Properties

Label 54.9.d.a.35.8
Level $54$
Weight $9$
Character 54.35
Analytic conductor $21.998$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,9,Mod(17,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.17");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 54.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.9984449433\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 150208 x^{14} - 1927740 x^{13} + 8702363206 x^{12} + 239206241152 x^{11} + \cdots + 81\!\cdots\!61 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{28}\cdot 3^{36} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 35.8
Root \(-147.309 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 54.35
Dual form 54.9.d.a.17.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(9.79796 + 5.65685i) q^{2} +(64.0000 + 110.851i) q^{4} +(719.139 - 415.195i) q^{5} +(1343.41 - 2326.85i) q^{7} +1448.15i q^{8} +9394.80 q^{10} +(-21366.9 - 12336.2i) q^{11} +(-4848.77 - 8398.31i) q^{13} +(26325.3 - 15198.9i) q^{14} +(-8192.00 + 14189.0i) q^{16} -42669.1i q^{17} +101194. q^{19} +(92049.8 + 53145.0i) q^{20} +(-139568. - 241739. i) q^{22} +(396990. - 229203. i) q^{23} +(149462. - 258875. i) q^{25} -109715. i q^{26} +343913. q^{28} +(-577159. - 333223. i) q^{29} +(709545. + 1.22897e6i) q^{31} +(-160530. + 92681.9i) q^{32} +(241373. - 418071. i) q^{34} -2.23111e6i q^{35} +1.62583e6 q^{37} +(991496. + 572441. i) q^{38} +(601267. + 1.04142e6i) q^{40} +(-1.99920e6 + 1.15424e6i) q^{41} +(812997. - 1.40815e6i) q^{43} -3.15806e6i q^{44} +5.18626e6 q^{46} +(3.38272e6 + 1.95301e6i) q^{47} +(-727099. - 1.25937e6i) q^{49} +(2.92884e6 - 1.69097e6i) q^{50} +(620642. - 1.07498e6i) q^{52} -6.96433e6i q^{53} -2.04877e7 q^{55} +(3.36964e6 + 1.94547e6i) q^{56} +(-3.76999e6 - 6.52981e6i) q^{58} +(-5.94959e6 + 3.43500e6i) q^{59} +(1.26576e6 - 2.19236e6i) q^{61} +1.60552e7i q^{62} -2.09715e6 q^{64} +(-6.97388e6 - 4.02637e6i) q^{65} +(1.58375e7 + 2.74313e7i) q^{67} +(4.72993e6 - 2.73083e6i) q^{68} +(1.26211e7 - 2.18603e7i) q^{70} +1.75496e7i q^{71} -2.86971e7 q^{73} +(1.59299e7 + 9.19711e6i) q^{74} +(6.47643e6 + 1.12175e7i) q^{76} +(-5.74089e7 + 3.31451e7i) q^{77} +(-3.40323e7 + 5.89457e7i) q^{79} +1.36051e7i q^{80} -2.61174e7 q^{82} +(-4.73759e7 - 2.73525e7i) q^{83} +(-1.77160e7 - 3.06851e7i) q^{85} +(1.59314e7 - 9.19801e6i) q^{86} +(1.78647e7 - 3.09425e7i) q^{88} +7.04968e6i q^{89} -2.60555e7 q^{91} +(5.08148e7 + 2.93379e7i) q^{92} +(2.20958e7 + 3.82711e7i) q^{94} +(7.27727e7 - 4.20153e7i) q^{95} +(5.14341e7 - 8.90865e7i) q^{97} -1.64524e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 1024 q^{4} + 882 q^{5} - 1846 q^{7} - 45756 q^{11} - 3370 q^{13} + 94464 q^{14} - 131072 q^{16} + 362180 q^{19} + 112896 q^{20} - 61824 q^{22} - 1311138 q^{23} + 963394 q^{25} - 472576 q^{28} + 2851290 q^{29}+ \cdots - 89415484 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.79796 + 5.65685i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 64.0000 + 110.851i 0.250000 + 0.433013i
