\pi\)
\(108\) −10.3833 + 10.3833i −0.0961416 + 0.0961416i
\(109\) 25.1483 + 25.1483i 0.230719 + 0.230719i 0.812993 0.582274i \(-0.197837\pi\)
−0.582274 + 0.812993i \(0.697837\pi\)
\(110\) 58.8056 + 58.8056i 0.534596 + 0.534596i
\(111\) −161.473 + 161.473i −1.45472 + 1.45472i
\(112\) −6.12885 6.12885i −0.0547218 0.0547218i
\(113\) −66.1617 66.1617i −0.585502 0.585502i 0.350908 0.936410i \(-0.385873\pi\)
−0.936410 + 0.350908i \(0.885873\pi\)
\(114\) −75.5275 + 75.5275i −0.662522 + 0.662522i
\(115\) −104.186 −0.905967
\(116\) −28.9652 + 28.9652i −0.249700 + 0.249700i
\(117\) 153.604 1.31286
\(118\) −64.0824 −0.543071
\(119\) 2.85103 0.0239582
\(120\) −38.9416 −0.324513
\(121\) −237.588 −1.96353
\(122\) 35.3265 35.3265i 0.289562 0.289562i
\(123\) 57.9687 57.9687i 0.471291 0.471291i
\(124\) 54.8355 54.8355i 0.442222 0.442222i
\(125\) 125.324 1.00259
\(126\) 32.6546i 0.259164i
\(127\) 100.087i 0.788090i 0.919091 + 0.394045i \(0.128925\pi\)
−0.919091 + 0.394045i \(0.871075\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) −129.621 129.621i −1.00482 1.00482i
\(130\) 44.7640 + 44.7640i 0.344338 + 0.344338i
\(131\) 40.6002 0.309925 0.154963 0.987920i \(-0.450474\pi\)
0.154963 + 0.987920i \(0.450474\pi\)
\(132\) 118.730 118.730i 0.899470 0.899470i
\(133\) 36.9140i 0.277549i
\(134\) 76.5063 76.5063i 0.570942 0.570942i
\(135\) 16.1223 + 16.1223i 0.119424 + 0.119424i
\(136\) 3.72146 0.0273637
\(137\) 173.022 + 173.022i 1.26294 + 1.26294i 0.949662 + 0.313275i \(0.101426\pi\)
0.313275 + 0.949662i \(0.398574\pi\)
\(138\) 210.355i 1.52431i
\(139\) 21.4620 21.4620i 0.154403 0.154403i −0.625678 0.780081i \(-0.715178\pi\)
0.780081 + 0.625678i \(0.215178\pi\)
\(140\) −9.51633 + 9.51633i −0.0679738 + 0.0679738i
\(141\) 229.920 229.920i 1.63064 1.63064i
\(142\) 18.6478 0.131322
\(143\) −272.964 −1.90884
\(144\) 42.6242i 0.296001i
\(145\) 44.9747 + 44.9747i 0.310170 + 0.310170i
\(146\) 52.8575 + 52.8575i 0.362038 + 0.362038i
\(147\) −138.894 138.894i −0.944855 0.944855i
\(148\) 103.014i 0.696044i
\(149\) 179.530i 1.20490i −0.798157 0.602450i \(-0.794191\pi\)
0.798157 0.602450i \(-0.205809\pi\)
\(150\) 96.2833i 0.641889i
\(151\) 49.9023i 0.330479i −0.986253 0.165240i \(-0.947160\pi\)
0.986253 0.165240i \(-0.0528397\pi\)
\(152\) 48.1839i 0.316999i
\(153\) −9.91400 9.91400i −0.0647974 0.0647974i
\(154\) 58.0292i 0.376813i
\(155\) −85.1438 85.1438i −0.549315 0.549315i
\(156\) 90.3797 90.3797i 0.579357 0.579357i
\(157\) 188.964 188.964i 1.20359 1.20359i 0.230523 0.973067i \(-0.425956\pi\)
0.973067 0.230523i \(-0.0740435\pi\)
\(158\) −79.4315 79.4315i −0.502731 0.502731i
\(159\) 100.335 100.335i 0.631035 0.631035i
\(160\) −12.4217 + 12.4217i −0.0776356 + 0.0776356i
\(161\) 51.4053 + 51.4053i 0.319288 + 0.319288i
\(162\) −63.3531 + 63.3531i −0.391069 + 0.391069i
\(163\) −159.069 159.069i −0.975881 0.975881i 0.0238344 0.999716i \(-0.492413\pi\)
−0.999716 + 0.0238344i \(0.992413\pi\)
\(164\) 36.9820i 0.225500i
\(165\) −184.354 184.354i −1.11729 1.11729i
\(166\) −154.321 −0.929644
\(167\) 113.583 113.583i 0.680140 0.680140i −0.279892 0.960032i \(-0.590299\pi\)
0.960032 + 0.279892i \(0.0902986\pi\)
\(168\) 19.2137 + 19.2137i 0.114367 + 0.114367i
\(169\) −38.7855 −0.229500
\(170\) 5.77835i 0.0339903i
\(171\) 128.362 128.362i 0.750658 0.750658i
\(172\) −82.6938 −0.480778
\(173\) −27.9682 −0.161666 −0.0808330 0.996728i \(-0.525758\pi\)
−0.0808330 + 0.996728i \(0.525758\pi\)
\(174\) 90.8051 90.8051i 0.521868 0.521868i
\(175\) −23.5292 23.5292i −0.134452 0.134452i
\(176\) 75.7456i 0.430373i
\(177\) 200.896 1.13501
\(178\) −84.5435 84.5435i −0.474964 0.474964i
\(179\) −2.40947 + 2.40947i −0.0134608 + 0.0134608i −0.713805 0.700344i \(-0.753030\pi\)
0.700344 + 0.713805i \(0.253030\pi\)
\(180\) 66.1831 0.367684
\(181\) 41.5849 + 41.5849i 0.229751 + 0.229751i 0.812589 0.582838i \(-0.198058\pi\)
−0.582838 + 0.812589i \(0.698058\pi\)
\(182\) 44.1729i 0.242708i
\(183\) −110.748 + 110.748i −0.605178 + 0.605178i
\(184\) 67.0995 + 67.0995i 0.364671 + 0.364671i
\(185\) 159.952 0.864604
\(186\) −171.908 + 171.908i −0.924235 + 0.924235i
\(187\) 17.6178 + 17.6178i 0.0942126 + 0.0942126i
\(188\) 146.681i 0.780217i
\(189\) 15.9094i 0.0841767i
\(190\) 74.8157 0.393767
\(191\) 136.365i 0.713954i 0.934113 + 0.356977i \(0.116193\pi\)
−0.934113 + 0.356977i \(0.883807\pi\)
\(192\) 25.0797 + 25.0797i 0.130624 + 0.130624i
\(193\) −247.200 247.200i −1.28083 1.28083i −0.940196 0.340634i \(-0.889358\pi\)
−0.340634 0.940196i \(-0.610642\pi\)
\(194\) −29.7035 29.7035i −0.153111 0.153111i
\(195\) −140.334 140.334i −0.719659 0.719659i
\(196\) −88.6093 −0.452088
\(197\) 9.66704 + 9.66704i 0.0490713 + 0.0490713i 0.731217 0.682145i \(-0.238953\pi\)
−0.682145 + 0.731217i \(0.738953\pi\)
\(198\) −201.787 + 201.787i −1.01913 + 1.01913i
\(199\) 243.218i 1.22220i −0.791552 0.611102i \(-0.790727\pi\)
0.791552 0.611102i \(-0.209273\pi\)
\(200\) −30.7127 30.7127i −0.153563 0.153563i
\(201\) −239.845 + 239.845i −1.19326 + 1.19326i
\(202\) 264.896i 1.31136i
\(203\) 44.3809i 0.218625i
\(204\) −11.6666 −0.0571895
\(205\) −57.4224 −0.280109
\(206\) −163.138 163.138i −0.791932 0.791932i
\(207\) 357.508i 1.72709i
\(208\) 57.6591i 0.277207i
\(209\) −228.108 + 228.108i −1.09142 + 1.09142i
\(210\) 29.8334 29.8334i 0.142064 0.142064i
\(211\) 117.950i 0.559004i 0.960145 + 0.279502i \(0.0901694\pi\)
−0.960145 + 0.279502i \(0.909831\pi\)
\(212\) 64.0100i 0.301934i
\(213\) −58.4602 −0.274461
\(214\) 247.876 1.15830
