L(s) = 1 | + (−1 + i)2-s + (1.35 − 1.35i)3-s − 2i·4-s + 4.13·5-s + 2.70i·6-s + (1.20 + 1.20i)7-s + (2 + 2i)8-s + 5.32i·9-s + (−4.13 + 4.13i)10-s + 19.3i·11-s + (−2.70 − 2.70i)12-s − 6.76i·13-s − 2.41·14-s + (5.60 − 5.60i)15-s − 4·16-s + (−16.6 + 16.6i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (0.451 − 0.451i)3-s − 0.5i·4-s + 0.826·5-s + 0.451i·6-s + (0.172 + 0.172i)7-s + (0.250 + 0.250i)8-s + 0.592i·9-s + (−0.413 + 0.413i)10-s + 1.75i·11-s + (−0.225 − 0.225i)12-s − 0.520i·13-s − 0.172·14-s + (0.373 − 0.373i)15-s − 0.250·16-s + (−0.980 + 0.980i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00709 - 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.00709 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.613220650\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.613220650\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 269 | \( 1 + (-242. - 117. i)T \) |
good | 3 | \( 1 + (-1.35 + 1.35i)T - 9iT^{2} \) |
| 5 | \( 1 - 4.13T + 25T^{2} \) |
| 7 | \( 1 + (-1.20 - 1.20i)T + 49iT^{2} \) |
| 11 | \( 1 - 19.3iT - 121T^{2} \) |
| 13 | \( 1 + 6.76iT - 169T^{2} \) |
| 17 | \( 1 + (16.6 - 16.6i)T - 289iT^{2} \) |
| 19 | \( 1 + (-1.42 - 1.42i)T + 361iT^{2} \) |
| 23 | \( 1 + 16.5T + 529T^{2} \) |
| 29 | \( 1 + (-15.5 - 15.5i)T + 841iT^{2} \) |
| 31 | \( 1 + (4.83 + 4.83i)T + 961iT^{2} \) |
| 37 | \( 1 - 70.2T + 1.36e3T^{2} \) |
| 41 | \( 1 + 70.2T + 1.68e3T^{2} \) |
| 43 | \( 1 - 8.53iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 42.1T + 2.20e3T^{2} \) |
| 53 | \( 1 + 14.6T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-73.5 - 73.5i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 - 9.57T + 3.72e3T^{2} \) |
| 67 | \( 1 - 46.8T + 4.48e3T^{2} \) |
| 71 | \( 1 + (55.1 + 55.1i)T + 5.04e3iT^{2} \) |
| 73 | \( 1 - 140. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 138. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (31.5 + 31.5i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 90.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 70.9iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36383279682284346408226401754, −10.01426704443752341005882333466, −8.940071359209233196319027526329, −8.125095800053820195640163983413, −7.33683866355807811918215378748, −6.45296453024541436511604139830, −5.41547860753927204733200502883, −4.38191023923130499142904228412, −2.35004758233802669134358060412, −1.70795927638412764206993037959,
0.69214441311686467217315960465, 2.30977433649205079342743479340, 3.34942442999658786577398306506, 4.42565541050867798601581146948, 5.86464113482176289372654504239, 6.70144601824522740602123289860, 8.100149263160922657960629867512, 8.860556626934470182907160230027, 9.493071738832776871235856621564, 10.20314143669211838358534982796