Properties

Label 539.2.e.b.177.1
Level $539$
Weight $2$
Character 539.177
Analytic conductor $4.304$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [539,2,Mod(67,539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(539, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("539.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 539.177
Dual form 539.2.e.b.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.00000 + 1.73205i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.00000 + 1.73205i) q^{5} -2.00000 q^{6} -3.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.00000 - 1.73205i) q^{10} +(-0.500000 - 0.866025i) q^{11} +(-1.00000 + 1.73205i) q^{12} -4.00000 q^{13} -4.00000 q^{15} +(0.500000 - 0.866025i) q^{16} +(2.00000 + 3.46410i) q^{17} +(-0.500000 - 0.866025i) q^{18} -2.00000 q^{20} +1.00000 q^{22} +(2.00000 - 3.46410i) q^{23} +(-3.00000 - 5.19615i) q^{24} +(0.500000 + 0.866025i) q^{25} +(2.00000 - 3.46410i) q^{26} +4.00000 q^{27} -6.00000 q^{29} +(2.00000 - 3.46410i) q^{30} +(5.00000 + 8.66025i) q^{31} +(-2.50000 - 4.33013i) q^{32} +(1.00000 - 1.73205i) q^{33} -4.00000 q^{34} -1.00000 q^{36} +(3.00000 - 5.19615i) q^{37} +(-4.00000 - 6.92820i) q^{39} +(3.00000 - 5.19615i) q^{40} -4.00000 q^{41} +12.0000 q^{43} +(0.500000 - 0.866025i) q^{44} +(-1.00000 - 1.73205i) q^{45} +(2.00000 + 3.46410i) q^{46} +(-5.00000 + 8.66025i) q^{47} +2.00000 q^{48} -1.00000 q^{50} +(-4.00000 + 6.92820i) q^{51} +(-2.00000 - 3.46410i) q^{52} +(3.00000 + 5.19615i) q^{53} +(-2.00000 + 3.46410i) q^{54} +2.00000 q^{55} +(3.00000 - 5.19615i) q^{58} +(1.00000 + 1.73205i) q^{59} +(-2.00000 - 3.46410i) q^{60} -10.0000 q^{62} +7.00000 q^{64} +(4.00000 - 6.92820i) q^{65} +(1.00000 + 1.73205i) q^{66} +(-4.00000 - 6.92820i) q^{67} +(-2.00000 + 3.46410i) q^{68} +8.00000 q^{69} -12.0000 q^{71} +(1.50000 - 2.59808i) q^{72} +(-4.00000 - 6.92820i) q^{73} +(3.00000 + 5.19615i) q^{74} +(-1.00000 + 1.73205i) q^{75} +8.00000 q^{78} +(-4.00000 + 6.92820i) q^{79} +(1.00000 + 1.73205i) q^{80} +(5.50000 + 9.52628i) q^{81} +(2.00000 - 3.46410i) q^{82} -8.00000 q^{85} +(-6.00000 + 10.3923i) q^{86} +(-6.00000 - 10.3923i) q^{87} +(1.50000 + 2.59808i) q^{88} +(-3.00000 + 5.19615i) q^{89} +2.00000 q^{90} +4.00000 q^{92} +(-10.0000 + 17.3205i) q^{93} +(-5.00000 - 8.66025i) q^{94} +(5.00000 - 8.66025i) q^{96} +10.0000 q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} + q^{4} - 2 q^{5} - 4 q^{6} - 6 q^{8} - q^{9} - 2 q^{10} - q^{11} - 2 q^{12} - 8 q^{13} - 8 q^{15} + q^{16} + 4 q^{17} - q^{18} - 4 q^{20} + 2 q^{22} + 4 q^{23} - 6 q^{24} + q^{25}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i −0.986869 0.161521i \(-0.948360\pi\)
0.633316 + 0.773893i \(0.281693\pi\)
\(3\) 1.00000 + 1.73205i 0.577350 + 1.00000i 0.995782 + 0.0917517i \(0.0292466\pi\)
−0.418432 + 0.908248i \(0.637420\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.00000 + 1.73205i −0.447214 + 0.774597i −0.998203 0.0599153i \(-0.980917\pi\)
0.550990 + 0.834512i \(0.314250\pi\)
\(6\) −2.00000 −0.816497
\(7\) 0 0
\(8\) −3.00000 −1.06066
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.00000 1.73205i −0.316228 0.547723i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) −1.00000 + 1.73205i −0.288675 + 0.500000i
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) −4.00000 −1.03280
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 2.00000 + 3.46410i 0.485071 + 0.840168i 0.999853 0.0171533i \(-0.00546033\pi\)
−0.514782 + 0.857321i \(0.672127\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 2.00000 3.46410i 0.417029 0.722315i −0.578610 0.815604i \(-0.696405\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) −3.00000 5.19615i −0.612372 1.06066i
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 2.00000 3.46410i 0.392232 0.679366i
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 2.00000 3.46410i 0.365148 0.632456i
\(31\) 5.00000 + 8.66025i 0.898027 + 1.55543i 0.830014 + 0.557743i \(0.188333\pi\)
0.0680129 + 0.997684i \(0.478334\pi\)
\(32\) −2.50000 4.33013i −0.441942 0.765466i
\(33\) 1.00000 1.73205i 0.174078 0.301511i
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 3.00000 5.19615i 0.493197 0.854242i −0.506772 0.862080i \(-0.669162\pi\)
0.999969 + 0.00783774i \(0.00249486\pi\)
\(38\) 0 0
\(39\) −4.00000 6.92820i −0.640513 1.10940i
\(40\) 3.00000 5.19615i 0.474342 0.821584i
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 0.500000 0.866025i 0.0753778 0.130558i
\(45\) −1.00000 1.73205i −0.149071 0.258199i
\(46\) 2.00000 + 3.46410i 0.294884 + 0.510754i
\(47\) −5.00000 + 8.66025i −0.729325 + 1.26323i 0.227844 + 0.973698i \(0.426832\pi\)
−0.957169 + 0.289530i \(0.906501\pi\)
\(48\) 2.00000 0.288675
\(49\) 0 0
\(50\) −1.00000 −0.141421
\(51\) −4.00000 + 6.92820i −0.560112 + 0.970143i
\(52\) −2.00000 3.46410i −0.277350 0.480384i
\(53\) 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i \(-0.0314685\pi\)
−0.583036 + 0.812447i \(0.698135\pi\)
\(54\) −2.00000 + 3.46410i −0.272166 + 0.471405i
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 3.00000 5.19615i 0.393919 0.682288i
\(59\) 1.00000 + 1.73205i 0.130189 + 0.225494i 0.923749 0.382998i \(-0.125108\pi\)
−0.793560 + 0.608492i \(0.791775\pi\)
\(60\) −2.00000 3.46410i −0.258199 0.447214i
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) −10.0000 −1.27000
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 4.00000 6.92820i 0.496139 0.859338i
\(66\) 1.00000 + 1.73205i 0.123091 + 0.213201i
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) −2.00000 + 3.46410i −0.242536 + 0.420084i
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 1.50000 2.59808i 0.176777 0.306186i
\(73\) −4.00000 6.92820i −0.468165 0.810885i 0.531174 0.847263i \(-0.321751\pi\)
−0.999338 + 0.0363782i \(0.988418\pi\)
\(74\) 3.00000 + 5.19615i 0.348743 + 0.604040i