\(215\) 128.400i 0.597208i
\(216\) 20.7666i 0.0961416i
\(217\) 84.0197i 0.387187i
\(218\) −50.2967 −0.230719
\(219\) −165.707 165.707i −0.756652 0.756652i
\(220\) −117.611 −0.534596
\(221\) 13.4110 + 13.4110i 0.0606832 + 0.0606832i
\(222\) 322.947i 1.45472i
\(223\) 96.7915 + 96.7915i 0.434043 + 0.434043i 0.890001 0.455958i \(-0.150703\pi\)
−0.455958 + 0.890001i \(0.650703\pi\)
\(224\) 12.2577 0.0547218
\(225\) 163.638i 0.727280i
\(226\) 132.323 0.585502
\(227\) −193.589 193.589i −0.852817 0.852817i 0.137663 0.990479i \(-0.456041\pi\)
−0.990479 + 0.137663i \(0.956041\pi\)
\(228\) 151.055i 0.662522i
\(229\) −53.4738 + 53.4738i −0.233510 + 0.233510i −0.814156 0.580646i \(-0.802800\pi\)
0.580646 + 0.814156i \(0.302800\pi\)
\(230\) 104.186 104.186i 0.452984 0.452984i
\(231\) 181.920i 0.787531i
\(232\) 57.9305i 0.249700i
\(233\) 59.7154i 0.256289i −0.991755 0.128145i \(-0.959098\pi\)
0.991755 0.128145i \(-0.0409022\pi\)
\(234\) −153.604 + 153.604i −0.656429 + 0.656429i
\(235\) −227.753 −0.969162
\(236\) 64.0824 64.0824i 0.271536 0.271536i
\(237\) 249.015 + 249.015i 1.05070 + 1.05070i
\(238\) −2.85103 + 2.85103i −0.0119791 + 0.0119791i
\(239\) 67.0954 0.280734 0.140367 0.990100i \(-0.455172\pi\)
0.140367 + 0.990100i \(0.455172\pi\)
\(240\) 38.9416 38.9416i 0.162257 0.162257i
\(241\) −169.514 169.514i −0.703379 0.703379i 0.261755 0.965134i \(-0.415699\pi\)
−0.965134 + 0.261755i \(0.915699\pi\)
\(242\) 237.588 237.588i 0.981767 0.981767i
\(243\) 245.335 245.335i 1.00961 1.00961i
\(244\) 70.6531i 0.289562i
\(245\) 137.585i 0.561570i
\(246\) 115.937i 0.471291i
\(247\) −173.640 + 173.640i −0.702996 + 0.702996i
\(248\) 109.671i 0.442222i
\(249\) 483.791 1.94294
\(250\) −125.324 + 125.324i −0.501294 + 0.501294i
\(251\) 264.697 264.697i 1.05457 1.05457i 0.0561455 0.998423i \(-0.482119\pi\)
0.998423 0.0561455i \(-0.0178811\pi\)
\(252\) −32.6546 32.6546i −0.129582 0.129582i
\(253\) 635.312i 2.51112i
\(254\) −100.087 100.087i −0.394045 0.394045i
\(255\) 18.1149i 0.0710390i
\(256\) 16.0000 0.0625000
\(257\) 313.670 313.670i 1.22050 1.22050i 0.253052 0.967453i \(-0.418566\pi\)
0.967453 0.253052i \(-0.0814344\pi\)
\(258\) 259.243 1.00482
\(259\) −78.9199 78.9199i −0.304710 0.304710i
\(260\) −89.5279 −0.344338
\(261\) −154.327 + 154.327i −0.591293 + 0.591293i
\(262\) −40.6002 + 40.6002i −0.154963 + 0.154963i
\(263\) 283.691 1.07867 0.539336 0.842090i \(-0.318675\pi\)
0.539336 + 0.842090i \(0.318675\pi\)
\(264\) 237.460i 0.899470i
\(265\) −99.3891 −0.375053
\(266\) −36.9140 36.9140i −0.138774 0.138774i
\(267\) 265.041 + 265.041i 0.992664 + 0.992664i
\(268\) 153.013i 0.570942i
\(269\) 97.9596 + 250.529i 0.364162 + 0.931336i
\(270\) −32.2445 −0.119424
\(271\) −27.8872 + 27.8872i −0.102905 + 0.102905i −0.756685 0.653780i \(-0.773182\pi\)
0.653780 + 0.756685i \(0.273182\pi\)
\(272\) −3.72146 + 3.72146i −0.0136818 + 0.0136818i
\(273\) 138.481i 0.507255i
\(274\) −346.045 −1.26294
\(275\) 290.794i 1.05743i
\(276\) −210.355 210.355i −0.762155 0.762155i
\(277\) −115.987 115.987i −0.418725 0.418725i 0.466039 0.884764i \(-0.345681\pi\)
−0.884764 + 0.466039i \(0.845681\pi\)
\(278\) 42.9239i 0.154403i
\(279\) 292.165 292.165i 1.04719 1.04719i
\(280\) 19.0327i 0.0679738i
\(281\) −328.588 328.588i −1.16935 1.16935i −0.982362 0.186989i \(-0.940127\pi\)
−0.186989 0.982362i \(-0.559873\pi\)
\(282\) 459.840i 1.63064i
\(283\) −263.473 −0.931000 −0.465500 0.885048i \(-0.654125\pi\)
−0.465500 + 0.885048i \(0.654125\pi\)
\(284\) −18.6478 + 18.6478i −0.0656612 + 0.0656612i
\(285\) −234.545 −0.822964
\(286\) 272.964 272.964i 0.954420 0.954420i
\(287\) 28.3321 + 28.3321i 0.0987183 + 0.0987183i
\(288\) −42.6242 42.6242i −0.148001 0.148001i
\(289\) 287.269i 0.994010i
\(290\) −89.9493 −0.310170
\(291\) 93.1196 + 93.1196i 0.319999 + 0.319999i
\(292\) −105.715 −0.362038
\(293\) −43.1690 −0.147335 −0.0736673 0.997283i \(-0.523470\pi\)
−0.0736673 + 0.997283i \(0.523470\pi\)
\(294\) 277.787 0.944855
\(295\) −99.5015 99.5015i −0.337293 0.337293i
\(296\) −103.014 103.014i −0.348022 0.348022i
\(297\) 98.3112 98.3112i 0.331014 0.331014i
\(298\) 179.530 + 179.530i 0.602450 + 0.602450i
\(299\) 483.612i 1.61743i
\(300\) 96.2833 + 96.2833i 0.320944 + 0.320944i
\(301\) 63.3522 63.3522i 0.210473 0.210473i
\(302\) 49.9023 + 49.9023i 0.165240 + 0.165240i
\(303\) 830.439i 2.74072i
\(304\) −48.1839 48.1839i −0.158500 0.158500i
\(305\) 109.704 0.359685
\(306\) 19.8280 0.0647974
\(307\) −34.0861 −0.111029 −0.0555147 0.998458i \(-0.517680\pi\)
−0.0555147 + 0.998458i \(0.517680\pi\)
\(308\) 58.0292 + 58.0292i 0.188406 + 0.188406i
\(309\) 511.432 + 511.432i 1.65512 + 1.65512i
\(310\) 170.288 0.549315
\(311\) 424.256 424.256i 1.36417 1.36417i 0.495638 0.868529i \(-0.334934\pi\)
0.868529 0.495638i \(-0.165066\pi\)
\(312\) 180.759i 0.579357i
\(313\) −16.5274 −0.0528031 −0.0264016 0.999651i \(-0.508405\pi\)
−0.0264016 + 0.999651i \(0.508405\pi\)
\(314\) 377.927i 1.20359i
\(315\) −50.7032 + 50.7032i −0.160963 + 0.160963i
\(316\) 158.863 0.502731
\(317\) −133.688 + 133.688i −0.421730 + 0.421730i −0.885799 0.464069i \(-0.846389\pi\)
0.464069 + 0.885799i \(0.346389\pi\)
\(318\) 200.669i 0.631035i
\(319\) 274.249 274.249i 0.859714 0.859714i
\(320\) 24.8434i 0.0776356i
\(321\) −777.082 −2.42082
\(322\) −102.811 −0.319288
\(323\) 22.4143 0.0693941
\(324\) 126.706i 0.391069i
\(325\) 221.358i 0.681102i
\(326\) 318.137 0.975881
\(327\) 157.678 0.482197
\(328\) 36.9820 + 36.9820i 0.112750 + 0.112750i
\(329\) 112.373 + 112.373i 0.341559 + 0.341559i
