L(s) = 1 | + (9.79 + 5.65i)2-s + (63.9 + 110. i)4-s + (719. − 415. i)5-s + (1.34e3 − 2.32e3i)7-s + 1.44e3i·8-s + 9.39e3·10-s + (−2.13e4 − 1.23e4i)11-s + (−4.84e3 − 8.39e3i)13-s + (2.63e4 − 1.51e4i)14-s + (−8.19e3 + 1.41e4i)16-s − 4.26e4i·17-s + 1.01e5·19-s + (9.20e4 + 5.31e4i)20-s + (−1.39e5 − 2.41e5i)22-s + (3.96e5 − 2.29e5i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (1.15 − 0.664i)5-s + (0.559 − 0.969i)7-s + 0.353i·8-s + 0.939·10-s + (−1.45 − 0.842i)11-s + (−0.169 − 0.294i)13-s + (0.685 − 0.395i)14-s + (−0.125 + 0.216i)16-s − 0.510i·17-s + 0.776·19-s + (0.575 + 0.332i)20-s + (−0.595 − 1.03i)22-s + (1.41 − 0.819i)23-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.754+0.656i)Λ(9−s)
Λ(s)=(=(54s/2ΓC(s+4)L(s)(0.754+0.656i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.754+0.656i
|
Analytic conductor: |
21.9984 |
Root analytic conductor: |
4.69024 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :4), 0.754+0.656i)
|
Particular Values
L(29) |
≈ |
3.01642−1.12870i |
L(21) |
≈ |
3.01642−1.12870i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−9.79−5.65i)T |
| 3 | 1 |
good | 5 | 1+(−719.+415.i)T+(1.95e5−3.38e5i)T2 |
| 7 | 1+(−1.34e3+2.32e3i)T+(−2.88e6−4.99e6i)T2 |
| 11 | 1+(2.13e4+1.23e4i)T+(1.07e8+1.85e8i)T2 |
| 13 | 1+(4.84e3+8.39e3i)T+(−4.07e8+7.06e8i)T2 |
| 17 | 1+4.26e4iT−6.97e9T2 |
| 19 | 1−1.01e5T+1.69e10T2 |
| 23 | 1+(−3.96e5+2.29e5i)T+(3.91e10−6.78e10i)T2 |
| 29 | 1+(5.77e5+3.33e5i)T+(2.50e11+4.33e11i)T2 |
| 31 | 1+(−7.09e5−1.22e6i)T+(−4.26e11+7.38e11i)T2 |
| 37 | 1−1.62e6T+3.51e12T2 |
| 41 | 1+(1.99e6−1.15e6i)T+(3.99e12−6.91e12i)T2 |
| 43 | 1+(−8.12e5+1.40e6i)T+(−5.84e12−1.01e13i)T2 |
| 47 | 1+(−3.38e6−1.95e6i)T+(1.19e13+2.06e13i)T2 |
| 53 | 1+6.96e6iT−6.22e13T2 |
| 59 | 1+(5.94e6−3.43e6i)T+(7.34e13−1.27e14i)T2 |
| 61 | 1+(−1.26e6+2.19e6i)T+(−9.58e13−1.66e14i)T2 |
| 67 | 1+(−1.58e7−2.74e7i)T+(−2.03e14+3.51e14i)T2 |
| 71 | 1−1.75e7iT−6.45e14T2 |
| 73 | 1+2.86e7T+8.06e14T2 |
| 79 | 1+(3.40e7−5.89e7i)T+(−7.58e14−1.31e15i)T2 |
| 83 | 1+(4.73e7+2.73e7i)T+(1.12e15+1.95e15i)T2 |
| 89 | 1−7.04e6iT−3.93e15T2 |
| 97 | 1+(−5.14e7+8.90e7i)T+(−3.91e15−6.78e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.49679499652041941681576420332, −12.88479840138768157177349098760, −11.17474370657635960331854789148, −10.07875565105555132091868788644, −8.524858587154768753514844764956, −7.27072837138666488057228532251, −5.61831324591153852023572183178, −4.81143947532103271192421168828, −2.80941538971925220039871786973, −0.946461126396598787267795307644,
1.87670691091447628561302540890, 2.77931110449134155819151645680, 5.00546735566145990168775543498, 5.88973085127238475395609595581, 7.48013760926215557061714983954, 9.340221209621029243296073016408, 10.36258177087160878015181047433, 11.48164281985268626661427857718, 12.79890976749064487084459132320, 13.65297970088401341226153701786