\(5\) 719.139 415.195i 1.15062 0.664312i 0.201584 0.979471i \(-0.435391\pi\)
0.949039 + 0.315159i \(0.102058\pi\)
\(6\) 0 0
\(7\) 1343.41 2326.85i 0.559521 0.969119i −0.438015 0.898967i \(-0.644318\pi\)
0.997536 0.0701513i \(-0.0223482\pi\)
\(8\) 1448.15i 0.353553i
\(9\) 0 0
\(10\) 9394.80 0.939480
\(11\) −21366.9 12336.2i −1.45939 0.842577i −0.460405 0.887709i \(-0.652296\pi\)
−0.998981 + 0.0451321i \(0.985629\pi\)
\(12\) 0 0
\(13\) −4848.77 8398.31i −0.169769 0.294048i 0.768570 0.639766i \(-0.220969\pi\)
−0.938339 + 0.345718i \(0.887635\pi\)
\(14\) 26325.3 15198.9i 0.685270 0.395641i
\(15\) 0 0
\(16\) −8192.00 + 14189.0i −0.125000 + 0.216506i
\(17\) 42669.1i 0.510879i −0.966825 0.255440i \(-0.917780\pi\)
0.966825 0.255440i \(-0.0822202\pi\)
\(18\) 0 0
\(19\) 101194. 0.776499 0.388250 0.921554i \(-0.373080\pi\)
0.388250 + 0.921554i \(0.373080\pi\)
\(20\) 92049.8 + 53145.0i 0.575311 + 0.332156i
\(21\) 0 0
\(22\) −139568. 241739.i −0.595792 1.03194i
\(23\) 396990. 229203.i 1.41863 0.819046i 0.422450 0.906386i \(-0.361170\pi\)
0.996179 + 0.0873406i \(0.0278369\pi\)
\(24\) 0 0
\(25\) 149462. 258875.i 0.382622 0.662721i
\(26\) 109715.i 0.240089i
\(27\) 0 0
\(28\) 343913. 0.559521
\(29\) −577159. 333223.i −0.816025 0.471132i 0.0330188 0.999455i \(-0.489488\pi\)
−0.849044 + 0.528322i \(0.822821\pi\)
\(30\) 0 0
\(31\) 709545. + 1.22897e6i 0.768305 + 1.33074i 0.938482 + 0.345329i \(0.112233\pi\)
−0.170177 + 0.985413i \(0.554434\pi\)
\(32\) −160530. + 92681.9i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 241373. 418071.i 0.180623 0.312848i
\(35\) 2.23111e6i 1.48679i
\(36\) 0 0
\(37\) 1.62583e6 0.867500 0.433750 0.901033i \(-0.357190\pi\)
0.433750 + 0.901033i \(0.357190\pi\)
\(38\) 991496. + 572441.i 0.475507 + 0.274534i
\(39\) 0 0
\(40\) 601267. + 1.04142e6i 0.234870 + 0.406807i
\(41\) −1.99920e6 + 1.15424e6i −0.707491 + 0.408470i −0.810131 0.586249i \(-0.800604\pi\)
0.102641 + 0.994719i \(0.467271\pi\)
\(42\) 0 0
\(43\) 812997. 1.40815e6i 0.237802 0.411885i −0.722281 0.691599i \(-0.756906\pi\)
0.960083 + 0.279714i \(0.0902398\pi\)
\(44\) 3.15806e6i 0.842577i
\(45\) 0 0
\(46\) 5.18626e6 1.15831
\(47\) 3.38272e6 + 1.95301e6i 0.693226 + 0.400234i 0.804819 0.593520i \(-0.202262\pi\)
−0.111594 + 0.993754i \(0.535595\pi\)
\(48\) 0 0
\(49\) −727099. 1.25937e6i −0.126127 0.218459i
\(50\) 2.92884e6 1.69097e6i 0.468614 0.270555i
\(51\) 0 0
\(52\) 620642. 1.07498e6i 0.0848844 0.147024i
\(53\) 6.96433e6i 0.882624i −0.897354 0.441312i \(-0.854513\pi\)
0.897354 0.441312i \(-0.145487\pi\)
\(54\) 0 0