\(75\) −1.00000 + 1.73205i −0.115470 + 0.200000i
\(76\) 0 0
\(77\) 0 0
\(78\) 8.00000 0.905822
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) 1.00000 + 1.73205i 0.111803 + 0.193649i
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 2.00000 3.46410i 0.220863 0.382546i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −8.00000 −0.867722
\(86\) −6.00000 + 10.3923i −0.646997 + 1.12063i
\(87\) −6.00000 10.3923i −0.643268 1.11417i
\(88\) 1.50000 + 2.59808i 0.159901 + 0.276956i
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) 2.00000 0.210819
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) −10.0000 + 17.3205i −1.03695 + 1.79605i
\(94\) −5.00000 8.66025i −0.515711 0.893237i
\(95\) 0 0
\(96\) 5.00000 8.66025i 0.510310 0.883883i
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −2.00000 3.46410i −0.199007 0.344691i 0.749199 0.662344i \(-0.230438\pi\)
−0.948207 + 0.317653i \(0.897105\pi\)
\(102\) −4.00000 6.92820i −0.396059 0.685994i
\(103\) 7.00000 12.1244i 0.689730 1.19465i −0.282194 0.959357i \(-0.591062\pi\)
0.971925 0.235291i \(-0.0756043\pi\)
\(104\) 12.0000 1.17670
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i \(0.363630\pi\)
−0.995474 + 0.0950377i \(0.969703\pi\)
\(108\) 2.00000 + 3.46410i 0.192450 + 0.333333i
\(109\) 7.00000 + 12.1244i 0.670478 + 1.16130i 0.977769 + 0.209687i \(0.0672444\pi\)
−0.307290 + 0.951616i \(0.599422\pi\)
\(110\) −1.00000 + 1.73205i −0.0953463 + 0.165145i
\(111\) 12.0000 1.13899
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 4.00000 + 6.92820i 0.373002 + 0.646058i
\(116\) −3.00000 5.19615i −0.278543 0.482451i
\(117\) 2.00000 3.46410i 0.184900 0.320256i
\(118\) −2.00000 −0.184115
\(119\) 0 0
\(120\) 12.0000 1.09545
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) −4.00000 6.92820i −0.360668 0.624695i
\(124\) −5.00000 + 8.66025i −0.449013 + 0.777714i
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.50000 2.59808i 0.132583 0.229640i
\(129\) 12.0000 + 20.7846i 1.05654 + 1.82998i
\(130\) 4.00000 + 6.92820i 0.350823 + 0.607644i
\(131\) 6.00000 10.3923i 0.524222 0.907980i −0.475380 0.879781i \(-0.657689\pi\)
0.999602 0.0281993i \(-0.00897729\pi\)
\(132\) 2.00000 0.174078
\(133\) 0 0
\(134\) 8.00000 0.691095
\(135\) −4.00000 + 6.92820i −0.344265 + 0.596285i
\(136\) −6.00000 10.3923i −0.514496 0.891133i
\(137\) 5.00000 + 8.66025i 0.427179 + 0.739895i 0.996621 0.0821359i \(-0.0261741\pi\)
−0.569442 + 0.822031i \(0.692841\pi\)
\(138\) −4.00000 + 6.92820i −0.340503 + 0.589768i
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) −20.0000 −1.68430
\(142\) 6.00000 10.3923i 0.503509 0.872103i
\(143\) 2.00000 + 3.46410i 0.167248 + 0.289683i
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) 6.00000 10.3923i 0.498273 0.863034i
\(146\) 8.00000 0.662085
\(147\) 0 0
\(148\) 6.00000 0.493197
\(149\) 5.00000 8.66025i 0.409616 0.709476i −0.585231 0.810867i \(-0.698996\pi\)
0.994847 + 0.101391i \(0.0323294\pi\)
\(150\) −1.00000 1.73205i −0.0816497 0.141421i
\(151\) 8.00000 + 13.8564i 0.651031 + 1.12762i 0.982873 + 0.184284i \(0.0589965\pi\)
−0.331842 + 0.943335i \(0.607670\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) −20.0000 −1.60644
\(156\) 4.00000 6.92820i 0.320256 0.554700i
\(157\) 7.00000 + 12.1244i 0.558661 + 0.967629i 0.997609 + 0.0691164i \(0.0220180\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) −4.00000 6.92820i −0.318223 0.551178i
\(159\) −6.00000 + 10.3923i −0.475831 + 0.824163i
\(160\) 10.0000 0.790569
\(161\) 0 0
\(162\) −11.0000 −0.864242
\(163\) 4.00000 6.92820i 0.313304 0.542659i −0.665771 0.746156i \(-0.731897\pi\)
0.979076 + 0.203497i \(0.0652307\pi\)
\(164\) −2.00000 3.46410i −0.156174 0.270501i
\(165\) 2.00000 + 3.46410i 0.155700 + 0.269680i
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 4.00000 6.92820i 0.306786 0.531369i
\(171\) 0 0
\(172\) 6.00000 + 10.3923i 0.457496 + 0.792406i
\(173\) 6.00000 10.3923i 0.456172 0.790112i −0.542583 0.840002i \(-0.682554\pi\)
0.998755 + 0.0498898i \(0.0158870\pi\)
\(174\) 12.0000 0.909718
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) −2.00000 + 3.46410i −0.150329 + 0.260378i
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) −6.00000 10.3923i −0.448461 0.776757i 0.549825 0.835280i \(-0.314694\pi\)
−0.998286 + 0.0585225i \(0.981361\pi\)
\(180\) 1.00000 1.73205i 0.0745356 0.129099i
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.00000 + 10.3923i −0.442326 + 0.766131i
\(185\) 6.00000 + 10.3923i 0.441129 + 0.764057i
\(186\) −10.0000 17.3205i −0.733236 1.27000i
\(187\) 2.00000 3.46410i 0.146254 0.253320i
\(188\) −10.0000 −0.729325
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 + 6.92820i −0.289430 + 0.501307i −0.973674 0.227946i \(-0.926799\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(192\) 7.00000 + 12.1244i 0.505181 + 0.875000i
\(193\) 7.00000 + 12.1244i 0.503871 + 0.872730i 0.999990 + 0.00447566i \(0.00142465\pi\)
−0.496119 + 0.868255i \(0.665242\pi\)
\(194\) −5.00000 + 8.66025i −0.358979 + 0.621770i
\(195\) 16.0000 1.14578
\(196\) 0 0
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) −0.500000 + 0.866025i −0.0355335 + 0.0615457i
\(199\) −9.00000 15.5885i −0.637993 1.10504i −0.985873 0.167497i \(-0.946431\pi\)
0.347879 0.937539i \(-0.386902\pi\)
\(200\) −1.50000 2.59808i −0.106066 0.183712i
\(201\) 8.00000 13.8564i 0.564276 0.977356i
\(202\) 4.00000 0.281439
\(203\) 0 0
\(204\) −8.00000 −0.560112
\(205\) 4.00000 6.92820i 0.279372 0.483887i
\(206\) 7.00000 + 12.1244i 0.487713 + 0.844744i
\(207\) 2.00000 + 3.46410i 0.139010 + 0.240772i
\(208\) −2.00000 + 3.46410i −0.138675 + 0.240192i
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) −12.0000 20.7846i −0.822226 1.42414i
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) −12.0000 + 20.7846i −0.818393 + 1.41750i
\(216\) −12.0000 −0.816497