\(330\) 368.707 1.11729
\(331\) −18.0652 −0.0545776 −0.0272888 0.999628i \(-0.508687\pi\)
−0.0272888 + 0.999628i \(0.508687\pi\)
\(332\) 154.321 154.321i 0.464822 0.464822i
\(333\) 548.863i 1.64824i
\(334\) 227.167i 0.680140i
\(335\) 237.584 0.709207
\(336\) −38.4275 −0.114367
\(337\) −90.1132 90.1132i −0.267398 0.267398i 0.560653 0.828051i \(-0.310550\pi\)
−0.828051 + 0.560653i \(0.810550\pi\)
\(338\) 38.7855 38.7855i 0.114750 0.114750i
\(339\) −414.829 −1.22369
\(340\) 5.77835 + 5.77835i 0.0169951 + 0.0169951i
\(341\) −519.194 + 519.194i −1.52256 + 1.52256i
\(342\) 256.725i 0.750658i
\(343\) 142.962 142.962i 0.416800 0.416800i
\(344\) 82.6938 82.6938i 0.240389 0.240389i
\(345\) −326.620 + 326.620i −0.946726 + 0.946726i
\(346\) 27.9682 27.9682i 0.0808330 0.0808330i
\(347\) −96.5159 −0.278144 −0.139072 0.990282i \(-0.544412\pi\)
−0.139072 + 0.990282i \(0.544412\pi\)
\(348\) 181.610i 0.521868i
\(349\) −416.690 −1.19396 −0.596978 0.802258i \(-0.703632\pi\)
−0.596978 + 0.802258i \(0.703632\pi\)
\(350\) 47.0583 0.134452
\(351\) 74.8364 74.8364i 0.213209 0.213209i
\(352\) 75.7456 + 75.7456i 0.215187 + 0.215187i
\(353\) 266.525i 0.755027i −0.926004 0.377514i \(-0.876779\pi\)
0.926004 0.377514i \(-0.123221\pi\)
\(354\) −200.896 + 200.896i −0.567504 + 0.567504i
\(355\) 28.9546 + 28.9546i 0.0815623 + 0.0815623i
\(356\) 169.087 0.474964
\(357\) 8.93789 8.93789i 0.0250361 0.0250361i
\(358\) 4.81895i 0.0134608i
\(359\) 307.773 + 307.773i 0.857306 + 0.857306i 0.991020 0.133714i \(-0.0426903\pi\)
−0.133714 + 0.991020i \(0.542690\pi\)
\(360\) −66.1831 + 66.1831i −0.183842 + 0.183842i
\(361\) 70.7890i 0.196091i
\(362\) −83.1698 −0.229751
\(363\) −744.830 + 744.830i −2.05187 + 2.05187i
\(364\) 44.1729 + 44.1729i 0.121354 + 0.121354i
\(365\) 164.145i 0.449712i
\(366\) 221.495i 0.605178i
\(367\) −25.3251 25.3251i −0.0690057 0.0690057i 0.671762 0.740767i \(-0.265538\pi\)
−0.740767 + 0.671762i \(0.765538\pi\)
\(368\) −134.199 −0.364671
\(369\) 197.041i 0.533987i
\(370\) −159.952 + 159.952i −0.432302 + 0.432302i
\(371\) 49.0384 + 49.0384i 0.132179 + 0.132179i
\(372\) 343.815i 0.924235i
\(373\) 286.373 286.373i 0.767757 0.767757i −0.209954 0.977711i \(-0.567332\pi\)
0.977711 + 0.209954i \(0.0673315\pi\)
\(374\) −35.2355 −0.0942126
\(375\) 392.885 392.885i 1.04769 1.04769i
\(376\) 146.681 + 146.681i 0.390109 + 0.390109i
\(377\) 208.764 208.764i 0.553749 0.553749i
\(378\) 15.9094 + 15.9094i 0.0420884 + 0.0420884i
\(379\) −52.5935 52.5935i −0.138769 0.138769i 0.634310 0.773079i \(-0.281284\pi\)
−0.773079 + 0.634310i \(0.781284\pi\)
\(380\) −74.8157 + 74.8157i −0.196883 + 0.196883i
\(381\) 313.771 + 313.771i 0.823545 + 0.823545i
\(382\) −136.365 136.365i −0.356977 0.356977i
\(383\) 148.999 148.999i 0.389032 0.389032i −0.485310 0.874342i \(-0.661293\pi\)
0.874342 + 0.485310i \(0.161293\pi\)
\(384\) −50.1595 −0.130624
\(385\) 90.1026 90.1026i 0.234033 0.234033i
\(386\) 494.400 1.28083
\(387\) −440.595 −1.13849
\(388\) 59.4071 0.153111
\(389\) −573.341 −1.47389 −0.736943 0.675955i \(-0.763731\pi\)
−0.736943 + 0.675955i \(0.763731\pi\)
\(390\) 280.667 0.719659
\(391\) 31.2135 31.2135i 0.0798300 0.0798300i
\(392\) 88.6093 88.6093i 0.226044 0.226044i
\(393\) 127.280 127.280i 0.323868 0.323868i
\(394\) −19.3341 −0.0490713
\(395\) 246.669i 0.624477i
\(396\) 403.575i 1.01913i
\(397\) 233.627 + 233.627i 0.588480 + 0.588480i 0.937220 0.348740i \(-0.113390\pi\)
−0.348740 + 0.937220i \(0.613390\pi\)
\(398\) 243.218 + 243.218i 0.611102 + 0.611102i
\(399\) 115.724 + 115.724i 0.290035 + 0.290035i
\(400\) 61.4254 0.153563
\(401\) −432.194 + 432.194i −1.07779 + 1.07779i −0.0810836 + 0.996707i \(0.525838\pi\)
−0.996707 + 0.0810836i \(0.974162\pi\)
\(402\) 479.689i 1.19326i
\(403\) −395.221 + 395.221i −0.980697 + 0.980697i
\(404\) 264.896 + 264.896i 0.655682 + 0.655682i
\(405\) −196.738 −0.485773
\(406\) 44.3809 + 44.3809i 0.109312 + 0.109312i
\(407\) 975.362i 2.39647i
\(408\) 11.6666 11.6666i 0.0285947 0.0285947i
\(409\) 237.474 237.474i 0.580622 0.580622i −0.354452 0.935074i \(-0.615333\pi\)
0.935074 + 0.354452i \(0.115333\pi\)
\(410\) 57.4224 57.4224i 0.140055 0.140055i
\(411\) 1084.84 2.63951
\(412\) 326.276 0.791932
\(413\) 98.1878i 0.237743i
\(414\) 357.508 + 357.508i 0.863546 + 0.863546i
\(415\) −239.616 239.616i −0.577388 0.577388i
\(416\) 57.6591 + 57.6591i 0.138604 + 0.138604i
\(417\) 134.565i 0.322698i
\(418\) 456.215i 1.09142i
\(419\) 79.4467i 0.189610i −0.995496 0.0948051i \(-0.969777\pi\)
0.995496 0.0948051i \(-0.0302228\pi\)
\(420\) 59.6668i 0.142064i
\(421\) 318.129i 0.755650i −0.925877 0.377825i \(-0.876672\pi\)
0.925877 0.377825i \(-0.123328\pi\)
\(422\) −117.950 117.950i −0.279502 0.279502i
\(423\) 781.519i 1.84756i
\(424\) 64.0100 + 64.0100i 0.150967 + 0.150967i
\(425\) −14.2870 + 14.2870i −0.0336165 + 0.0336165i
\(426\) 58.4602 58.4602i 0.137231 0.137231i
\(427\) −54.1277 54.1277i −0.126763 0.126763i
\(428\) −247.876 + 247.876i −0.579148 + 0.579148i
\(429\) −855.733 + 855.733i −1.99472 + 1.99472i
\(430\) −128.400 128.400i −0.298604 0.298604i
\(431\) −207.897 + 207.897i −0.482360 + 0.482360i −0.905885 0.423524i \(-0.860793\pi\)
0.423524 + 0.905885i \(0.360793\pi\)
\(432\) 20.7666 + 20.7666i 0.0480708 + 0.0480708i
\(433\) 566.939i 1.30933i 0.755920 + 0.654664i \(0.227190\pi\)
−0.755920 + 0.654664i \(0.772810\pi\)
\(434\) −84.0197 84.0197i −0.193594 0.193594i
\(435\) 281.988 0.648249
\(436\) 50.2967 50.2967i 0.115359 0.115359i
