L(s) = 1 | + (−1 + i)2-s + (1.35 − 1.35i)3-s − 2i·4-s + 4.13·5-s + 2.70i·6-s + (1.20 + 1.20i)7-s + (2 + 2i)8-s + 5.32i·9-s + (−4.13 + 4.13i)10-s + 19.3i·11-s + (−2.70 − 2.70i)12-s − 6.76i·13-s − 2.41·14-s + (5.60 − 5.60i)15-s − 4·16-s + (−16.6 + 16.6i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (0.451 − 0.451i)3-s − 0.5i·4-s + 0.826·5-s + 0.451i·6-s + (0.172 + 0.172i)7-s + (0.250 + 0.250i)8-s + 0.592i·9-s + (−0.413 + 0.413i)10-s + 1.75i·11-s + (−0.225 − 0.225i)12-s − 0.520i·13-s − 0.172·14-s + (0.373 − 0.373i)15-s − 0.250·16-s + (−0.980 + 0.980i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(−0.00709−0.999i)Λ(3−s)
Λ(s)=(=(538s/2ΓC(s+1)L(s)(−0.00709−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
−0.00709−0.999i
|
Analytic conductor: |
14.6594 |
Root analytic conductor: |
3.82876 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(351,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1), −0.00709−0.999i)
|
Particular Values
L(23) |
≈ |
1.613220650 |
L(21) |
≈ |
1.613220650 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1−i)T |
| 269 | 1+(−242.−117.i)T |
good | 3 | 1+(−1.35+1.35i)T−9iT2 |
| 5 | 1−4.13T+25T2 |
| 7 | 1+(−1.20−1.20i)T+49iT2 |
| 11 | 1−19.3iT−121T2 |
| 13 | 1+6.76iT−169T2 |
| 17 | 1+(16.6−16.6i)T−289iT2 |
| 19 | 1+(−1.42−1.42i)T+361iT2 |
| 23 | 1+16.5T+529T2 |
| 29 | 1+(−15.5−15.5i)T+841iT2 |
| 31 | 1+(4.83+4.83i)T+961iT2 |
| 37 | 1−70.2T+1.36e3T2 |
| 41 | 1+70.2T+1.68e3T2 |
| 43 | 1−8.53iT−1.84e3T2 |
| 47 | 1−42.1T+2.20e3T2 |
| 53 | 1+14.6T+2.80e3T2 |
| 59 | 1+(−73.5−73.5i)T+3.48e3iT2 |
| 61 | 1−9.57T+3.72e3T2 |
| 67 | 1−46.8T+4.48e3T2 |
| 71 | 1+(55.1+55.1i)T+5.04e3iT2 |
| 73 | 1−140.iT−5.32e3T2 |
| 79 | 1+138.iT−6.24e3T2 |
| 83 | 1+(31.5+31.5i)T+6.88e3iT2 |
| 89 | 1−90.2iT−7.92e3T2 |
| 97 | 1−70.9iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36383279682284346408226401754, −10.01426704443752341005882333466, −8.940071359209233196319027526329, −8.125095800053820195640163983413, −7.33683866355807811918215378748, −6.45296453024541436511604139830, −5.41547860753927204733200502883, −4.38191023923130499142904228412, −2.35004758233802669134358060412, −1.70795927638412764206993037959,
0.69214441311686467217315960465, 2.30977433649205079342743479340, 3.34942442999658786577398306506, 4.42565541050867798601581146948, 5.86464113482176289372654504239, 6.70144601824522740602123289860, 8.100149263160922657960629867512, 8.860556626934470182907160230027, 9.493071738832776871235856621564, 10.20314143669211838358534982796