\(217\) 0 0
\(218\) −14.0000 −0.948200
\(219\) 8.00000 13.8564i 0.540590 0.936329i
\(220\) 1.00000 + 1.73205i 0.0674200 + 0.116775i
\(221\) −8.00000 13.8564i −0.538138 0.932083i
\(222\) −6.00000 + 10.3923i −0.402694 + 0.697486i
\(223\) −22.0000 −1.47323 −0.736614 0.676313i \(-0.763577\pi\)
−0.736614 + 0.676313i \(0.763577\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) −9.00000 + 15.5885i −0.598671 + 1.03693i
\(227\) 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i \(-0.0362899\pi\)
−0.595274 + 0.803523i \(0.702957\pi\)
\(228\) 0 0
\(229\) 9.00000 15.5885i 0.594737 1.03011i −0.398847 0.917017i \(-0.630590\pi\)
0.993584 0.113097i \(-0.0360770\pi\)
\(230\) −8.00000 −0.527504
\(231\) 0 0
\(232\) 18.0000 1.18176
\(233\) 9.00000 15.5885i 0.589610 1.02123i −0.404674 0.914461i \(-0.632615\pi\)
0.994283 0.106773i \(-0.0340517\pi\)
\(234\) 2.00000 + 3.46410i 0.130744 + 0.226455i
\(235\) −10.0000 17.3205i −0.652328 1.12987i
\(236\) −1.00000 + 1.73205i −0.0650945 + 0.112747i
\(237\) −16.0000 −1.03931
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) −2.00000 + 3.46410i −0.129099 + 0.223607i
\(241\) −10.0000 17.3205i −0.644157 1.11571i −0.984496 0.175409i \(-0.943875\pi\)
0.340339 0.940303i \(-0.389458\pi\)
\(242\) −0.500000 0.866025i −0.0321412 0.0556702i
\(243\) −5.00000 + 8.66025i −0.320750 + 0.555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 8.00000 0.510061
\(247\) 0 0
\(248\) −15.0000 25.9808i −0.952501 1.64978i
\(249\) 0 0
\(250\) 6.00000 10.3923i 0.379473 0.657267i
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) −4.00000 + 6.92820i −0.250982 + 0.434714i
\(255\) −8.00000 13.8564i −0.500979 0.867722i
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) −7.00000 + 12.1244i −0.436648 + 0.756297i −0.997429 0.0716680i \(-0.977168\pi\)
0.560781 + 0.827964i \(0.310501\pi\)
\(258\) −24.0000 −1.49417
\(259\) 0 0
\(260\) 8.00000 0.496139
\(261\) 3.00000 5.19615i 0.185695 0.321634i
\(262\) 6.00000 + 10.3923i 0.370681 + 0.642039i
\(263\) −4.00000 6.92820i −0.246651 0.427211i 0.715944 0.698158i \(-0.245997\pi\)
−0.962594 + 0.270947i \(0.912663\pi\)
\(264\) −3.00000 + 5.19615i −0.184637 + 0.319801i
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 4.00000 6.92820i 0.244339 0.423207i
\(269\) 5.00000 + 8.66025i 0.304855 + 0.528025i 0.977229 0.212187i \(-0.0680585\pi\)
−0.672374 + 0.740212i \(0.734725\pi\)
\(270\) −4.00000 6.92820i −0.243432 0.421637i
\(271\) −2.00000 + 3.46410i −0.121491 + 0.210429i −0.920356 0.391082i \(-0.872101\pi\)
0.798865 + 0.601511i \(0.205434\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) −10.0000 −0.604122
\(275\) 0.500000 0.866025i 0.0301511 0.0522233i
\(276\) 4.00000 + 6.92820i 0.240772 + 0.417029i
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) −4.00000 + 6.92820i −0.239904 + 0.415526i
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 10.0000 17.3205i 0.595491 1.03142i
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) 0 0
\(288\) 5.00000 0.294628
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 6.00000 + 10.3923i 0.352332 + 0.610257i
\(291\) 10.0000 + 17.3205i 0.586210 + 1.01535i
\(292\) 4.00000 6.92820i 0.234082 0.405442i
\(293\) 24.0000 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) −9.00000 + 15.5885i −0.523114 + 0.906061i
\(297\) −2.00000 3.46410i −0.116052 0.201008i
\(298\) 5.00000 + 8.66025i 0.289642 + 0.501675i
\(299\) −8.00000 + 13.8564i −0.462652 + 0.801337i
\(300\) −2.00000 −0.115470
\(301\) 0 0
\(302\) −16.0000 −0.920697
\(303\) 4.00000 6.92820i 0.229794 0.398015i
\(304\) 0 0
\(305\) 0 0
\(306\) 2.00000 3.46410i 0.114332 0.198030i
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 28.0000 1.59286
\(310\) 10.0000 17.3205i 0.567962 0.983739i
\(311\) −9.00000 15.5885i −0.510343 0.883940i −0.999928 0.0119847i \(-0.996185\pi\)
0.489585 0.871956i \(-0.337148\pi\)
\(312\) 12.0000 + 20.7846i 0.679366 + 1.17670i
\(313\) 1.00000 1.73205i 0.0565233 0.0979013i −0.836379 0.548151i \(-0.815332\pi\)
0.892903 + 0.450250i \(0.148665\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 1.00000 1.73205i 0.0561656 0.0972817i −0.836576 0.547852i \(-0.815446\pi\)
0.892741 + 0.450570i \(0.148779\pi\)
\(318\) −6.00000 10.3923i −0.336463 0.582772i
\(319\) 3.00000 + 5.19615i 0.167968 + 0.290929i
\(320\) −7.00000 + 12.1244i −0.391312 + 0.677772i
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) 0 0
\(324\) −5.50000 + 9.52628i −0.305556 + 0.529238i
\(325\) −2.00000 3.46410i −0.110940 0.192154i
\(326\) 4.00000 + 6.92820i 0.221540 + 0.383718i
\(327\) −14.0000 + 24.2487i −0.774202 + 1.34096i
\(328\) 12.0000 0.662589
\(329\) 0 0
\(330\) −4.00000 −0.220193
\(331\) 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i \(-0.648095\pi\)
0.998298 0.0583130i \(-0.0185721\pi\)
\(332\) 0 0
\(333\) 3.00000 + 5.19615i 0.164399 + 0.284747i
\(334\) 0 0
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −1.50000 + 2.59808i −0.0815892 + 0.141317i
\(339\) 18.0000 + 31.1769i 0.977626 + 1.69330i
\(340\) −4.00000 6.92820i −0.216930 0.375735i
\(341\) 5.00000 8.66025i 0.270765 0.468979i
\(342\) 0 0
\(343\) 0 0
\(344\) −36.0000 −1.94099
\(345\) −8.00000 + 13.8564i −0.430706 + 0.746004i
\(346\) 6.00000 + 10.3923i 0.322562 + 0.558694i
\(347\) −2.00000 3.46410i −0.107366 0.185963i 0.807337 0.590091i \(-0.200908\pi\)
−0.914702 + 0.404128i \(0.867575\pi\)
\(348\) 6.00000 10.3923i 0.321634 0.557086i
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) −2.50000 + 4.33013i −0.133250 + 0.230797i
\(353\) −15.0000 25.9808i −0.798369 1.38282i −0.920677 0.390324i \(-0.872363\pi\)
0.122308 0.992492i \(-0.460970\pi\)
\(354\) −2.00000 3.46410i −0.106299 0.184115i
\(355\) 12.0000 20.7846i 0.636894 1.10313i
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −8.00000 + 13.8564i −0.422224 + 0.731313i −0.996157 0.0875892i \(-0.972084\pi\)