\(437\) 404.140 + 404.140i 0.924805 + 0.924805i
\(438\) 331.413 0.756652
\(439\) 141.773i 0.322946i −0.986877 0.161473i \(-0.948375\pi\)
0.986877 0.161473i \(-0.0516245\pi\)
\(440\) 117.611 117.611i 0.267298 0.267298i
\(441\) −472.112 −1.07055
\(442\) −26.8220 −0.0606832
\(443\) 46.6925 46.6925i 0.105401 0.105401i −0.652440 0.757841i \(-0.726254\pi\)
0.757841 + 0.652440i \(0.226254\pi\)
\(444\) 322.947 + 322.947i 0.727358 + 0.727358i
\(445\) 262.543i 0.589985i
\(446\) −193.583 −0.434043
\(447\) −562.821 562.821i −1.25911 1.25911i
\(448\) −12.2577 + 12.2577i −0.0273609 + 0.0273609i
\(449\) 240.453 0.535531 0.267765 0.963484i \(-0.413715\pi\)
0.267765 + 0.963484i \(0.413715\pi\)
\(450\) −163.638 163.638i −0.363640 0.363640i
\(451\) 350.154i 0.776394i
\(452\) −132.323 + 132.323i −0.292751 + 0.292751i
\(453\) −156.442 156.442i −0.345347 0.345347i
\(454\) 387.179 0.852817
\(455\) 68.5878 68.5878i 0.150742 0.150742i
\(456\) 151.055 + 151.055i 0.331261 + 0.331261i
\(457\) 639.175i 1.39863i 0.714812 + 0.699316i \(0.246512\pi\)
−0.714812 + 0.699316i \(0.753488\pi\)
\(458\) 106.948i 0.233510i
\(459\) −9.66025 −0.0210463
\(460\) 208.372i 0.452984i
\(461\) 489.462 + 489.462i 1.06174 + 1.06174i 0.997964 + 0.0637747i \(0.0203139\pi\)
0.0637747 + 0.997964i \(0.479686\pi\)
\(462\) −181.920 181.920i −0.393765 0.393765i
\(463\) 416.736 + 416.736i 0.900077 + 0.900077i 0.995442 0.0953650i \(-0.0304018\pi\)
−0.0953650 + 0.995442i \(0.530402\pi\)
\(464\) 57.9305 + 57.9305i 0.124850 + 0.124850i
\(465\) −533.846 −1.14806
\(466\) 59.7154 + 59.7154i 0.128145 + 0.128145i
\(467\) 246.123 246.123i 0.527031 0.527031i −0.392655 0.919686i \(-0.628443\pi\)
0.919686 + 0.392655i \(0.128443\pi\)
\(468\) 307.209i 0.656429i
\(469\) −117.224 117.224i −0.249944 0.249944i
\(470\) 227.753 227.753i 0.484581 0.484581i
\(471\) 1184.79i 2.51548i
\(472\) 128.165i 0.271536i
\(473\) 782.962 1.65531
\(474\) −498.031 −1.05070
\(475\) −184.982 184.982i −0.389436 0.389436i
\(476\) 5.70206i 0.0119791i
\(477\) 341.047i 0.714983i
\(478\) −67.0954 + 67.0954i −0.140367 + 0.140367i
\(479\) −405.375 + 405.375i −0.846295 + 0.846295i −0.989669 0.143374i \(-0.954205\pi\)
0.143374 + 0.989669i \(0.454205\pi\)
\(480\) 77.8832i 0.162257i
\(481\) 742.465i 1.54359i
\(482\) 339.029 0.703379
\(483\) 322.308 0.667305
\(484\) 475.175i 0.981767i
\(485\) 92.2421i 0.190190i
\(486\) 490.670i 1.00961i
\(487\) −85.8008 −0.176182 −0.0880911 0.996112i \(-0.528077\pi\)
−0.0880911 + 0.996112i \(0.528077\pi\)
\(488\) −70.6531 70.6531i −0.144781 0.144781i
\(489\) −997.350 −2.03957
\(490\) −137.585 137.585i −0.280785 0.280785i
\(491\) 765.799i 1.55967i −0.625983 0.779836i \(-0.715302\pi\)
0.625983 0.779836i \(-0.284698\pi\)
\(492\) −115.937 115.937i −0.235645 0.235645i
\(493\) −26.9482 −0.0546617
\(494\) 347.280i 0.702996i
\(495\) −626.635 −1.26593
\(496\) −109.671 109.671i −0.221111 0.221111i
\(497\) 28.5723i 0.0574896i
\(498\) −483.791 + 483.791i −0.971468 + 0.971468i
\(499\) −405.675 + 405.675i −0.812976 + 0.812976i −0.985079 0.172103i \(-0.944944\pi\)
0.172103 + 0.985079i \(0.444944\pi\)
\(500\) 250.647i 0.501294i
\(501\) 712.160i 1.42148i
\(502\) 529.393i 1.05457i
\(503\) 242.673 242.673i 0.482452 0.482452i −0.423462 0.905914i \(-0.639185\pi\)
0.905914 + 0.423462i \(0.139185\pi\)
\(504\) 65.3093 0.129582
\(505\) 411.306 411.306i 0.814468 0.814468i
\(506\) −635.312 635.312i −1.25556 1.25556i
\(507\) −121.591 + 121.591i −0.239825 + 0.239825i
\(508\) 200.175 0.394045
\(509\) 494.674 494.674i 0.971854 0.971854i −0.0277604 0.999615i \(-0.508838\pi\)
0.999615 + 0.0277604i \(0.00883756\pi\)
\(510\) −18.1149 18.1149i −0.0355195 0.0355195i
\(511\) 80.9889 80.9889i 0.158491 0.158491i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 125.077i 0.243815i
\(514\) 627.339i 1.22050i
\(515\) 506.613i 0.983714i
\(516\) −259.243 + 259.243i −0.502408 + 0.502408i
\(517\) 1388.80i 2.68628i
\(518\) 157.840 0.304710
\(519\) −87.6794 + 87.6794i −0.168939 + 0.168939i
\(520\) 89.5279 89.5279i 0.172169 0.172169i
\(521\) −87.6064 87.6064i −0.168150 0.168150i 0.618015 0.786166i \(-0.287937\pi\)
−0.786166 + 0.618015i \(0.787937\pi\)
\(522\) 308.655i 0.591293i
\(523\) −473.039 473.039i −0.904473 0.904473i 0.0913465 0.995819i \(-0.470883\pi\)
−0.995819 + 0.0913465i \(0.970883\pi\)
\(524\) 81.2004i 0.154963i
\(525\) −147.526 −0.281003
\(526\) −283.691 + 283.691i −0.539336 + 0.539336i
\(527\) 51.0170 0.0968065
\(528\) −237.460 237.460i −0.449735 0.449735i
\(529\) 596.587 1.12776
\(530\) 99.3891 99.3891i 0.187527 0.187527i
\(531\) 341.433 341.433i 0.642999 0.642999i
\(532\) 73.8279 0.138774
\(533\) 266.544i 0.500082i
\(534\) −530.082 −0.992664
\(535\) 384.879 + 384.879i 0.719400 + 0.719400i
\(536\) −153.013 153.013i −0.285471 0.285471i
\(537\) 15.1073i 0.0281327i
\(538\) −348.489 152.570i −0.647749 0.283587i
\(539\) 838.971 1.55653
\(540\) 32.2445 32.2445i 0.0597121 0.0597121i
\(541\) 428.008 428.008i 0.791142 0.791142i −0.190538 0.981680i \(-0.561023\pi\)
0.981680 + 0.190538i \(0.0610231\pi\)
\(542\) 55.7745i 0.102905i
\(543\) 260.735 0.480175
\(544\) 7.44292i 0.0136818i
\(545\) −78.0962 78.0962i −0.143296 0.143296i
\(546\) −138.481 138.481i −0.253628 0.253628i
\(547\) 390.526i 0.713941i −0.934116 0.356970i \(-0.883810\pi\)
0.934116 0.356970i \(-0.116190\pi\)
\(548\) 346.045 346.045i 0.631469 0.631469i
\(549\) 376.441i 0.685685i
\(550\) 290.794 + 290.794i 0.528717 + 0.528717i
\(551\) 348.914i 0.633239i
\(552\) 420.710 0.762155
\(553\) −121.706 + 121.706i −0.220083 + 0.220083i
