L(s) = 1 | + (−0.5 + 0.866i)2-s + (1 + 1.73i)3-s + (0.500 + 0.866i)4-s + (−1 + 1.73i)5-s − 1.99·6-s − 3·8-s + (−0.499 + 0.866i)9-s + (−0.999 − 1.73i)10-s + (−0.5 − 0.866i)11-s + (−0.999 + 1.73i)12-s − 4·13-s − 3.99·15-s + (0.500 − 0.866i)16-s + (2 + 3.46i)17-s + (−0.499 − 0.866i)18-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.577 + 0.999i)3-s + (0.250 + 0.433i)4-s + (−0.447 + 0.774i)5-s − 0.816·6-s − 1.06·8-s + (−0.166 + 0.288i)9-s + (−0.316 − 0.547i)10-s + (−0.150 − 0.261i)11-s + (−0.288 + 0.499i)12-s − 1.10·13-s − 1.03·15-s + (0.125 − 0.216i)16-s + (0.485 + 0.840i)17-s + (−0.117 − 0.204i)18-s + ⋯ |
Λ(s)=(=(539s/2ΓC(s)L(s)(−0.968+0.250i)Λ(2−s)
Λ(s)=(=(539s/2ΓC(s+1/2)L(s)(−0.968+0.250i)Λ(1−s)
Degree: |
2 |
Conductor: |
539
= 72⋅11
|
Sign: |
−0.968+0.250i
|
Analytic conductor: |
4.30393 |
Root analytic conductor: |
2.07459 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ539(177,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 539, ( :1/2), −0.968+0.250i)
|
Particular Values
L(1) |
≈ |
0.148273−1.16353i |
L(21) |
≈ |
0.148273−1.16353i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1+(0.5+0.866i)T |
good | 2 | 1+(0.5−0.866i)T+(−1−1.73i)T2 |
| 3 | 1+(−1−1.73i)T+(−1.5+2.59i)T2 |
| 5 | 1+(1−1.73i)T+(−2.5−4.33i)T2 |
| 13 | 1+4T+13T2 |
| 17 | 1+(−2−3.46i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−9.5−16.4i)T2 |
| 23 | 1+(−2+3.46i)T+(−11.5−19.9i)T2 |
| 29 | 1+6T+29T2 |
| 31 | 1+(−5−8.66i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−3+5.19i)T+(−18.5−32.0i)T2 |
| 41 | 1+4T+41T2 |
| 43 | 1−12T+43T2 |
| 47 | 1+(5−8.66i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−3−5.19i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−1−1.73i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−30.5−52.8i)T2 |
| 67 | 1+(4+6.92i)T+(−33.5+58.0i)T2 |
| 71 | 1+12T+71T2 |
| 73 | 1+(4+6.92i)T+(−36.5+63.2i)T2 |
| 79 | 1+(4−6.92i)T+(−39.5−68.4i)T2 |
| 83 | 1+83T2 |
| 89 | 1+(3−5.19i)T+(−44.5−77.0i)T2 |
| 97 | 1−10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.01399970901142558658085411459, −10.35417603145711302199356990572, −9.360059878873926623215291788329, −8.654573274737109421972609295479, −7.69088727673016874897390417370, −7.05166387642353150669127418995, −5.95800371243950598455606320016, −4.53986068225512843222698464083, −3.43296212852972034518347041345, −2.75367979119873177476454494544,
0.69879789330897275188748878624, 1.98172644318346283194013118055, 2.92424844745527551945513742561, 4.62513542852633258320781217837, 5.69366575655268010007718462092, 7.04171009416625584697534537626, 7.65390531723111661333422869106, 8.604315995159997365852291002654, 9.531001684614036680414375611918, 10.16352196279216803423384725093