0.573933 + 0.818902i \(0.305417\pi\)
\(360\) 3.00000 + 5.19615i 0.158114 + 0.273861i
\(361\) 9.50000 + 16.4545i 0.500000 + 0.866025i
\(362\) 5.00000 8.66025i 0.262794 0.455173i
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 16.0000 0.837478
\(366\) 0 0
\(367\) 11.0000 + 19.0526i 0.574195 + 0.994535i 0.996129 + 0.0879086i \(0.0280183\pi\)
−0.421933 + 0.906627i \(0.638648\pi\)
\(368\) −2.00000 3.46410i −0.104257 0.180579i
\(369\) 2.00000 3.46410i 0.104116 0.180334i
\(370\) −12.0000 −0.623850
\(371\) 0 0
\(372\) −20.0000 −1.03695
\(373\) 13.0000 22.5167i 0.673114 1.16587i −0.303902 0.952703i \(-0.598289\pi\)
0.977016 0.213165i \(-0.0683772\pi\)
\(374\) 2.00000 + 3.46410i 0.103418 + 0.179124i
\(375\) −12.0000 20.7846i −0.619677 1.07331i
\(376\) 15.0000 25.9808i 0.773566 1.33986i
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) 8.00000 + 13.8564i 0.409852 + 0.709885i
\(382\) −4.00000 6.92820i −0.204658 0.354478i
\(383\) 1.00000 1.73205i 0.0510976 0.0885037i −0.839345 0.543599i \(-0.817061\pi\)
0.890443 + 0.455095i \(0.150395\pi\)
\(384\) 6.00000 0.306186
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) −6.00000 + 10.3923i −0.304997 + 0.528271i
\(388\) 5.00000 + 8.66025i 0.253837 + 0.439658i
\(389\) −3.00000 5.19615i −0.152106 0.263455i 0.779895 0.625910i \(-0.215272\pi\)
−0.932002 + 0.362454i \(0.881939\pi\)
\(390\) −8.00000 + 13.8564i −0.405096 + 0.701646i
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 24.0000 1.21064
\(394\) −11.0000 + 19.0526i −0.554172 + 0.959854i
\(395\) −8.00000 13.8564i −0.402524 0.697191i
\(396\) 0.500000 + 0.866025i 0.0251259 + 0.0435194i
\(397\) 11.0000 19.0526i 0.552074 0.956221i −0.446051 0.895008i \(-0.647170\pi\)
0.998125 0.0612128i \(-0.0194968\pi\)
\(398\) 18.0000 0.902258
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 11.0000 19.0526i 0.549314 0.951439i −0.449008 0.893528i \(-0.648223\pi\)
0.998322 0.0579116i \(-0.0184442\pi\)
\(402\) 8.00000 + 13.8564i 0.399004 + 0.691095i
\(403\) −20.0000 34.6410i −0.996271 1.72559i
\(404\) 2.00000 3.46410i 0.0995037 0.172345i
\(405\) −22.0000 −1.09319
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 12.0000 20.7846i 0.594089 1.02899i
\(409\) 12.0000 + 20.7846i 0.593362 + 1.02773i 0.993776 + 0.111398i \(0.0355330\pi\)
−0.400414 + 0.916334i \(0.631134\pi\)
\(410\) 4.00000 + 6.92820i 0.197546 + 0.342160i
\(411\) −10.0000 + 17.3205i −0.493264 + 0.854358i
\(412\) 14.0000 0.689730
\(413\) 0 0
\(414\) −4.00000 −0.196589
\(415\) 0 0
\(416\) 10.0000 + 17.3205i 0.490290 + 0.849208i
\(417\) 8.00000 + 13.8564i 0.391762 + 0.678551i
\(418\) 0 0
\(419\) −2.00000 −0.0977064 −0.0488532 0.998806i \(-0.515557\pi\)
−0.0488532 + 0.998806i \(0.515557\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 6.00000 10.3923i 0.292075 0.505889i
\(423\) −5.00000 8.66025i −0.243108 0.421076i
\(424\) −9.00000 15.5885i −0.437079 0.757042i
\(425\) −2.00000 + 3.46410i −0.0970143 + 0.168034i
\(426\) 24.0000 1.16280
\(427\) 0 0
\(428\) −12.0000 −0.580042
\(429\) −4.00000 + 6.92820i −0.193122 + 0.334497i
\(430\) −12.0000 20.7846i −0.578691 1.00232i
\(431\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(432\) 2.00000 3.46410i 0.0962250 0.166667i
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 0 0
\(435\) 24.0000 1.15071
\(436\) −7.00000 + 12.1244i −0.335239 + 0.580651i
\(437\) 0 0
\(438\) 8.00000 + 13.8564i 0.382255 + 0.662085i
\(439\) −10.0000 + 17.3205i −0.477274 + 0.826663i −0.999661 0.0260459i \(-0.991708\pi\)
0.522387 + 0.852709i \(0.325042\pi\)
\(440\) −6.00000 −0.286039
\(441\) 0 0
\(442\) 16.0000 0.761042
\(443\) −2.00000 + 3.46410i −0.0950229 + 0.164584i −0.909618 0.415445i \(-0.863626\pi\)
0.814595 + 0.580030i \(0.196959\pi\)
\(444\) 6.00000 + 10.3923i 0.284747 + 0.493197i
\(445\) −6.00000 10.3923i −0.284427 0.492642i
\(446\) 11.0000 19.0526i 0.520865 0.902165i
\(447\) 20.0000 0.945968
\(448\) 0 0
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) 0.500000 0.866025i 0.0235702 0.0408248i
\(451\) 2.00000 + 3.46410i 0.0941763 + 0.163118i
\(452\) 9.00000 + 15.5885i 0.423324 + 0.733219i
\(453\) −16.0000 + 27.7128i −0.751746 + 1.30206i
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) −9.00000 + 15.5885i −0.421002 + 0.729197i −0.996038 0.0889312i \(-0.971655\pi\)
0.575036 + 0.818128i \(0.304988\pi\)
\(458\) 9.00000 + 15.5885i 0.420542 + 0.728401i
\(459\) 8.00000 + 13.8564i 0.373408 + 0.646762i
\(460\) −4.00000 + 6.92820i −0.186501 + 0.323029i
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) −3.00000 + 5.19615i −0.139272 + 0.241225i
\(465\) −20.0000 34.6410i −0.927478 1.60644i
\(466\) 9.00000 + 15.5885i 0.416917 + 0.722121i
\(467\) 15.0000 25.9808i 0.694117 1.20225i −0.276360 0.961054i \(-0.589128\pi\)
0.970477 0.241192i \(-0.0775384\pi\)
\(468\) 4.00000 0.184900
\(469\) 0 0
\(470\) 20.0000 0.922531
\(471\) −14.0000 + 24.2487i −0.645086 + 1.11732i
\(472\) −3.00000 5.19615i −0.138086 0.239172i
\(473\) −6.00000 10.3923i −0.275880 0.477839i
\(474\) 8.00000 13.8564i 0.367452 0.636446i
\(475\) 0 0
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) −2.00000 3.46410i −0.0913823 0.158279i 0.816711 0.577047i \(-0.195795\pi\)
−0.908093 + 0.418769i \(0.862462\pi\)
\(480\) 10.0000 + 17.3205i 0.456435 + 0.790569i
\(481\) −12.0000 + 20.7846i −0.547153 + 0.947697i
\(482\) 20.0000 0.910975
\(483\) 0 0
\(484\) −1.00000 −0.0454545
\(485\) −10.0000 + 17.3205i −0.454077 + 0.786484i
\(486\) −5.00000 8.66025i −0.226805 0.392837i
\(487\) 14.0000 + 24.2487i 0.634401 + 1.09881i 0.986642 + 0.162905i \(0.0520863\pi\)
−0.352241 + 0.935909i \(0.614580\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) 28.0000 1.26362 0.631811 0.775122i \(-0.282312\pi\)
0.631811 + 0.775122i \(0.282312\pi\)
\(492\) 4.00000 6.92820i 0.180334 0.312348i
\(493\) −12.0000 20.7846i −0.540453 0.936092i