\(55\) −2.04877e7 −2.23894
\(56\) 3.36964e6 + 1.94547e6i 0.342635 + 0.197821i
\(57\) 0 0
\(58\) −3.76999e6 6.52981e6i −0.333141 0.577017i
\(59\) −5.94959e6 + 3.43500e6i −0.490997 + 0.283477i −0.724988 0.688761i \(-0.758155\pi\)
0.233991 + 0.972239i \(0.424821\pi\)
\(60\) 0 0
\(61\) 1.26576e6 2.19236e6i 0.0914182 0.158341i −0.816690 0.577077i \(-0.804193\pi\)
0.908108 + 0.418736i \(0.137527\pi\)
\(62\) 1.60552e7i 1.08655i
\(63\) 0 0
\(64\) −2.09715e6 −0.125000
\(65\) −6.97388e6 4.02637e6i −0.390680 0.225559i
\(66\) 0 0
\(67\) 1.58375e7 + 2.74313e7i 0.785936 + 1.36128i 0.928439 + 0.371486i \(0.121152\pi\)
−0.142503 + 0.989794i \(0.545515\pi\)
\(68\) 4.72993e6 2.73083e6i 0.221217 0.127720i
\(69\) 0 0
\(70\) 1.26211e7 2.18603e7i 0.525659 0.910467i
\(71\) 1.75496e7i 0.690612i 0.938490 + 0.345306i \(0.112225\pi\)
−0.938490 + 0.345306i \(0.887775\pi\)
\(72\) 0 0
\(73\) −2.86971e7 −1.01052 −0.505261 0.862966i \(-0.668604\pi\)
−0.505261 + 0.862966i \(0.668604\pi\)
\(74\) 1.59299e7 + 9.19711e6i 0.531233 + 0.306707i
\(75\) 0 0
\(76\) 6.47643e6 + 1.12175e7i 0.194125 + 0.336234i
\(77\) −5.74089e7 + 3.31451e7i −1.63311 + 0.942879i
\(78\) 0 0
\(79\) −3.40323e7 + 5.89457e7i −0.873741 + 1.51336i −0.0156441 + 0.999878i \(0.504980\pi\)
−0.858097 + 0.513487i \(0.828353\pi\)
\(80\) 1.36051e7i 0.332156i
\(81\) 0 0
\(82\) −2.61174e7 −0.577664
\(83\) −4.73759e7 2.73525e7i −0.998263 0.576347i −0.0905288 0.995894i \(-0.528856\pi\)
−0.907734 + 0.419547i \(0.862189\pi\)
\(84\) 0 0
\(85\) −1.77160e7 3.06851e7i −0.339383 0.587829i
\(86\) 1.59314e7 9.19801e6i 0.291247 0.168151i
\(87\) 0 0
\(88\) 1.78647e7 3.09425e7i 0.297896 0.515971i
\(89\) 7.04968e6i 0.112359i 0.998421 + 0.0561797i \(0.0178920\pi\)
−0.998421 + 0.0561797i \(0.982108\pi\)
\(90\) 0 0
\(91\) −2.60555e7 −0.379957
\(92\) 5.08148e7 + 2.93379e7i 0.709314 + 0.409523i
\(93\) 0 0
\(94\) 2.20958e7 + 3.82711e7i 0.283008 + 0.490185i
\(95\) 7.27727e7 4.20153e7i 0.893458 0.515838i
\(96\) 0 0
\(97\) 5.14341e7 8.90865e7i 0.580984 1.00629i −0.414379 0.910104i \(-0.636001\pi\)
0.995363 0.0961894i \(-0.0306655\pi\)
\(98\) 1.64524e7i 0.178371i
\(99\) 0 0
\(100\) 3.82622e7 0.382622
\(101\) 8.11338e7 + 4.68426e7i 0.779680 + 0.450148i 0.836317 0.548246i \(-0.184704\pi\)
−0.0566370 + 0.998395i \(0.518038\pi\)
\(102\) 0 0
\(103\) 4.68590e7 + 8.11622e7i 0.416336 + 0.721116i 0.995568 0.0940475i \(-0.0299806\pi\)
−0.579231 + 0.815163i \(0.696647\pi\)
\(104\) 1.21621e7 7.02177e6i 0.103962 0.0600224i
\(105\) 0 0
\(106\) 3.93962e7 6.82362e7i 0.312055 0.540495i
\(107\) 1.34556e8i 1.02652i −0.858232 0.513262i \(-0.828437\pi\)
0.858232 0.513262i \(-0.171563\pi\)
\(108\) 0 0
\(109\) −5.31868e7 −0.376788 −0.188394 0.982093i \(-0.560328\pi\)
−0.188394 + 0.982093i \(0.560328\pi\)