\(554\) 231.974 0.418725
\(555\) 501.443 501.443i 0.903502 0.903502i
\(556\) −42.9239 42.9239i −0.0772013 0.0772013i
\(557\) 130.732 + 130.732i 0.234708 + 0.234708i 0.814655 0.579947i \(-0.196927\pi\)
−0.579947 + 0.814655i \(0.696927\pi\)
\(558\) 584.330i 1.04719i
\(559\) 596.006 1.06620
\(560\) 19.0327 + 19.0327i 0.0339869 + 0.0339869i
\(561\) 110.462 0.196902
\(562\) 657.175 1.16935
\(563\) −423.905 −0.752940 −0.376470 0.926429i \(-0.622862\pi\)
−0.376470 + 0.926429i \(0.622862\pi\)
\(564\) −459.840 459.840i −0.815319 0.815319i
\(565\) 205.460 + 205.460i 0.363646 + 0.363646i
\(566\) 263.473 263.473i 0.465500 0.465500i
\(567\) 97.0704 + 97.0704i 0.171200 + 0.171200i
\(568\) 37.2956i 0.0656612i
\(569\) −417.398 417.398i −0.733565 0.733565i 0.237759 0.971324i \(-0.423587\pi\)
−0.971324 + 0.237759i \(0.923587\pi\)
\(570\) 234.545 234.545i 0.411482 0.411482i
\(571\) 183.766 + 183.766i 0.321832 + 0.321832i 0.849470 0.527637i \(-0.176922\pi\)
−0.527637 + 0.849470i \(0.676922\pi\)
\(572\) 545.928i 0.954420i
\(573\) 427.501 + 427.501i 0.746074 + 0.746074i
\(574\) −56.6643 −0.0987183
\(575\) −515.202 −0.896003
\(576\) 85.2484 0.148001
\(577\) −25.5743 25.5743i −0.0443229 0.0443229i 0.684598 0.728921i \(-0.259978\pi\)
−0.728921 + 0.684598i \(0.759978\pi\)
\(578\) −287.269 287.269i −0.497005 0.497005i
\(579\) −1549.93 −2.67691
\(580\) 89.9493 89.9493i 0.155085 0.155085i
\(581\) 236.452i 0.406975i
\(582\) −186.239 −0.319999
\(583\) 606.060i 1.03955i
\(584\) 105.715 105.715i 0.181019 0.181019i
\(585\) −477.007 −0.815396
\(586\) 43.1690 43.1690i 0.0736673 0.0736673i
\(587\) 425.068i 0.724137i −0.932152 0.362068i \(-0.882071\pi\)
0.932152 0.362068i \(-0.117929\pi\)
\(588\) −277.787 + 277.787i −0.472427 + 0.472427i
\(589\) 660.548i 1.12147i
\(590\) 199.003 0.337293
\(591\) 60.6117 0.102558
\(592\) 206.029 0.348022
\(593\) 446.633i 0.753175i 0.926381 + 0.376588i \(0.122903\pi\)
−0.926381 + 0.376588i \(0.877097\pi\)
\(594\) 196.622i 0.331014i
\(595\) −8.85365 −0.0148801
\(596\) −359.060 −0.602450
\(597\) −762.482 762.482i −1.27719 1.27719i
\(598\) −483.612 483.612i −0.808716 0.808716i
\(599\) −653.142 −1.09039 −0.545193 0.838310i \(-0.683544\pi\)
−0.545193 + 0.838310i \(0.683544\pi\)
\(600\) −192.567 −0.320944
\(601\) −126.331 + 126.331i −0.210202 + 0.210202i −0.804353 0.594152i \(-0.797488\pi\)
0.594152 + 0.804353i \(0.297488\pi\)
\(602\) 126.704i 0.210473i
\(603\) 815.254i 1.35200i
\(604\) −99.8047 −0.165240
\(605\) 737.810 1.21952
\(606\) −830.439 830.439i −1.37036 1.37036i
\(607\) −8.96170 + 8.96170i −0.0147639 + 0.0147639i −0.714450 0.699686i \(-0.753323\pi\)
0.699686 + 0.714450i \(0.253323\pi\)
\(608\) 96.3678 0.158500
\(609\) −139.133 139.133i −0.228461 0.228461i
\(610\) −109.704 + 109.704i −0.179842 + 0.179842i
\(611\) 1057.19i 1.73025i
\(612\) −19.8280 + 19.8280i −0.0323987 + 0.0323987i
\(613\) 366.405 366.405i 0.597724 0.597724i −0.341982 0.939706i \(-0.611098\pi\)
0.939706 + 0.341982i \(0.111098\pi\)
\(614\) 34.0861 34.0861i 0.0555147 0.0555147i
\(615\) −180.017 + 180.017i −0.292711 + 0.292711i
\(616\) −116.058 −0.188406
\(617\) 934.344i 1.51433i −0.653221 0.757167i \(-0.726583\pi\)
0.653221 0.757167i \(-0.273417\pi\)
\(618\) −1022.86 −1.65512
\(619\) −210.208 −0.339593 −0.169797 0.985479i \(-0.554311\pi\)
−0.169797 + 0.985479i \(0.554311\pi\)
\(620\) −170.288 + 170.288i −0.274657 + 0.274657i
\(621\) −174.179 174.179i −0.280481 0.280481i
\(622\) 848.512i 1.36417i
\(623\) −129.539 + 129.539i −0.207927 + 0.207927i
\(624\) −180.759 180.759i −0.289678 0.289678i
\(625\) −5.27391 −0.00843825
\(626\) 16.5274 16.5274i 0.0264016 0.0264016i
\(627\) 1430.22i 2.28105i
\(628\) −377.927 377.927i −0.601795 0.601795i
\(629\) −47.9205 + 47.9205i −0.0761852 + 0.0761852i
\(630\) 101.406i 0.160963i
\(631\) 568.563 0.901050 0.450525 0.892764i \(-0.351237\pi\)
0.450525 + 0.892764i \(0.351237\pi\)
\(632\) −158.863 + 158.863i −0.251366 + 0.251366i
\(633\) 369.769 + 369.769i 0.584153 + 0.584153i
\(634\) 267.377i 0.421730i
\(635\) 310.814i 0.489470i
\(636\) −200.669 200.669i −0.315518 0.315518i
\(637\) 638.641 1.00258
\(638\) 548.498i 0.859714i
\(639\) −99.3558 + 99.3558i −0.155486 + 0.155486i
\(640\) 24.8434 + 24.8434i 0.0388178 + 0.0388178i
\(641\) 341.953i 0.533468i −0.963770 0.266734i \(-0.914055\pi\)
0.963770 0.266734i \(-0.0859446\pi\)
\(642\) 777.082 777.082i 1.21041 1.21041i
\(643\) 960.068 1.49311 0.746554 0.665325i \(-0.231707\pi\)
0.746554 + 0.665325i \(0.231707\pi\)
\(644\) 102.811 102.811i 0.159644 0.159644i
\(645\) 402.529 + 402.529i 0.624076 + 0.624076i
\(646\) −22.4143 + 22.4143i −0.0346970 + 0.0346970i
\(647\) 152.256 + 152.256i 0.235327 + 0.235327i 0.814912 0.579585i \(-0.196785\pi\)
−0.579585 + 0.814912i \(0.696785\pi\)
\(648\) 126.706 + 126.706i 0.195534 + 0.195534i
\(649\) −606.746 + 606.746i −0.934893 + 0.934893i
\(650\) 221.358 + 221.358i 0.340551 + 0.340551i
\(651\) 263.399 + 263.399i 0.404607 + 0.404607i
\(652\) −318.137 + 318.137i −0.487941 + 0.487941i
\(653\) 40.5452 0.0620907 0.0310453 0.999518i \(-0.490116\pi\)
0.0310453 + 0.999518i \(0.490116\pi\)
\(654\) −157.678 + 157.678i −0.241098 + 0.241098i
\(655\) −126.081 −0.192490
\(656\) −73.9641 −0.112750
\(657\) −563.252 −0.857310
\(658\) −224.746 −0.341559
\(659\) −97.3853 −0.147777 −0.0738887 0.997266i \(-0.523541\pi\)
−0.0738887 + 0.997266i \(0.523541\pi\)
\(660\) −368.707 + 368.707i −0.558647 + 0.558647i
\(661\) −401.769 + 401.769i −0.607821 + 0.607821i −0.942376 0.334555i \(-0.891414\pi\)