\(494\) 0 0
\(495\) −1.00000 + 1.73205i −0.0449467 + 0.0778499i
\(496\) 10.0000 0.449013
\(497\) 0 0
\(498\) 0 0
\(499\) 8.00000 13.8564i 0.358129 0.620298i −0.629519 0.776985i \(-0.716748\pi\)
0.987648 + 0.156687i \(0.0500814\pi\)
\(500\) −6.00000 10.3923i −0.268328 0.464758i
\(501\) 0 0
\(502\) −1.00000 + 1.73205i −0.0446322 + 0.0773052i
\(503\) −4.00000 −0.178351 −0.0891756 0.996016i \(-0.528423\pi\)
−0.0891756 + 0.996016i \(0.528423\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) 2.00000 3.46410i 0.0889108 0.153998i
\(507\) 3.00000 + 5.19615i 0.133235 + 0.230769i
\(508\) 4.00000 + 6.92820i 0.177471 + 0.307389i
\(509\) 9.00000 15.5885i 0.398918 0.690946i −0.594675 0.803966i \(-0.702719\pi\)
0.993593 + 0.113020i \(0.0360525\pi\)
\(510\) 16.0000 0.708492
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) −7.00000 12.1244i −0.308757 0.534782i
\(515\) 14.0000 + 24.2487i 0.616914 + 1.06853i
\(516\) −12.0000 + 20.7846i −0.528271 + 0.914991i
\(517\) 10.0000 0.439799
\(518\) 0 0
\(519\) 24.0000 1.05348
\(520\) −12.0000 + 20.7846i −0.526235 + 0.911465i
\(521\) 3.00000 + 5.19615i 0.131432 + 0.227648i 0.924229 0.381839i \(-0.124709\pi\)
−0.792797 + 0.609486i \(0.791376\pi\)
\(522\) 3.00000 + 5.19615i 0.131306 + 0.227429i
\(523\) 10.0000 17.3205i 0.437269 0.757373i −0.560208 0.828352i \(-0.689279\pi\)
0.997478 + 0.0709788i \(0.0226123\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) −20.0000 + 34.6410i −0.871214 + 1.50899i
\(528\) −1.00000 1.73205i −0.0435194 0.0753778i
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 6.00000 10.3923i 0.260623 0.451413i
\(531\) −2.00000 −0.0867926
\(532\) 0 0
\(533\) 16.0000 0.693037
\(534\) 6.00000 10.3923i 0.259645 0.449719i
\(535\) −12.0000 20.7846i −0.518805 0.898597i
\(536\) 12.0000 + 20.7846i 0.518321 + 0.897758i
\(537\) 12.0000 20.7846i 0.517838 0.896922i
\(538\) −10.0000 −0.431131
\(539\) 0 0
\(540\) −8.00000 −0.344265
\(541\) 13.0000 22.5167i 0.558914 0.968067i −0.438674 0.898646i \(-0.644552\pi\)
0.997587 0.0694205i \(-0.0221150\pi\)
\(542\) −2.00000 3.46410i −0.0859074 0.148796i
\(543\) −10.0000 17.3205i −0.429141 0.743294i
\(544\) 10.0000 17.3205i 0.428746 0.742611i
\(545\) −28.0000 −1.19939
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −5.00000 + 8.66025i −0.213589 + 0.369948i
\(549\) 0 0
\(550\) 0.500000 + 0.866025i 0.0213201 + 0.0369274i
\(551\) 0 0
\(552\) −24.0000 −1.02151
\(553\) 0 0
\(554\) 22.0000 0.934690
\(555\) −12.0000 + 20.7846i −0.509372 + 0.882258i
\(556\) 4.00000 + 6.92820i 0.169638 + 0.293821i
\(557\) −11.0000 19.0526i −0.466085 0.807283i 0.533165 0.846011i \(-0.321003\pi\)
−0.999250 + 0.0387286i \(0.987669\pi\)
\(558\) 5.00000 8.66025i 0.211667 0.366618i
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) −3.00000 + 5.19615i −0.126547 + 0.219186i
\(563\) −16.0000 27.7128i −0.674320 1.16796i −0.976667 0.214758i \(-0.931104\pi\)
0.302348 0.953198i \(-0.402230\pi\)
\(564\) −10.0000 17.3205i −0.421076 0.729325i
\(565\) −18.0000 + 31.1769i −0.757266 + 1.31162i
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 36.0000 1.51053
\(569\) −15.0000 + 25.9808i −0.628833 + 1.08917i 0.358954 + 0.933355i \(0.383134\pi\)
−0.987786 + 0.155815i \(0.950200\pi\)
\(570\) 0 0
\(571\) −10.0000 17.3205i −0.418487 0.724841i 0.577301 0.816532i \(-0.304106\pi\)
−0.995788 + 0.0916910i \(0.970773\pi\)
\(572\) −2.00000 + 3.46410i −0.0836242 + 0.144841i
\(573\) −16.0000 −0.668410
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) −3.50000 + 6.06218i −0.145833 + 0.252591i
\(577\) −9.00000 15.5885i −0.374675 0.648956i 0.615603 0.788056i \(-0.288912\pi\)
−0.990278 + 0.139100i \(0.955579\pi\)
\(578\) 0.500000 + 0.866025i 0.0207973 + 0.0360219i
\(579\) −14.0000 + 24.2487i −0.581820 + 1.00774i
\(580\) 12.0000 0.498273
\(581\) 0 0
\(582\) −20.0000 −0.829027
\(583\) 3.00000 5.19615i 0.124247 0.215203i
\(584\) 12.0000 + 20.7846i 0.496564 + 0.860073i
\(585\) 4.00000 + 6.92820i 0.165380 + 0.286446i
\(586\) −12.0000 + 20.7846i −0.495715 + 0.858604i
\(587\) 2.00000 0.0825488 0.0412744 0.999148i \(-0.486858\pi\)
0.0412744 + 0.999148i \(0.486858\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 2.00000 3.46410i 0.0823387 0.142615i
\(591\) 22.0000 + 38.1051i 0.904959 + 1.56744i
\(592\) −3.00000 5.19615i −0.123299 0.213561i
\(593\) 16.0000 27.7128i 0.657041 1.13803i −0.324337 0.945942i \(-0.605141\pi\)
0.981378 0.192087i \(-0.0615256\pi\)
\(594\) 4.00000 0.164122
\(595\) 0 0
\(596\) 10.0000 0.409616
\(597\) 18.0000 31.1769i 0.736691 1.27599i
\(598\) −8.00000 13.8564i −0.327144 0.566631i
\(599\) 10.0000 + 17.3205i 0.408589 + 0.707697i 0.994732 0.102511i \(-0.0326876\pi\)
−0.586143 + 0.810208i \(0.699354\pi\)
\(600\) 3.00000 5.19615i 0.122474 0.212132i
\(601\) 28.0000 1.14214 0.571072 0.820900i \(-0.306528\pi\)
0.571072 + 0.820900i \(0.306528\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) −8.00000 + 13.8564i −0.325515 + 0.563809i
\(605\) −1.00000 1.73205i −0.0406558 0.0704179i
\(606\) 4.00000 + 6.92820i 0.162489 + 0.281439i
\(607\) −20.0000 + 34.6410i −0.811775 + 1.40604i 0.0998457 + 0.995003i \(0.468165\pi\)
−0.911621 + 0.411033i \(0.865168\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.0000 34.6410i 0.809113 1.40143i
\(612\) −2.00000 3.46410i −0.0808452 0.140028i
\(613\) −13.0000 22.5167i −0.525065 0.909439i −0.999574 0.0291886i \(-0.990708\pi\)
0.474509 0.880251i \(-0.342626\pi\)
\(614\) 10.0000 17.3205i 0.403567 0.698999i
\(615\) 16.0000 0.645182
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) −14.0000 + 24.2487i −0.563163 + 0.975426i
\(619\) 7.00000 + 12.1244i 0.281354 + 0.487319i 0.971718 0.236143i \(-0.0758832\pi\)
−0.690365 + 0.723462i \(0.742550\pi\)
\(620\) −10.0000 17.3205i −0.401610 0.695608i
\(621\) 8.00000 13.8564i 0.321029 0.556038i
\(622\) 18.0000 0.721734
\(623\) 0 0