\(110\) −2.00737e8 1.15896e8i −1.37106 0.791584i
\(111\) 0 0
\(112\) 2.20104e7 + 3.81232e7i 0.139880 + 0.242280i
\(113\) 1.14368e8 6.60307e7i 0.701443 0.404978i −0.106442 0.994319i \(-0.533946\pi\)
0.807885 + 0.589341i \(0.200612\pi\)
\(114\) 0 0
\(115\) 1.90328e8 3.29657e8i 1.08820 1.88483i
\(116\) 8.53051e7i 0.471132i
\(117\) 0 0
\(118\) −7.77251e7 −0.400897
\(119\) −9.92849e7 5.73222e7i −0.495103 0.285848i
\(120\) 0 0
\(121\) 1.97183e8 + 3.41530e8i 0.919872 + 1.59326i
\(122\) 2.48038e7 1.43205e7i 0.111964 0.0646424i
\(123\) 0 0
\(124\) −9.08218e7 + 1.57308e8i −0.384152 + 0.665371i
\(125\) 7.61481e7i 0.311903i
\(126\) 0 0
\(127\) 5.72307e7 0.219996 0.109998 0.993932i \(-0.464916\pi\)
0.109998 + 0.993932i \(0.464916\pi\)
\(128\) −2.05478e7 1.18633e7i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −4.55532e7 7.89004e7i −0.159494 0.276252i
\(131\) 9.79607e7 5.65576e7i 0.332634 0.192046i −0.324376 0.945928i \(-0.605154\pi\)
0.657010 + 0.753882i \(0.271821\pi\)
\(132\) 0 0
\(133\) 1.35945e8 2.35464e8i 0.434468 0.752520i
\(134\) 3.58361e8i 1.11148i
\(135\) 0 0
\(136\) 6.17915e7 0.180623
\(137\) 1.19042e8 + 6.87289e7i 0.337923 + 0.195100i 0.659353 0.751833i \(-0.270830\pi\)
−0.321430 + 0.946933i \(0.604164\pi\)
\(138\) 0 0
\(139\) −9.70841e7 1.68155e8i −0.260069 0.450453i 0.706191 0.708022i \(-0.250412\pi\)
−0.966260 + 0.257568i \(0.917079\pi\)
\(140\) 2.47321e8 1.42791e8i 0.643798 0.371697i
\(141\) 0 0
\(142\) −9.92757e7 + 1.71950e8i −0.244168 + 0.422912i
\(143\) 2.39261e8i 0.572173i
\(144\) 0 0
\(145\) −5.53410e8 −1.25192
\(146\) −2.81173e8 1.62335e8i −0.618816 0.357274i
\(147\) 0 0
\(148\) 1.04053e8 + 1.80226e8i 0.216875 + 0.375638i
\(149\) −6.70921e8 + 3.87357e8i −1.36121 + 0.785897i −0.989786 0.142564i \(-0.954465\pi\)
−0.371429 + 0.928461i \(0.621132\pi\)
\(150\) 0 0
\(151\) −3.48071e8 + 6.02877e8i −0.669515 + 1.15963i 0.308525 + 0.951216i \(0.400165\pi\)
−0.978040 + 0.208418i \(0.933169\pi\)
\(152\) 1.46545e8i 0.274534i
\(153\) 0 0
\(154\) −7.49987e8 −1.33343
\(155\) 1.02052e9 + 5.89200e8i 1.76806 + 1.02079i
\(156\) 0 0
\(157\) −4.99364e6 8.64924e6i −0.00821900 0.0142357i 0.861887 0.507101i \(-0.169283\pi\)
−0.870106 + 0.492865i \(0.835950\pi\)
\(158\) −6.66894e8 + 3.85032e8i −1.07011 + 0.617829i
\(159\) 0 0
\(160\) −7.69622e7 + 1.33302e8i −0.117435 + 0.203403i
\(161\) 1.23165e9i 1.83309i
\(162\) 0 0
\(163\) 1.22877e9 1.74068 0.870340 0.492451i \(-0.163899\pi\)
0.870340 + 0.492451i \(0.163899\pi\)
\(164\) −2.55898e8 1.47743e8i −0.353745 0.204235i
\(165\) 0 0
\(166\) −3.09458e8 5.35997e8i −0.407539 0.705878i
\(167\) −7.41092e8 + 4.27870e8i −0.952809 + 0.550105i −0.893953 0.448162i \(-0.852079\pi\)
−0.0588569 + 0.998266i \(0.518746\pi\)
\(168\) 0 0
\(169\) 3.60844e8 6.25001e8i 0.442357 0.766185i
\(170\) 4.00868e8i 0.479961i
