L(s) = 1 | + (−1 + i)2-s + (−2.38 + 2.38i)3-s − 2i·4-s − 4.67·5-s − 4.77i·6-s + (4.02 + 4.02i)7-s + (2 + 2i)8-s − 2.41i·9-s + (4.67 − 4.67i)10-s − 0.758i·11-s + (4.77 + 4.77i)12-s − 22.3i·13-s − 8.04·14-s + (11.1 − 11.1i)15-s − 4·16-s + (7.71 − 7.71i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (−0.796 + 0.796i)3-s − 0.5i·4-s − 0.934·5-s − 0.796i·6-s + (0.574 + 0.574i)7-s + (0.250 + 0.250i)8-s − 0.268i·9-s + (0.467 − 0.467i)10-s − 0.0689i·11-s + (0.398 + 0.398i)12-s − 1.71i·13-s − 0.574·14-s + (0.744 − 0.744i)15-s − 0.250·16-s + (0.453 − 0.453i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.531 - 0.847i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.531 - 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.7824168024\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7824168024\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 269 | \( 1 + (-141. - 228. i)T \) |
good | 3 | \( 1 + (2.38 - 2.38i)T - 9iT^{2} \) |
| 5 | \( 1 + 4.67T + 25T^{2} \) |
| 7 | \( 1 + (-4.02 - 4.02i)T + 49iT^{2} \) |
| 11 | \( 1 + 0.758iT - 121T^{2} \) |
| 13 | \( 1 + 22.3iT - 169T^{2} \) |
| 17 | \( 1 + (-7.71 + 7.71i)T - 289iT^{2} \) |
| 19 | \( 1 + (10.4 + 10.4i)T + 361iT^{2} \) |
| 23 | \( 1 - 25.6T + 529T^{2} \) |
| 29 | \( 1 + (-9.53 - 9.53i)T + 841iT^{2} \) |
| 31 | \( 1 + (-11.6 - 11.6i)T + 961iT^{2} \) |
| 37 | \( 1 + 4.88T + 1.36e3T^{2} \) |
| 41 | \( 1 - 66.2T + 1.68e3T^{2} \) |
| 43 | \( 1 - 57.9iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 47.1T + 2.20e3T^{2} \) |
| 53 | \( 1 + 45.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-80.1 - 80.1i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + 109.T + 3.72e3T^{2} \) |
| 67 | \( 1 - 52.7T + 4.48e3T^{2} \) |
| 71 | \( 1 + (10.6 + 10.6i)T + 5.04e3iT^{2} \) |
| 73 | \( 1 - 52.6iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 19.2iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (26.6 + 26.6i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 166. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 176. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81314719771237677354164412323, −9.991317034853016243240363691535, −8.892137865007743069772345236615, −8.052163742106099773466751802802, −7.36889646865755654535389676773, −5.95767790992550883330745804754, −5.20990920249904817327887803612, −4.44306139824753528687618410364, −2.91345502274632273150115574531, −0.67139004198237037588432616322,
0.75988692116627327658987536307, 1.89972569704000230973457452940, 3.75786436272804837069488695501, 4.55359739280939927539311000257, 6.10543531730672660242850312132, 7.07444596509136725792685521478, 7.65686344049280742104046899609, 8.629990768648368788454601454600, 9.634761525414367076926627005061, 10.92737903556496225607333932359