\(624\) −8.00000 −0.320256
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) 1.00000 + 1.73205i 0.0399680 + 0.0692267i
\(627\) 0 0
\(628\) −7.00000 + 12.1244i −0.279330 + 0.483814i
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 12.0000 20.7846i 0.477334 0.826767i
\(633\) −12.0000 20.7846i −0.476957 0.826114i
\(634\) 1.00000 + 1.73205i 0.0397151 + 0.0687885i
\(635\) −8.00000 + 13.8564i −0.317470 + 0.549875i
\(636\) −12.0000 −0.475831
\(637\) 0 0
\(638\) −6.00000 −0.237542
\(639\) 6.00000 10.3923i 0.237356 0.411113i
\(640\) 3.00000 + 5.19615i 0.118585 + 0.205396i
\(641\) 9.00000 + 15.5885i 0.355479 + 0.615707i 0.987200 0.159489i \(-0.0509845\pi\)
−0.631721 + 0.775196i \(0.717651\pi\)
\(642\) 12.0000 20.7846i 0.473602 0.820303i
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 0 0
\(645\) −48.0000 −1.89000
\(646\) 0 0
\(647\) −11.0000 19.0526i −0.432455 0.749033i 0.564629 0.825345i \(-0.309019\pi\)
−0.997084 + 0.0763112i \(0.975686\pi\)
\(648\) −16.5000 28.5788i −0.648181 1.12268i
\(649\) 1.00000 1.73205i 0.0392534 0.0679889i
\(650\) 4.00000 0.156893
\(651\) 0 0
\(652\) 8.00000 0.313304
\(653\) 13.0000 22.5167i 0.508729 0.881145i −0.491220 0.871036i \(-0.663449\pi\)
0.999949 0.0101092i \(-0.00321793\pi\)
\(654\) −14.0000 24.2487i −0.547443 0.948200i
\(655\) 12.0000 + 20.7846i 0.468879 + 0.812122i
\(656\) −2.00000 + 3.46410i −0.0780869 + 0.135250i
\(657\) 8.00000 0.312110
\(658\) 0 0
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) −2.00000 + 3.46410i −0.0778499 + 0.134840i
\(661\) 11.0000 + 19.0526i 0.427850 + 0.741059i 0.996682 0.0813955i \(-0.0259377\pi\)
−0.568831 + 0.822454i \(0.692604\pi\)
\(662\) 10.0000 + 17.3205i 0.388661 + 0.673181i
\(663\) 16.0000 27.7128i 0.621389 1.07628i
\(664\) 0 0
\(665\) 0 0
\(666\) −6.00000 −0.232495
\(667\) −12.0000 + 20.7846i −0.464642 + 0.804783i
\(668\) 0 0
\(669\) −22.0000 38.1051i −0.850569 1.47323i
\(670\) −8.00000 + 13.8564i −0.309067 + 0.535320i
\(671\) 0 0
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) −7.00000 + 12.1244i −0.269630 + 0.467013i
\(675\) 2.00000 + 3.46410i 0.0769800 + 0.133333i
\(676\) 1.50000 + 2.59808i 0.0576923 + 0.0999260i
\(677\) −6.00000 + 10.3923i −0.230599 + 0.399409i −0.957984 0.286820i \(-0.907402\pi\)
0.727386 + 0.686229i \(0.240735\pi\)
\(678\) −36.0000 −1.38257
\(679\) 0 0
\(680\) 24.0000 0.920358
\(681\) −12.0000 + 20.7846i −0.459841 + 0.796468i
\(682\) 5.00000 + 8.66025i 0.191460 + 0.331618i
\(683\) 2.00000 + 3.46410i 0.0765279 + 0.132550i 0.901750 0.432259i \(-0.142283\pi\)
−0.825222 + 0.564809i \(0.808950\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) 36.0000 1.37349
\(688\) 6.00000 10.3923i 0.228748 0.396203i
\(689\) −12.0000 20.7846i −0.457164 0.791831i
\(690\) −8.00000 13.8564i −0.304555 0.527504i
\(691\) −23.0000 + 39.8372i −0.874961 + 1.51548i −0.0181572 + 0.999835i \(0.505780\pi\)
−0.856804 + 0.515642i \(0.827553\pi\)
\(692\) 12.0000 0.456172
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −8.00000 + 13.8564i −0.303457 + 0.525603i
\(696\) 18.0000 + 31.1769i 0.682288 + 1.18176i
\(697\) −8.00000 13.8564i −0.303022 0.524849i
\(698\) 0 0
\(699\) 36.0000 1.36165
\(700\) 0 0
\(701\) −22.0000 −0.830929 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(702\) 8.00000 13.8564i 0.301941 0.522976i
\(703\) 0 0
\(704\) −3.50000 6.06218i −0.131911 0.228477i
\(705\) 20.0000 34.6410i 0.753244 1.30466i
\(706\) 30.0000 1.12906
\(707\) 0 0
\(708\) −4.00000 −0.150329
\(709\) 17.0000 29.4449i 0.638448 1.10583i −0.347325 0.937745i \(-0.612910\pi\)
0.985773 0.168080i \(-0.0537568\pi\)
\(710\) 12.0000 + 20.7846i 0.450352 + 0.780033i
\(711\) −4.00000 6.92820i −0.150012 0.259828i
\(712\) 9.00000 15.5885i 0.337289 0.584202i
\(713\) 40.0000 1.49801
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 6.00000 10.3923i 0.224231 0.388379i
\(717\) 0 0
\(718\) −8.00000 13.8564i −0.298557 0.517116i
\(719\) −3.00000 + 5.19615i −0.111881 + 0.193784i −0.916529 0.399969i \(-0.869021\pi\)
0.804648 + 0.593753i \(0.202354\pi\)
\(720\) −2.00000 −0.0745356
\(721\) 0 0
\(722\) −19.0000 −0.707107
\(723\) 20.0000 34.6410i 0.743808 1.28831i
\(724\) −5.00000 8.66025i −0.185824 0.321856i
\(725\) −3.00000 5.19615i −0.111417 0.192980i
\(726\) 1.00000 1.73205i 0.0371135 0.0642824i
\(727\) −18.0000 −0.667583 −0.333792 0.942647i \(-0.608328\pi\)
−0.333792 + 0.942647i \(0.608328\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) −8.00000 + 13.8564i −0.296093 + 0.512849i
\(731\) 24.0000 + 41.5692i 0.887672 + 1.53749i
\(732\) 0 0
\(733\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(734\) −22.0000 −0.812035
\(735\) 0 0
\(736\) −20.0000 −0.737210
\(737\) −4.00000 + 6.92820i −0.147342 + 0.255204i
\(738\) 2.00000 + 3.46410i 0.0736210 + 0.127515i
\(739\) 2.00000 + 3.46410i 0.0735712 + 0.127429i 0.900464 0.434930i \(-0.143227\pi\)
−0.826893 + 0.562360i \(0.809894\pi\)
\(740\) −6.00000 + 10.3923i −0.220564 + 0.382029i
\(741\) 0 0
\(742\) 0 0
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) 30.0000 51.9615i 1.09985 1.90500i
\(745\) 10.0000 + 17.3205i 0.366372 + 0.634574i
\(746\) 13.0000 + 22.5167i 0.475964 + 0.824394i
\(747\) 0 0
\(748\) 4.00000 0.146254
\(749\) 0 0
\(750\) 24.0000 0.876356
\(751\) 10.0000 17.3205i 0.364905 0.632034i −0.623856 0.781540i \(-0.714435\pi\)
0.988761 + 0.149505i \(0.0477681\pi\)
\(752\) 5.00000 + 8.66025i 0.182331 + 0.315807i
\(753\) 2.00000 + 3.46410i 0.0728841 + 0.126239i
\(754\) −12.0000 + 20.7846i −0.437014 + 0.756931i
\(755\) −32.0000 −1.16460
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 4.00000 6.92820i 0.145287 0.251644i
\(759\) −4.00000 6.92820i −0.145191 0.251478i
\(760\) 0 0
\(761\) 24.0000 41.5692i 0.869999 1.50688i 0.00800331 0.999968i \(-0.497452\pi\)
0.861996 0.506915i \(-0.169214\pi\)
\(762\) −16.0000 −0.579619
\(763\) 0 0
\(764\) −8.00000 −0.289430