\(171\) 0 0
\(172\) 2.08127e8 0.237802
\(173\) 3.96513e8 + 2.28927e8i 0.442663 + 0.255572i 0.704727 0.709479i \(-0.251070\pi\)
−0.262064 + 0.965051i \(0.584403\pi\)
\(174\) 0 0
\(175\) −4.01577e8 6.95551e8i −0.428170 0.741612i
\(176\) 3.50075e8 2.02116e8i 0.364846 0.210644i
\(177\) 0 0
\(178\) −3.98790e7 + 6.90725e7i −0.0397250 + 0.0688058i
\(179\) 1.46762e9i 1.42956i 0.699350 + 0.714779i \(0.253473\pi\)
−0.699350 + 0.714779i \(0.746527\pi\)
\(180\) 0 0
\(181\) −1.59274e9 −1.48399 −0.741993 0.670408i \(-0.766119\pi\)
−0.741993 + 0.670408i \(0.766119\pi\)
\(182\) −2.55291e8 1.47392e8i −0.232675 0.134335i
\(183\) 0 0
\(184\) 3.31921e8 + 5.74904e8i 0.289576 + 0.501561i
\(185\) 1.16920e9 6.75039e8i 0.998165 0.576291i
\(186\) 0 0
\(187\) −5.26374e8 + 9.11706e8i −0.430455 + 0.745570i
\(188\) 4.99972e8i 0.400234i
\(189\) 0 0
\(190\) 9.50699e8 0.729505
\(191\) 1.60894e8 + 9.28923e7i 0.120895 + 0.0697985i 0.559228 0.829014i \(-0.311098\pi\)
−0.438333 + 0.898813i \(0.644431\pi\)
\(192\) 0 0
\(193\) −5.85324e8 1.01381e9i −0.421859 0.730681i 0.574262 0.818671i \(-0.305289\pi\)
−0.996121 + 0.0879903i \(0.971956\pi\)
\(194\) 1.00790e9 5.81910e8i 0.711557 0.410818i
\(195\) 0 0
\(196\) 9.30687e7 1.61200e8i 0.0630637 0.109230i
\(197\) 1.90415e9i 1.26426i −0.774864 0.632128i \(-0.782182\pi\)
0.774864 0.632128i \(-0.217818\pi\)
\(198\) 0 0
\(199\) 1.59363e9 1.01619 0.508096 0.861300i \(-0.330349\pi\)
0.508096 + 0.861300i \(0.330349\pi\)
\(200\) 3.74891e8 + 2.16444e8i 0.234307 + 0.135277i
\(201\) 0 0
\(202\) 5.29964e8 + 9.17924e8i 0.318303 + 0.551317i
\(203\) −1.55072e9 + 8.95310e8i −0.913166 + 0.527217i
\(204\) 0 0
\(205\) −9.58469e8 + 1.66012e9i −0.542703 + 0.939990i
\(206\) 1.06030e9i 0.588788i
\(207\) 0 0
\(208\) 1.58884e8 0.0848844
\(209\) −2.16220e9 1.24835e9i −1.13321 0.654260i
\(210\) 0 0
\(211\) 4.36444e8 + 7.55944e8i 0.220191 + 0.381382i 0.954866 0.297038i \(-0.0959987\pi\)
−0.734675 + 0.678419i \(0.762665\pi\)
\(212\) 7.72004e8 4.45717e8i 0.382187 0.220656i
\(213\) 0 0
\(214\) 7.61166e8 1.31838e9i 0.362931 0.628615i
\(215\) 1.35021e9i 0.631899i
\(216\) 0 0
\(217\) 3.81284e9 1.71953
\(218\) −5.21122e8 3.00870e8i −0.230735 0.133215i
\(219\) 0 0
\(220\) −1.31121e9 2.27108e9i −0.559734 0.969488i
\(221\) −3.58349e8 + 2.06893e8i −0.150223 + 0.0867314i
\(222\) 0 0
\(223\) 1.69943e8 2.94349e8i 0.0687199 0.119026i −0.829618 0.558331i \(-0.811442\pi\)
0.898338 + 0.439305i \(0.144775\pi\)
\(224\) 4.98039e8i 0.197821i
\(225\) 0 0
\(226\) 1.49410e9 0.572726
\(227\) 7.86249e8 + 4.53941e8i 0.296113 + 0.170961i 0.640695 0.767795i \(-0.278646\pi\)
−0.344583 + 0.938756i \(0.611980\pi\)
\(228\) 0 0
\(229\) 1.91967e7 + 3.32497e7i 0.00698047 + 0.0120905i 0.869495 0.493943i \(-0.164445\pi\)
−0.862514 + 0.506033i \(0.831111\pi\)