0.334555 + 0.942376i \(0.391414\pi\)
\(662\) 18.0652 18.0652i 0.0272888 0.0272888i
\(663\) 84.0860 0.126827
\(664\) 308.642i 0.464822i
\(665\) 114.633i 0.172381i
\(666\) −548.863 548.863i −0.824119 0.824119i
\(667\) −485.888 485.888i −0.728468 0.728468i
\(668\) −227.167 227.167i −0.340070 0.340070i
\(669\) 606.877 0.907140
\(670\) −237.584 + 237.584i −0.354604 + 0.354604i
\(671\) 668.958i 0.996957i
\(672\) 38.4275 38.4275i 0.0571837 0.0571837i
\(673\) 808.262 + 808.262i 1.20098 + 1.20098i 0.973868 + 0.227116i \(0.0729295\pi\)
0.227116 + 0.973868i \(0.427071\pi\)
\(674\) 180.226 0.267398
\(675\) 79.7247 + 79.7247i 0.118111 + 0.118111i
\(676\) 77.5710i 0.114750i
\(677\) −758.637 + 758.637i −1.12059 + 1.12059i −0.128933 + 0.991653i \(0.541155\pi\)
−0.991653 + 0.128933i \(0.958845\pi\)
\(678\) 414.829 414.829i 0.611843 0.611843i
\(679\) −45.5121 + 45.5121i −0.0670281 + 0.0670281i
\(680\) −11.5567 −0.0169951
\(681\) −1213.79 −1.78237
\(682\) 1038.39i 1.52256i
\(683\) 812.479 + 812.479i 1.18957 + 1.18957i 0.977185 + 0.212389i \(0.0681244\pi\)
0.212389 + 0.977185i \(0.431876\pi\)
\(684\) −256.725 256.725i −0.375329 0.375329i
\(685\) −537.308 537.308i −0.784391 0.784391i
\(686\) 285.925i 0.416800i
\(687\) 335.277i 0.488031i
\(688\) 165.388i 0.240389i
\(689\) 461.345i 0.669586i
\(690\) 653.241i 0.946726i
\(691\) −791.102 791.102i −1.14487 1.14487i −0.987548 0.157318i \(-0.949715\pi\)
−0.157318 0.987548i \(-0.550285\pi\)
\(692\) 55.9364i 0.0808330i
\(693\) 309.181 + 309.181i 0.446148 + 0.446148i
\(694\) 96.5159 96.5159i 0.139072 0.139072i
\(695\) −66.6485 + 66.6485i −0.0958971 + 0.0958971i
\(696\) −181.610 181.610i −0.260934 0.260934i
\(697\) 17.2034 17.2034i 0.0246820 0.0246820i
\(698\) 416.690 416.690i 0.596978 0.596978i
\(699\) −187.206 187.206i −0.267820 0.267820i
\(700\) −47.0583 + 47.0583i −0.0672262 + 0.0672262i
\(701\) 280.903 + 280.903i 0.400718 + 0.400718i 0.878486 0.477768i \(-0.158554\pi\)
−0.477768 + 0.878486i \(0.658554\pi\)
\(702\) 149.673i 0.213209i
\(703\) −620.455 620.455i −0.882581 0.882581i
\(704\) −151.491 −0.215187
\(705\) −713.998 + 713.998i −1.01276 + 1.01276i
\(706\) 266.525 + 266.525i 0.377514 + 0.377514i
\(707\) −405.876 −0.574082
\(708\) 401.793i 0.567504i
\(709\) 767.643 767.643i 1.08271 1.08271i 0.0864567 0.996256i \(-0.472446\pi\)
0.996256 0.0864567i \(-0.0275544\pi\)
\(710\) −57.9093 −0.0815623
\(711\) 846.426 1.19047
\(712\) −169.087 + 169.087i −0.237482 + 0.237482i
\(713\) 919.860 + 919.860i 1.29013 + 1.29013i
\(714\) 17.8758i 0.0250361i
\(715\) 847.669 1.18555
\(716\) 4.81895 + 4.81895i 0.00673038 + 0.00673038i
\(717\) 210.342 210.342i 0.293364 0.293364i
\(718\) −615.546 −0.857306
\(719\) −602.179 602.179i −0.837523 0.837523i 0.151010 0.988532i \(-0.451748\pi\)
−0.988532 + 0.151010i \(0.951748\pi\)
\(720\) 132.366i 0.183842i
\(721\) −249.962 + 249.962i −0.346688 + 0.346688i
\(722\) 70.7890 + 70.7890i 0.0980457 + 0.0980457i
\(723\) −1062.84 −1.47005
\(724\) 83.1698 83.1698i 0.114875 0.114875i
\(725\) 222.400 + 222.400i 0.306759 + 0.306759i
\(726\) 1489.66i 2.05187i
\(727\) 186.199i 0.256120i −0.991766 0.128060i \(-0.959125\pi\)
0.991766 0.128060i \(-0.0408749\pi\)
\(728\) −88.3459 −0.121354
\(729\) 968.055i 1.32792i
\(730\) −164.145 164.145i −0.224856 0.224856i
\(731\) −38.4677 38.4677i −0.0526234 0.0526234i
\(732\) 221.495 + 221.495i 0.302589 + 0.302589i
\(733\) −240.640 240.640i −0.328295 0.328295i 0.523643 0.851938i \(-0.324573\pi\)
−0.851938 + 0.523643i \(0.824573\pi\)
\(734\) 50.6502 0.0690057
\(735\) 431.324 + 431.324i 0.586835 + 0.586835i
\(736\) 134.199 134.199i 0.182336 0.182336i
\(737\) 1448.75i 1.96575i
\(738\) 197.041 + 197.041i 0.266993 + 0.266993i
\(739\) 548.108 548.108i 0.741688 0.741688i −0.231215 0.972903i \(-0.574270\pi\)
0.972903 + 0.231215i \(0.0742699\pi\)
\(740\) 319.903i 0.432302i
\(741\) 1088.71i 1.46925i
\(742\) −98.0769 −0.132179
\(743\) 1004.35 1.35175 0.675876 0.737016i \(-0.263766\pi\)
0.675876 + 0.737016i \(0.263766\pi\)
\(744\) 343.815 + 343.815i 0.462117 + 0.462117i
\(745\) 557.517i 0.748345i
\(746\) 572.747i 0.767757i
\(747\) 822.225 822.225i 1.10070 1.10070i
\(748\) 35.2355 35.2355i 0.0471063 0.0471063i
\(749\) 379.798i 0.507073i
\(750\) 785.770i 1.04769i
\(751\) −157.505 −0.209727 −0.104863 0.994487i \(-0.533441\pi\)
−0.104863 + 0.994487i \(0.533441\pi\)
\(752\) −293.362 −0.390109
\(753\) 1659.63i 2.20402i
\(754\) 417.527i 0.553749i
\(755\) 154.968i 0.205255i
\(756\) −31.8188 −0.0420884
\(757\) 903.972 + 903.972i 1.19415 + 1.19415i 0.975891 + 0.218260i \(0.0700379\pi\)
0.218260 + 0.975891i \(0.429962\pi\)
\(758\) 105.187 0.138769
\(759\) 1991.68 + 1991.68i 2.62409 + 2.62409i
\(760\) 149.631i 0.196883i
\(761\) −404.650 404.650i −0.531735 0.531735i 0.389354 0.921088i \(-0.372698\pi\)
−0.921088 + 0.389354i \(0.872698\pi\)
\(762\) −627.542 −0.823545
\(763\) 77.0651i 0.101003i
\(764\) 272.730 0.356977
\(765\) 30.7872 + 30.7872i 0.0402447 + 0.0402447i
\(766\) 297.998i 0.389032i
\(767\) −461.867 + 461.867i −0.602173 + 0.602173i
\(768\) 50.1595 50.1595i 0.0653118 0.0653118i
\(769\) 1258.73i 1.63684i −0.574622 0.818419i \(-0.694851\pi\)
0.574622 0.818419i \(-0.305149\pi\)
\(770\) 180.205i 0.234033i
\(771\) 1966.69i 2.55083i
\(772\) −494.400 + 494.400i −0.640415 + 0.640415i
\(773\) 203.913 0.263794 0.131897 0.991263i \(-0.457893\pi\)
0.131897 + 0.991263i \(0.457893\pi\)
\(774\) 440.595 440.595i 0.569244 0.569244i
\(775\) −421.037 421.037i −0.543273 0.543273i