\(765\) 4.00000 6.92820i 0.144620 0.250490i
\(766\) 1.00000 + 1.73205i 0.0361315 + 0.0625815i
\(767\) −4.00000 6.92820i −0.144432 0.250163i
\(768\) −17.0000 + 29.4449i −0.613435 + 1.06250i
\(769\) −32.0000 −1.15395 −0.576975 0.816762i \(-0.695767\pi\)
−0.576975 + 0.816762i \(0.695767\pi\)
\(770\) 0 0
\(771\) −28.0000 −1.00840
\(772\) −7.00000 + 12.1244i −0.251936 + 0.436365i
\(773\) −15.0000 25.9808i −0.539513 0.934463i −0.998930 0.0462427i \(-0.985275\pi\)
0.459418 0.888220i \(-0.348058\pi\)
\(774\) −6.00000 10.3923i −0.215666 0.373544i
\(775\) −5.00000 + 8.66025i −0.179605 + 0.311086i
\(776\) −30.0000 −1.07694
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 0 0
\(780\) 8.00000 + 13.8564i 0.286446 + 0.496139i
\(781\) 6.00000 + 10.3923i 0.214697 + 0.371866i
\(782\) −8.00000 + 13.8564i −0.286079 + 0.495504i
\(783\) −24.0000 −0.857690
\(784\) 0 0
\(785\) −28.0000 −0.999363
\(786\) −12.0000 + 20.7846i −0.428026 + 0.741362i
\(787\) 8.00000 + 13.8564i 0.285169 + 0.493928i 0.972650 0.232275i \(-0.0746169\pi\)
−0.687481 + 0.726202i \(0.741284\pi\)
\(788\) 11.0000 + 19.0526i 0.391859 + 0.678719i
\(789\) 8.00000 13.8564i 0.284808 0.493301i
\(790\) 16.0000 0.569254
\(791\) 0 0
\(792\) −3.00000 −0.106600
\(793\) 0 0
\(794\) 11.0000 + 19.0526i 0.390375 + 0.676150i
\(795\) −12.0000 20.7846i −0.425596 0.737154i
\(796\) 9.00000 15.5885i 0.318997 0.552518i
\(797\) −14.0000 −0.495905 −0.247953 0.968772i \(-0.579758\pi\)
−0.247953 + 0.968772i \(0.579758\pi\)
\(798\) 0 0
\(799\) −40.0000 −1.41510
\(800\) 2.50000 4.33013i 0.0883883 0.153093i
\(801\) −3.00000 5.19615i −0.106000 0.183597i
\(802\) 11.0000 + 19.0526i 0.388424 + 0.672769i
\(803\) −4.00000 + 6.92820i −0.141157 + 0.244491i
\(804\) 16.0000 0.564276
\(805\) 0 0
\(806\) 40.0000 1.40894
\(807\) −10.0000 + 17.3205i −0.352017 + 0.609711i
\(808\) 6.00000 + 10.3923i 0.211079 + 0.365600i
\(809\) 15.0000 + 25.9808i 0.527372 + 0.913435i 0.999491 + 0.0319002i \(0.0101559\pi\)
−0.472119 + 0.881535i \(0.656511\pi\)
\(810\) 11.0000 19.0526i 0.386501 0.669439i
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) −8.00000 −0.280572
\(814\) 3.00000 5.19615i 0.105150 0.182125i
\(815\) 8.00000 + 13.8564i 0.280228 + 0.485369i
\(816\) 4.00000 + 6.92820i 0.140028 + 0.242536i
\(817\) 0 0
\(818\) −24.0000 −0.839140
\(819\) 0 0
\(820\) 8.00000 0.279372
\(821\) −23.0000 + 39.8372i −0.802706 + 1.39033i 0.115124 + 0.993351i \(0.463274\pi\)
−0.917829 + 0.396976i \(0.870060\pi\)
\(822\) −10.0000 17.3205i −0.348790 0.604122i
\(823\) −12.0000 20.7846i −0.418294 0.724506i 0.577474 0.816409i \(-0.304038\pi\)
−0.995768 + 0.0919029i \(0.970705\pi\)
\(824\) −21.0000 + 36.3731i −0.731570 + 1.26712i
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) −2.00000 + 3.46410i −0.0695048 + 0.120386i
\(829\) −1.00000 1.73205i −0.0347314 0.0601566i 0.848137 0.529777i \(-0.177724\pi\)
−0.882869 + 0.469620i \(0.844391\pi\)
\(830\) 0 0
\(831\) 22.0000 38.1051i 0.763172 1.32185i
\(832\) −28.0000 −0.970725
\(833\) 0 0
\(834\) −16.0000 −0.554035
\(835\) 0 0
\(836\) 0 0
\(837\) 20.0000 + 34.6410i 0.691301 + 1.19737i
\(838\) 1.00000 1.73205i 0.0345444 0.0598327i
\(839\) −34.0000 −1.17381 −0.586905 0.809656i \(-0.699654\pi\)
−0.586905 + 0.809656i \(0.699654\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 7.00000 12.1244i 0.241236 0.417833i
\(843\) 6.00000 + 10.3923i 0.206651 + 0.357930i
\(844\) −6.00000 10.3923i −0.206529 0.357718i
\(845\) −3.00000 + 5.19615i −0.103203 + 0.178753i
\(846\) 10.0000 0.343807
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) −4.00000 + 6.92820i −0.137280 + 0.237775i
\(850\) −2.00000 3.46410i −0.0685994 0.118818i
\(851\) −12.0000 20.7846i −0.411355 0.712487i
\(852\) 12.0000 20.7846i 0.411113 0.712069i
\(853\) −44.0000 −1.50653 −0.753266 0.657716i \(-0.771523\pi\)
−0.753266 + 0.657716i \(0.771523\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 18.0000 31.1769i 0.615227 1.06561i
\(857\) 28.0000 + 48.4974i 0.956462 + 1.65664i 0.730987 + 0.682391i \(0.239060\pi\)
0.225475 + 0.974249i \(0.427607\pi\)
\(858\) −4.00000 6.92820i −0.136558 0.236525i
\(859\) 3.00000 5.19615i 0.102359 0.177290i −0.810297 0.586019i \(-0.800694\pi\)
0.912656 + 0.408729i \(0.134028\pi\)
\(860\) −24.0000 −0.818393
\(861\) 0 0
\(862\) 0 0
\(863\) −12.0000 + 20.7846i −0.408485 + 0.707516i −0.994720 0.102624i \(-0.967276\pi\)
0.586235 + 0.810141i \(0.300609\pi\)
\(864\) −10.0000 17.3205i −0.340207 0.589256i
\(865\) 12.0000 + 20.7846i 0.408012 + 0.706698i
\(866\) −13.0000 + 22.5167i −0.441758 + 0.765147i
\(867\) 2.00000 0.0679236
\(868\) 0 0
\(869\) 8.00000 0.271381
\(870\) −12.0000 + 20.7846i −0.406838 + 0.704664i
\(871\) 16.0000 + 27.7128i 0.542139 + 0.939013i
\(872\) −21.0000 36.3731i −0.711150 1.23175i
\(873\) −5.00000 + 8.66025i −0.169224 + 0.293105i
\(874\) 0 0
\(875\) 0 0
\(876\) 16.0000 0.540590
\(877\) −21.0000 + 36.3731i −0.709120 + 1.22823i 0.256064 + 0.966660i \(0.417574\pi\)
−0.965184 + 0.261571i \(0.915759\pi\)
\(878\) −10.0000 17.3205i −0.337484 0.584539i
\(879\) 24.0000 + 41.5692i 0.809500 + 1.40209i
\(880\) 1.00000 1.73205i 0.0337100 0.0583874i
\(881\) 34.0000 1.14549 0.572745 0.819734i \(-0.305879\pi\)
0.572745 + 0.819734i \(0.305879\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 8.00000 13.8564i 0.269069 0.466041i
\(885\) −4.00000 6.92820i −0.134459 0.232889i
\(886\) −2.00000 3.46410i −0.0671913 0.116379i
\(887\) −14.0000 + 24.2487i −0.470074 + 0.814192i −0.999414 0.0342175i \(-0.989106\pi\)
0.529340 + 0.848410i \(0.322439\pi\)
\(888\) −36.0000 −1.20808
\(889\) 0 0
\(890\) 12.0000 0.402241
\(891\) 5.50000 9.52628i 0.184257 0.319142i
\(892\) −11.0000 19.0526i −0.368307 0.637927i
\(893\) 0 0
\(894\) −10.0000 + 17.3205i −0.334450 + 0.579284i
\(895\) 24.0000 0.802232
\(896\) 0 0
\(897\) −32.0000 −1.06845
\(898\) 5.00000 8.66025i 0.166852 0.288996i