\(230\) 3.72964e9 2.15331e9i 1.33277 0.769477i
\(231\) 0 0
\(232\) 4.82558e8 8.35816e8i 0.166570 0.288508i
\(233\) 3.39626e9i 1.15233i −0.817334 0.576165i \(-0.804549\pi\)
0.817334 0.576165i \(-0.195451\pi\)
\(234\) 0 0
\(235\) 3.24353e9 1.06352
\(236\) −7.61547e8 4.39680e8i −0.245499 0.141739i
\(237\) 0 0
\(238\) −6.48526e8 1.12328e9i −0.202125 0.350090i
\(239\) 2.60050e8 1.50140e8i 0.0797012 0.0460155i −0.459620 0.888116i \(-0.652014\pi\)
0.539321 + 0.842100i \(0.318681\pi\)
\(240\) 0 0
\(241\) −2.67282e9 + 4.62946e9i −0.792321 + 1.37234i 0.132205 + 0.991222i \(0.457794\pi\)
−0.924526 + 0.381119i \(0.875539\pi\)
\(242\) 4.46173e9i 1.30089i
\(243\) 0 0
\(244\) 3.24035e8 0.0914182
\(245\) −1.04577e9 6.03776e8i −0.290250 0.167576i
\(246\) 0 0
\(247\) −4.90667e8 8.49860e8i −0.131825 0.228328i
\(248\) −1.77974e9 + 1.02753e9i −0.470489 + 0.271637i
\(249\) 0 0
\(250\) −4.30759e8 + 7.46096e8i −0.110274 + 0.191001i
\(251\) 2.15800e8i 0.0543696i 0.999630 + 0.0271848i \(0.00865425\pi\)
−0.999630 + 0.0271848i \(0.991346\pi\)
\(252\) 0 0
\(253\) −1.13099e10 −2.76044
\(254\) 5.60744e8 + 3.23746e8i 0.134719 + 0.0777802i
\(255\) 0 0
\(256\) −1.34218e8 2.32472e8i −0.0312500 0.0541266i
\(257\) −1.30255e9 + 7.52028e8i −0.298581 + 0.172386i −0.641805 0.766868i \(-0.721814\pi\)
0.343224 + 0.939254i \(0.388481\pi\)
\(258\) 0 0
\(259\) 2.18416e9 3.78308e9i 0.485384 0.840710i
\(260\) 1.03075e9i 0.225559i
\(261\) 0 0
\(262\) 1.27975e9 0.271595
\(263\) 4.86114e9 + 2.80658e9i 1.01605 + 0.586616i 0.912957 0.408055i \(-0.133793\pi\)
0.103092 + 0.994672i \(0.467126\pi\)
\(264\) 0 0
\(265\) −2.89156e9 5.00832e9i −0.586338 1.01557i
\(266\) 2.66397e9 1.53804e9i 0.532112 0.307215i
\(267\) 0 0
\(268\) −2.02720e9 + 3.51121e9i −0.392968 + 0.680640i
\(269\) 5.36842e9i 1.02527i 0.858607 + 0.512634i \(0.171330\pi\)
−0.858607 + 0.512634i \(0.828670\pi\)
\(270\) 0 0
\(271\) −3.34972e9 −0.621056 −0.310528 0.950564i \(-0.600506\pi\)
−0.310528 + 0.950564i \(0.600506\pi\)
\(272\) 6.05431e8 + 3.49546e8i 0.110609 + 0.0638599i
\(273\) 0 0
\(274\) 7.77578e8 + 1.34681e9i 0.137956 + 0.238948i
\(275\) −6.38706e9 + 3.68757e9i −1.11679 + 0.644777i
\(276\) 0 0
\(277\) 4.05893e8 7.03028e8i 0.0689434 0.119413i −0.829493 0.558517i \(-0.811371\pi\)
0.898436 + 0.439104i \(0.144704\pi\)
\(278\) 2.19676e9i 0.367793i
\(279\) 0 0
\(280\) 3.23099e9 0.525659
\(281\) 9.24159e8 + 5.33564e8i 0.148225 + 0.0855778i 0.572278 0.820060i \(-0.306060\pi\)
−0.424053 + 0.905637i \(0.639393\pi\)
\(282\) 0 0
\(283\) 4.18292e9 + 7.24503e9i 0.652130 + 1.12952i 0.982605 + 0.185707i \(0.0594577\pi\)
−0.330475 + 0.943815i \(0.607209\pi\)
\(284\) −1.94540e9 + 1.12318e9i −0.299044 + 0.172653i
\(285\) 0 0
\(286\) −1.35346e9 + 2.34427e9i −0.202294 + 0.350383i
\(287\) 6.20246e9i 0.914190i