\(776\) −59.4071 + 59.4071i −0.0765555 + 0.0765555i
\(777\) −494.823 −0.636838
\(778\) 573.341 573.341i 0.736943 0.736943i
\(779\) 222.742 + 222.742i 0.285934 + 0.285934i
\(780\) −280.667 + 280.667i −0.359830 + 0.359830i
\(781\) 176.561 176.561i 0.226070 0.226070i
\(782\) 62.4270i 0.0798300i
\(783\) 150.377i 0.192053i
\(784\) 177.219i 0.226044i
\(785\) −586.812 + 586.812i −0.747531 + 0.747531i
\(786\) 254.561i 0.323868i
\(787\) −824.518 −1.04767 −0.523836 0.851819i \(-0.675500\pi\)
−0.523836 + 0.851819i \(0.675500\pi\)
\(788\) 19.3341 19.3341i 0.0245356 0.0245356i
\(789\) 889.362 889.362i 1.12720 1.12720i
\(790\) 246.669 + 246.669i 0.312239 + 0.312239i
\(791\) 202.747i 0.256318i
\(792\) 403.575 + 403.575i 0.509564 + 0.509564i
\(793\) 509.224i 0.642149i
\(794\) −467.253 −0.588480
\(795\) −311.582 + 311.582i −0.391926 + 0.391926i
\(796\) −486.437 −0.611102
\(797\) −865.427 865.427i −1.08586 1.08586i −0.995950 0.0899054i \(-0.971344\pi\)
−0.0899054 0.995950i \(-0.528656\pi\)
\(798\) −231.448 −0.290035
\(799\) 68.2333 68.2333i 0.0853984 0.0853984i
\(800\) −61.4254 + 61.4254i −0.0767817 + 0.0767817i
\(801\) 900.899 1.12472
\(802\) 864.388i 1.07779i
\(803\) 1000.93 1.24649
\(804\) 479.689 + 479.689i 0.596629 + 0.596629i
\(805\) −159.635 159.635i −0.198305 0.198305i
\(806\) 790.442i 0.980697i
\(807\) 1092.50 + 478.301i 1.35378 + 0.592690i
\(808\) −529.791 −0.655682
\(809\) 492.072 492.072i 0.608247 0.608247i −0.334241 0.942488i \(-0.608480\pi\)
0.942488 + 0.334241i \(0.108480\pi\)
\(810\) 196.738 196.738i 0.242887 0.242887i
\(811\) 1239.46i 1.52831i −0.645035 0.764153i \(-0.723157\pi\)
0.645035 0.764153i \(-0.276843\pi\)
\(812\) −88.7617 −0.109312
\(813\) 174.851i 0.215069i
\(814\) 975.362 + 975.362i 1.19823 + 1.19823i
\(815\) 493.976 + 493.976i 0.606105 + 0.606105i
\(816\) 23.3333i 0.0285947i
\(817\) 498.064 498.064i 0.609625 0.609625i
\(818\) 474.949i 0.580622i
\(819\) 235.354 + 235.354i 0.287368 + 0.287368i
\(820\) 114.845i 0.140055i
\(821\) −1271.41 −1.54861 −0.774304 0.632813i \(-0.781900\pi\)
−0.774304 + 0.632813i \(0.781900\pi\)
\(822\) −1084.84 + 1084.84i −1.31976 + 1.31976i
\(823\) −370.372 −0.450027 −0.225013 0.974356i \(-0.572243\pi\)
−0.225013 + 0.974356i \(0.572243\pi\)
\(824\) −326.276 + 326.276i −0.395966 + 0.395966i
\(825\) −911.630 911.630i −1.10501 1.10501i
\(826\) −98.1878 98.1878i −0.118871 0.118871i
\(827\) 1309.96i 1.58399i 0.610527 + 0.791996i \(0.290958\pi\)
−0.610527 + 0.791996i \(0.709042\pi\)
\(828\) −715.016 −0.863546
\(829\) 278.811 + 278.811i 0.336323 + 0.336323i 0.854981 0.518659i \(-0.173568\pi\)
−0.518659 + 0.854981i \(0.673568\pi\)
\(830\) 479.232 0.577388
\(831\) −727.231 −0.875127
\(832\) −115.318 −0.138604
\(833\) −41.2195 41.2195i −0.0494832 0.0494832i
\(834\) 134.565 + 134.565i 0.161349 + 0.161349i
\(835\) −352.724 + 352.724i −0.422424 + 0.422424i
\(836\) 456.215 + 456.215i 0.545712 + 0.545712i
\(837\) 284.687i 0.340128i
\(838\) 79.4467 + 79.4467i 0.0948051 + 0.0948051i
\(839\) 568.841 568.841i 0.677999 0.677999i −0.281548 0.959547i \(-0.590848\pi\)
0.959547 + 0.281548i \(0.0908480\pi\)
\(840\) −59.6668 59.6668i −0.0710319 0.0710319i
\(841\) 421.508i 0.501198i
\(842\) 318.129 + 318.129i 0.377825 + 0.377825i
\(843\) −2060.22 −2.44392
\(844\) 235.900 0.279502
\(845\) 120.445 0.142539
\(846\) 781.519 + 781.519i 0.923781 + 0.923781i
\(847\) −364.035 364.035i −0.429793 0.429793i
\(848\) −128.020 −0.150967
\(849\) −825.979 + 825.979i −0.972885 + 0.972885i
\(850\) 28.5740i 0.0336165i
\(851\) −1728.06 −2.03062
\(852\) 116.920i 0.137231i
\(853\) −874.585 + 874.585i −1.02530 + 1.02530i −0.0256336 + 0.999671i \(0.508160\pi\)
−0.999671 + 0.0256336i \(0.991840\pi\)
\(854\) 108.255 0.126763
\(855\) −398.620 + 398.620i −0.466222 + 0.466222i
\(856\) 495.751i 0.579148i
\(857\) 736.735 736.735i 0.859668 0.859668i −0.131631 0.991299i \(-0.542021\pi\)
0.991299 + 0.131631i \(0.0420214\pi\)
\(858\) 1711.47i 1.99472i
\(859\) 432.328 0.503293 0.251646 0.967819i \(-0.419028\pi\)
0.251646 + 0.967819i \(0.419028\pi\)
\(860\) 256.799 0.298604
\(861\) 177.641 0.206319
\(862\) 415.795i 0.482360i
\(863\) 1335.43i 1.54743i −0.633534 0.773715i \(-0.718396\pi\)
0.633534 0.773715i \(-0.281604\pi\)
\(864\) −41.5332 −0.0480708
\(865\) 86.8531 0.100408
\(866\) −566.939 566.939i −0.654664 0.654664i
\(867\) 900.579 + 900.579i 1.03873 + 1.03873i
\(868\) 168.039 0.193594
\(869\) −1504.15 −1.73090
\(870\) −281.988 + 281.988i −0.324124 + 0.324124i
\(871\) 1102.82i 1.26615i
\(872\) 100.593i 0.115359i
\(873\) 316.522 0.362568
\(874\) −808.279 −0.924805
\(875\) 192.022 + 192.022i 0.219454 + 0.219454i
\(876\) −331.413 + 331.413i −0.378326 + 0.378326i
\(877\) −52.8766 −0.0602926 −0.0301463 0.999545i \(-0.509597\pi\)
−0.0301463 + 0.999545i \(0.509597\pi\)
\(878\) 141.773 + 141.773i 0.161473 + 0.161473i
\(879\) −135.334 + 135.334i −0.153963 + 0.153963i
\(880\) 235.222i 0.267298i
\(881\) 415.858 415.858i 0.472029 0.472029i −0.430542 0.902571i \(-0.641677\pi\)
0.902571 + 0.430542i \(0.141677\pi\)
\(882\) 472.112 472.112i 0.535275 0.535275i
\(883\) −274.673 + 274.673i −0.311068 + 0.311068i −0.845323 0.534256i \(-0.820592\pi\)
0.534256 + 0.845323i \(0.320592\pi\)
\(884\) 26.8220 26.8220i 0.0303416 0.0303416i
\(885\) −623.868 −0.704936
\(886\) 93.3850i 0.105401i
\(887\) 1094.34 1.23375 0.616876 0.787060i \(-0.288398\pi\)
0.616876 + 0.787060i \(0.288398\pi\)
\(888\) −645.894 −0.727358
\(889\) −153.355 + 153.355i −0.172503 + 0.172503i
\(890\) 262.543 + 262.543i 0.294993 + 0.294993i
