L(s) = 1 | + (−1 + i)2-s + (−2.38 + 2.38i)3-s − 2i·4-s − 4.67·5-s − 4.77i·6-s + (4.02 + 4.02i)7-s + (2 + 2i)8-s − 2.41i·9-s + (4.67 − 4.67i)10-s − 0.758i·11-s + (4.77 + 4.77i)12-s − 22.3i·13-s − 8.04·14-s + (11.1 − 11.1i)15-s − 4·16-s + (7.71 − 7.71i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (−0.796 + 0.796i)3-s − 0.5i·4-s − 0.934·5-s − 0.796i·6-s + (0.574 + 0.574i)7-s + (0.250 + 0.250i)8-s − 0.268i·9-s + (0.467 − 0.467i)10-s − 0.0689i·11-s + (0.398 + 0.398i)12-s − 1.71i·13-s − 0.574·14-s + (0.744 − 0.744i)15-s − 0.250·16-s + (0.453 − 0.453i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.531−0.847i)Λ(3−s)
Λ(s)=(=(538s/2ΓC(s+1)L(s)(0.531−0.847i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.531−0.847i
|
Analytic conductor: |
14.6594 |
Root analytic conductor: |
3.82876 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(351,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1), 0.531−0.847i)
|
Particular Values
L(23) |
≈ |
0.7824168024 |
L(21) |
≈ |
0.7824168024 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1−i)T |
| 269 | 1+(−141.−228.i)T |
good | 3 | 1+(2.38−2.38i)T−9iT2 |
| 5 | 1+4.67T+25T2 |
| 7 | 1+(−4.02−4.02i)T+49iT2 |
| 11 | 1+0.758iT−121T2 |
| 13 | 1+22.3iT−169T2 |
| 17 | 1+(−7.71+7.71i)T−289iT2 |
| 19 | 1+(10.4+10.4i)T+361iT2 |
| 23 | 1−25.6T+529T2 |
| 29 | 1+(−9.53−9.53i)T+841iT2 |
| 31 | 1+(−11.6−11.6i)T+961iT2 |
| 37 | 1+4.88T+1.36e3T2 |
| 41 | 1−66.2T+1.68e3T2 |
| 43 | 1−57.9iT−1.84e3T2 |
| 47 | 1−47.1T+2.20e3T2 |
| 53 | 1+45.0T+2.80e3T2 |
| 59 | 1+(−80.1−80.1i)T+3.48e3iT2 |
| 61 | 1+109.T+3.72e3T2 |
| 67 | 1−52.7T+4.48e3T2 |
| 71 | 1+(10.6+10.6i)T+5.04e3iT2 |
| 73 | 1−52.6iT−5.32e3T2 |
| 79 | 1−19.2iT−6.24e3T2 |
| 83 | 1+(26.6+26.6i)T+6.88e3iT2 |
| 89 | 1+166.iT−7.92e3T2 |
| 97 | 1−176.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81314719771237677354164412323, −9.991317034853016243240363691535, −8.892137865007743069772345236615, −8.052163742106099773466751802802, −7.36889646865755654535389676773, −5.95767790992550883330745804754, −5.20990920249904817327887803612, −4.44306139824753528687618410364, −2.91345502274632273150115574531, −0.67139004198237037588432616322,
0.75988692116627327658987536307, 1.89972569704000230973457452940, 3.75786436272804837069488695501, 4.55359739280939927539311000257, 6.10543531730672660242850312132, 7.07444596509136725792685521478, 7.65686344049280742104046899609, 8.629990768648368788454601454600, 9.634761525414367076926627005061, 10.92737903556496225607333932359