\(288\) 0 0
\(289\) 5.15510e9 0.739002
\(290\) −5.42229e9 3.13056e9i −0.766639 0.442619i
\(291\) 0 0
\(292\) −1.83661e9 3.18111e9i −0.252631 0.437569i
\(293\) 1.17267e9 6.77039e8i 0.159112 0.0918636i −0.418330 0.908295i \(-0.637384\pi\)
0.577442 + 0.816432i \(0.304051\pi\)
\(294\) 0 0
\(295\) −2.85239e9 + 4.94048e9i −0.376635 + 0.652351i
\(296\) 2.35446e9i 0.306707i
\(297\) 0 0
\(298\) −8.76488e9 −1.11143
\(299\) −3.84983e9 2.22270e9i −0.481678 0.278097i
\(300\) 0 0
\(301\) −2.18438e9 3.78345e9i −0.266110 0.460916i
\(302\) −6.82078e9 + 3.93798e9i −0.819985 + 0.473419i
\(303\) 0 0
\(304\) −8.28983e8 + 1.43584e9i −0.0970624 + 0.168117i
\(305\) 2.10215e9i 0.242921i
\(306\) 0 0
\(307\) 3.34624e9 0.376707 0.188354 0.982101i \(-0.439685\pi\)
0.188354 + 0.982101i \(0.439685\pi\)
\(308\) −7.34834e9 4.24257e9i −0.816557 0.471439i
\(309\) 0 0
\(310\) 6.66603e9 + 1.15459e10i 0.721806 + 1.25021i
\(311\) 7.07501e9 4.08476e9i 0.756285 0.436641i −0.0716755 0.997428i \(-0.522835\pi\)
0.827960 + 0.560787i \(0.189501\pi\)
\(312\) 0 0
\(313\) 6.49273e9 1.12457e10i 0.676472 1.17168i −0.299564 0.954076i \(-0.596841\pi\)
0.976036 0.217608i \(-0.0698255\pi\)
\(314\) 1.12993e8i 0.0116234i
\(315\) 0 0
\(316\) −8.71227e9 −0.873741
\(317\) 2.27583e9 + 1.31395e9i 0.225374 + 0.130120i 0.608436 0.793603i \(-0.291797\pi\)
−0.383062 + 0.923723i \(0.625131\pi\)
\(318\) 0 0
\(319\) 8.22139e9 + 1.42399e10i 0.793930 + 1.37513i
\(320\) −1.50814e9 + 8.70728e8i −0.143828 + 0.0830391i
\(321\) 0 0
\(322\) 6.96727e9 1.20677e10i 0.648096 1.12254i
\(323\) 4.31787e9i 0.396697i
\(324\) 0 0
\(325\) −2.89882e9 −0.259829
\(326\) 1.20394e10 + 6.95095e9i 1.06594 + 0.615423i
\(327\) 0 0
\(328\) −1.67152e9 2.89515e9i −0.144416 0.250136i
\(329\) 9.08876e9 5.24740e9i 0.775749 0.447879i
\(330\) 0 0
\(331\) 5.38121e9 9.32053e9i 0.448299 0.776477i −0.549976 0.835180i \(-0.685363\pi\)
0.998275 + 0.0587032i \(0.0186965\pi\)
\(332\) 7.00223e9i 0.576347i
\(333\) 0 0
\(334\) −9.68158e9 −0.777966
\(335\) 2.27787e10 + 1.31513e10i 1.80863 + 1.04421i
\(336\) 0 0
\(337\) −6.49324e9 1.12466e10i −0.503433 0.871972i −0.999992 0.00396864i \(-0.998737\pi\)
0.496559 0.868003i \(-0.334597\pi\)
\(338\) 7.07107e9 4.08249e9i 0.541775 0.312794i
\(339\) 0 0
\(340\) 2.26765e9 3.92769e9i 0.169692 0.293915i
\(341\) 3.50123e10i 2.58942i
\(342\) 0 0
\(343\) 1.15818e10 0.836758
\(344\) 2.03922e9 + 1.17735e9i 0.145623 + 0.0840757i
\(345\) 0 0
\(346\) 2.59001e9 + 4.48603e9i 0.180716 + 0.313010i
\(347\) −2.11272e9 + 1.21978e9i −0.145722 + 0.0841324i −0.571088 0.820889i \(-0.693479\pi\)
0.425366 + 0.905021i \(0.360145\pi\)
\(348\) 0 0
\(349\) 1.08992e10 1.88779e10i 0.734669 1.27248i −0.220200 0.975455i \(-0.570671\pi\)
0.954869 0.297029i \(-0.0959957\pi\)
\(350\) 9.08664e9i 0.605524i
\(351\) 0 0