\(891\) 1199.68i 1.34644i
\(892\) 193.583 193.583i 0.217021 0.217021i
\(893\) 883.457 + 883.457i 0.989313 + 0.989313i
\(894\) 1125.64 1.25911
\(895\) 7.48244 7.48244i 0.00836027 0.00836027i
\(896\) 24.5154i 0.0273609i
\(897\) 1516.11 + 1516.11i 1.69020 + 1.69020i
\(898\) −240.453 + 240.453i −0.267765 + 0.267765i
\(899\) 794.162i 0.883384i
\(900\) 327.276 0.363640
\(901\) 29.7763 29.7763i 0.0330481 0.0330481i
\(902\) −350.154 350.154i −0.388197 0.388197i
\(903\) 397.214i 0.439883i
\(904\) 264.647i 0.292751i
\(905\) −129.139 129.139i −0.142695 0.142695i
\(906\) 312.884 0.345347
\(907\) 75.0436i 0.0827382i −0.999144 0.0413691i \(-0.986828\pi\)
0.999144 0.0413691i \(-0.0131720\pi\)
\(908\) −387.179 + 387.179i −0.426408 + 0.426408i
\(909\) 1411.37 + 1411.37i 1.55266 + 1.55266i
\(910\) 137.176i 0.150742i
\(911\) 719.327 719.327i 0.789602 0.789602i −0.191827 0.981429i \(-0.561441\pi\)
0.981429 + 0.191827i \(0.0614413\pi\)
\(912\) −302.110 −0.331261
\(913\) −1461.14 + 1461.14i −1.60037 + 1.60037i
\(914\) −639.175 639.175i −0.699316 0.699316i
\(915\) 343.918 343.918i 0.375867 0.375867i
\(916\) 106.948 + 106.948i 0.116755 + 0.116755i
\(917\) 62.2081 + 62.2081i 0.0678387 + 0.0678387i
\(918\) 9.66025 9.66025i 0.0105231 0.0105231i
\(919\) 934.065 + 934.065i 1.01639 + 1.01639i 0.999863 + 0.0165293i \(0.00526168\pi\)
0.0165293 + 0.999863i \(0.494738\pi\)
\(920\) −208.372 208.372i −0.226492 0.226492i
\(921\) −106.859 + 106.859i −0.116025 + 0.116025i
\(922\) −978.923 −1.06174
\(923\) 134.402 134.402i 0.145614 0.145614i
\(924\) 363.839 0.393765
\(925\) 790.963 0.855095
\(926\) −833.472 −0.900077
\(927\) 1738.41 1.87530
\(928\) −115.861 −0.124850
\(929\) 870.898 870.898i 0.937458 0.937458i −0.0606982 0.998156i \(-0.519333\pi\)
0.998156 + 0.0606982i \(0.0193327\pi\)
\(930\) 533.846 533.846i 0.574028 0.574028i
\(931\) 533.693 533.693i 0.573247 0.573247i
\(932\) −119.431 −0.128145
\(933\) 2660.06i 2.85108i
\(934\) 492.247i 0.527031i
\(935\) −54.7106 54.7106i −0.0585140 0.0585140i
\(936\) 307.209 + 307.209i 0.328215 + 0.328215i
\(937\) −812.128 812.128i −0.866732 0.866732i 0.125377 0.992109i \(-0.459986\pi\)
−0.992109 + 0.125377i \(0.959986\pi\)
\(938\) 234.448 0.249944
\(939\) −51.8128 + 51.8128i −0.0551787 + 0.0551787i
\(940\) 455.506i 0.484581i
\(941\) −111.721 + 111.721i −0.118726 + 0.118726i −0.763974 0.645248i \(-0.776754\pi\)
0.645248 + 0.763974i \(0.276754\pi\)
\(942\) 1184.79 + 1184.79i 1.25774 + 1.25774i
\(943\) 620.369 0.657868
\(944\) −128.165 128.165i −0.135768 0.135768i
\(945\) 49.4054i 0.0522809i
\(946\) −782.962 + 782.962i −0.827656 + 0.827656i
\(947\) −1142.95 + 1142.95i −1.20692 + 1.20692i −0.234898 + 0.972020i \(0.575476\pi\)
−0.972020 + 0.234898i \(0.924524\pi\)
\(948\) 498.031 498.031i 0.525349 0.525349i
\(949\) 761.929 0.802876
\(950\) 369.964 0.389436
\(951\) 838.217i 0.881406i
\(952\) 5.70206 + 5.70206i 0.00598956 + 0.00598956i
\(953\) 835.348 + 835.348i 0.876546 + 0.876546i 0.993176 0.116629i \(-0.0372090\pi\)
−0.116629 + 0.993176i \(0.537209\pi\)
\(954\) 341.047 + 341.047i 0.357491 + 0.357491i
\(955\) 423.472i 0.443426i
\(956\) 134.191i 0.140367i
\(957\) 1719.52i 1.79678i
\(958\) 810.751i 0.846295i
\(959\) 530.214i 0.552882i
\(960\) −77.8832 77.8832i −0.0811283 0.0811283i
\(961\) 542.469i 0.564484i
\(962\) 742.465 + 742.465i 0.771793 + 0.771793i
\(963\) −1320.69 + 1320.69i −1.37143 + 1.37143i
\(964\) −339.029 + 339.029i −0.351690 + 0.351690i
\(965\) 767.661 + 767.661i 0.795504 + 0.795504i
\(966\) −322.308 + 322.308i −0.333652 + 0.333652i
\(967\) 593.614 593.614i 0.613872 0.613872i −0.330081 0.943953i \(-0.607076\pi\)
0.943953 + 0.330081i \(0.107076\pi\)
\(968\) −475.175 475.175i −0.490884 0.490884i
\(969\) 70.2681 70.2681i 0.0725161 0.0725161i
\(970\) 92.2421 + 92.2421i 0.0950949 + 0.0950949i
\(971\) 1481.69i 1.52595i 0.646430 + 0.762973i \(0.276261\pi\)
−0.646430 + 0.762973i \(0.723739\pi\)
\(972\) −490.670 490.670i −0.504804 0.504804i
\(973\) 65.7685 0.0675936
\(974\) 85.8008 85.8008i 0.0880911 0.0880911i
\(975\) −693.951 693.951i −0.711744 0.711744i
\(976\) 141.306 0.144781
\(977\) 1175.76i 1.20344i 0.798709 + 0.601718i \(0.205517\pi\)
−0.798709 + 0.601718i \(0.794483\pi\)
\(978\) 997.350 997.350i 1.01979 1.01979i
\(979\) −1600.95 −1.63529
\(980\) 275.169 0.280785
\(981\) 267.982 267.982i 0.273172 0.273172i
\(982\) 765.799 + 765.799i 0.779836 + 0.779836i
\(983\) 1308.53i 1.33116i 0.746328 + 0.665578i \(0.231815\pi\)
−0.746328 + 0.665578i \(0.768185\pi\)
\(984\) 231.875 0.235645
\(985\) −30.0203 30.0203i −0.0304774 0.0304774i
\(986\) 26.9482 26.9482i 0.0273309 0.0273309i
\(987\) 704.572 0.713852
\(988\) 347.280 + 347.280i 0.351498 + 0.351498i
\(989\) 1387.18i 1.40261i
\(990\) 626.635 626.635i 0.632964 0.632964i
\(991\) −396.364 396.364i −0.399964 0.399964i 0.478257 0.878220i \(-0.341269\pi\)
−0.878220 + 0.478257i \(0.841269\pi\)
\(992\) 219.342 0.221111
\(993\) −56.6337 + 56.6337i −0.0570330 + 0.0570330i
\(994\) 28.5723 + 28.5723i 0.0287448 + 0.0287448i
\(995\) 755.296i 0.759092i
\(996\) 967.582i 0.971468i
\(997\) 1170.53 1.17405 0.587027 0.809567i \(-0.300298\pi\)
0.587027 + 0.809567i \(0.300298\pi\)
\(998\) 811.350i 0.812976i
\(999\) 267.407 + 267.407i 0.267675 + 0.267675i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.b.351.21 yes 46
269.187 odd 4 inner 538.3.c.b.187.21 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.b.187.21 46 269.187 odd 4 inner
538.3.c.b.351.21 yes 46 1.1 even 1 trivial