\(899\) −30.0000 51.9615i −1.00056 1.73301i
\(900\) −0.500000 0.866025i −0.0166667 0.0288675i
\(901\) −12.0000 + 20.7846i −0.399778 + 0.692436i
\(902\) −4.00000 −0.133185
\(903\) 0 0
\(904\) −54.0000 −1.79601
\(905\) 10.0000 17.3205i 0.332411 0.575753i
\(906\) −16.0000 27.7128i −0.531564 0.920697i
\(907\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) −6.00000 + 10.3923i −0.199117 + 0.344881i
\(909\) 4.00000 0.132672
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −9.00000 15.5885i −0.297694 0.515620i
\(915\) 0 0
\(916\) 18.0000 0.594737
\(917\) 0 0
\(918\) −16.0000 −0.528079
\(919\) −20.0000 + 34.6410i −0.659739 + 1.14270i 0.320944 + 0.947098i \(0.396000\pi\)
−0.980683 + 0.195603i \(0.937333\pi\)
\(920\) −12.0000 20.7846i −0.395628 0.685248i
\(921\) −20.0000 34.6410i −0.659022 1.14146i
\(922\) 0 0
\(923\) 48.0000 1.57994
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) −2.00000 + 3.46410i −0.0657241 + 0.113837i
\(927\) 7.00000 + 12.1244i 0.229910 + 0.398216i
\(928\) 15.0000 + 25.9808i 0.492399 + 0.852860i
\(929\) 3.00000 5.19615i 0.0984268 0.170480i −0.812607 0.582812i \(-0.801952\pi\)
0.911034 + 0.412332i \(0.135286\pi\)
\(930\) 40.0000 1.31165
\(931\) 0 0
\(932\) 18.0000 0.589610
\(933\) 18.0000 31.1769i 0.589294 1.02069i
\(934\) 15.0000 + 25.9808i 0.490815 + 0.850117i
\(935\) 4.00000 + 6.92820i 0.130814 + 0.226576i
\(936\) −6.00000 + 10.3923i −0.196116 + 0.339683i
\(937\) 16.0000 0.522697 0.261349 0.965244i \(-0.415833\pi\)
0.261349 + 0.965244i \(0.415833\pi\)
\(938\) 0 0
\(939\) 4.00000 0.130535
\(940\) 10.0000 17.3205i 0.326164 0.564933i
\(941\) −12.0000 20.7846i −0.391189 0.677559i 0.601418 0.798935i \(-0.294603\pi\)
−0.992607 + 0.121376i \(0.961269\pi\)
\(942\) −14.0000 24.2487i −0.456145 0.790066i
\(943\) −8.00000 + 13.8564i −0.260516 + 0.451227i
\(944\) 2.00000 0.0650945
\(945\) 0 0
\(946\) 12.0000 0.390154
\(947\) 18.0000 31.1769i 0.584921 1.01311i −0.409964 0.912102i \(-0.634459\pi\)
0.994885 0.101012i \(-0.0322080\pi\)
\(948\) −8.00000 13.8564i −0.259828 0.450035i
\(949\) 16.0000 + 27.7128i 0.519382 + 0.899596i
\(950\) 0 0
\(951\) 4.00000 0.129709
\(952\) 0 0
\(953\) 34.0000 1.10137 0.550684 0.834714i \(-0.314367\pi\)
0.550684 + 0.834714i \(0.314367\pi\)
\(954\) 3.00000 5.19615i 0.0971286 0.168232i
\(955\) −8.00000 13.8564i −0.258874 0.448383i
\(956\) 0 0
\(957\) −6.00000 + 10.3923i −0.193952 + 0.335936i
\(958\) 4.00000 0.129234
\(959\) 0 0
\(960\) −28.0000 −0.903696
\(961\) −34.5000 + 59.7558i −1.11290 + 1.92760i
\(962\) −12.0000 20.7846i −0.386896 0.670123i
\(963\) −6.00000 10.3923i −0.193347 0.334887i
\(964\) 10.0000 17.3205i 0.322078 0.557856i
\(965\) −28.0000 −0.901352
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 1.50000 2.59808i 0.0482118 0.0835053i
\(969\) 0 0
\(970\) −10.0000 17.3205i −0.321081 0.556128i
\(971\) 7.00000 12.1244i 0.224641 0.389089i −0.731571 0.681765i \(-0.761212\pi\)
0.956212 + 0.292676i \(0.0945458\pi\)
\(972\) −10.0000 −0.320750
\(973\) 0 0
\(974\) −28.0000 −0.897178
\(975\) 4.00000 6.92820i 0.128103 0.221880i
\(976\) 0 0
\(977\) −21.0000 36.3731i −0.671850 1.16368i −0.977379 0.211495i \(-0.932167\pi\)
0.305530 0.952183i \(-0.401167\pi\)
\(978\) −8.00000 + 13.8564i −0.255812 + 0.443079i
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) −14.0000 + 24.2487i −0.446758 + 0.773807i
\(983\) 27.0000 + 46.7654i 0.861166 + 1.49158i 0.870804 + 0.491630i \(0.163599\pi\)
−0.00963785 + 0.999954i \(0.503068\pi\)
\(984\) 12.0000 + 20.7846i 0.382546 + 0.662589i
\(985\) −22.0000 + 38.1051i −0.700978 + 1.21413i
\(986\) 24.0000 0.764316
\(987\) 0 0
\(988\) 0 0
\(989\) 24.0000 41.5692i 0.763156 1.32182i
\(990\) −1.00000 1.73205i −0.0317821 0.0550482i
\(991\) −26.0000 45.0333i −0.825917 1.43053i −0.901216 0.433370i \(-0.857324\pi\)
0.0752991 0.997161i \(-0.476009\pi\)
\(992\) 25.0000 43.3013i 0.793751 1.37482i
\(993\) 40.0000 1.26936
\(994\) 0 0
\(995\) 36.0000 1.14128
\(996\) 0 0
\(997\) 10.0000 + 17.3205i 0.316703 + 0.548546i 0.979798 0.199989i \(-0.0640908\pi\)
−0.663095 + 0.748535i \(0.730757\pi\)
\(998\) 8.00000 + 13.8564i 0.253236 + 0.438617i
\(999\) 12.0000 20.7846i 0.379663 0.657596i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.e.b.177.1 2
7.2 even 3 539.2.a.d.1.1 1
7.3 odd 6 539.2.e.a.67.1 2
7.4 even 3 inner 539.2.e.b.67.1 2
7.5 odd 6 77.2.a.c.1.1 1
7.6 odd 2 539.2.e.a.177.1 2
21.2 odd 6 4851.2.a.a.1.1 1
21.5 even 6 693.2.a.a.1.1 1
28.19 even 6 1232.2.a.a.1.1 1
28.23 odd 6 8624.2.a.bc.1.1 1
35.12 even 12 1925.2.b.d.1849.2 2
35.19 odd 6 1925.2.a.c.1.1 1
35.33 even 12 1925.2.b.d.1849.1 2
56.5 odd 6 4928.2.a.g.1.1 1
56.19 even 6 4928.2.a.bi.1.1 1
77.5 odd 30 847.2.f.e.729.1 4
77.19 even 30 847.2.f.k.372.1 4
77.26 odd 30 847.2.f.e.148.1 4
77.40 even 30 847.2.f.k.148.1 4
77.47 odd 30 847.2.f.e.372.1 4
77.54 even 6 847.2.a.a.1.1 1
77.61 even 30 847.2.f.k.729.1 4
77.65 odd 6 5929.2.a.b.1.1 1
77.68 even 30 847.2.f.k.323.1 4
77.75 odd 30 847.2.f.e.323.1 4
231.131 odd 6 7623.2.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.a.c.1.1 1 7.5 odd 6
539.2.a.d.1.1 1 7.2 even 3
539.2.e.a.67.1 2 7.3 odd 6
539.2.e.a.177.1 2 7.6 odd 2
539.2.e.b.67.1 2 7.4 even 3 inner
539.2.e.b.177.1 2 1.1 even 1 trivial
693.2.a.a.1.1 1 21.5 even 6
847.2.a.a.1.1 1 77.54 even 6
847.2.f.e.148.1 4 77.26 odd 30
847.2.f.e.323.1 4 77.75 odd 30
847.2.f.e.372.1 4 77.47 odd 30
847.2.f.e.729.1 4 77.5 odd 30
847.2.f.k.148.1 4 77.40 even 30
847.2.f.k.323.1 4 77.68 even 30
847.2.f.k.372.1 4 77.19 even 30
847.2.f.k.729.1 4 77.61 even 30
1232.2.a.a.1.1 1 28.19 even 6
1925.2.a.c.1.1 1 35.19 odd 6
1925.2.b.d.1849.1 2 35.33 even 12
1925.2.b.d.1849.2 2 35.12 even 12
4851.2.a.a.1.1 1 21.2 odd 6
4928.2.a.g.1.1 1 56.5 odd 6
4928.2.a.bi.1.1 1 56.19 even 6
5929.2.a.b.1.1 1 77.65 odd 6
7623.2.a.n.1.1 1 231.131 odd 6
8624.2.a.bc.1.1 1 28.23 odd 6