\(352\) 4.57336e9 0.297896
\(353\) −1.22820e10 7.09100e9i −0.790987 0.456677i 0.0493227 0.998783i \(-0.484294\pi\)
−0.840310 + 0.542106i \(0.817627\pi\)
\(354\) 0 0
\(355\) 7.28652e9 + 1.26206e10i 0.458782 + 0.794634i
\(356\) −7.81466e8 + 4.51180e8i −0.0486530 + 0.0280898i
\(357\) 0 0
\(358\) −8.30212e9 + 1.43797e10i −0.505425 + 0.875422i
\(359\) 1.62366e10i 0.977499i 0.872424 + 0.488750i \(0.162547\pi\)
−0.872424 + 0.488750i \(0.837453\pi\)
\(360\) 0 0
\(361\) −6.74331e9 −0.397049
\(362\) −1.56056e10 9.00988e9i −0.908752 0.524668i
\(363\) 0 0
\(364\) −1.66755e9 2.88829e9i −0.0949892 0.164526i
\(365\) −2.06372e10 + 1.19149e10i −1.16273 + 0.671303i
\(366\) 0 0
\(367\) 4.72220e9 8.17909e9i 0.260303 0.450859i −0.706019 0.708193i \(-0.749511\pi\)
0.966323 + 0.257334i \(0.0828440\pi\)
\(368\) 7.51051e9i 0.409523i
\(369\) 0 0
\(370\) 1.52744e10 0.814998
\(371\) −1.62050e10 9.35595e9i −0.855367 0.493847i
\(372\) 0 0
\(373\) 6.87407e9 + 1.19062e10i 0.355123 + 0.615091i 0.987139 0.159864i \(-0.0511056\pi\)
−0.632016 + 0.774955i \(0.717772\pi\)
\(374\) −1.03148e10 + 5.95524e9i −0.527198 + 0.304378i
\(375\) 0 0
\(376\) −2.82827e9 + 4.89870e9i −0.141504 + 0.245092i
\(377\) 6.46288e9i 0.319934i
\(378\) 0 0
\(379\) −8.10058e9 −0.392608 −0.196304 0.980543i \(-0.562894\pi\)
−0.196304 + 0.980543i \(0.562894\pi\)
\(380\) 9.31490e9 + 5.37796e9i 0.446729 + 0.257919i
\(381\) 0 0
\(382\) 1.05096e9 + 1.82031e9i 0.0493550 + 0.0854854i
\(383\) 3.26313e10 1.88397e10i 1.51649 0.875544i 0.516675 0.856182i \(-0.327170\pi\)
0.999813 0.0193625i \(-0.00616365\pi\)
\(384\) 0 0
\(385\) −2.75233e10 + 4.76718e10i −1.25273 + 2.16980i
\(386\) 1.32444e10i 0.596599i
\(387\) 0 0
\(388\) 1.31671e10 0.580984
\(389\) 7.44708e9 + 4.29957e9i 0.325228 + 0.187770i 0.653720 0.756736i \(-0.273207\pi\)
−0.328493 + 0.944507i \(0.606541\pi\)
\(390\) 0 0
\(391\) −9.77988e9 1.69392e10i −0.418433 0.724748i
\(392\) 1.82377e9 1.05295e9i 0.0772369 0.0445928i
\(393\) 0 0
\(394\) 1.07715e10 1.86567e10i 0.446982 0.774196i
\(395\) 5.65202e10i 2.32175i
\(396\) 0 0
\(397\) −7.53858e9 −0.303478 −0.151739 0.988421i \(-0.548487\pi\)
−0.151739 + 0.988421i \(0.548487\pi\)
\(398\) 1.56144e10 + 9.01495e9i 0.622289 + 0.359278i
\(399\) 0 0
\(400\) 2.44878e9 + 4.24141e9i 0.0956555 + 0.165680i
\(401\) 2.42910e9 1.40244e9i 0.0939436 0.0542384i −0.452292 0.891870i \(-0.649394\pi\)
0.546236 + 0.837631i \(0.316060\pi\)
\(402\) 0 0
\(403\) 6.88084e9 1.19180e10i 0.260868 0.451837i
\(404\) 1.19917e10i 0.450148i
\(405\) 0 0
\(406\) −2.02585e10 −0.745597
\(407\) −3.47390e10 2.00566e10i −1.26602 0.730935i
\(408\) 0 0
\(409\) 4.31779e9 + 7.47864e9i 0.154301 + 0.267257i 0.932804 0.360383i \(-0.117354\pi\)
−0.778503 + 0.627641i \(0.784021\pi\)
\(410\) −1.87821e10 + 1.08438e10i −0.664673 + 0.383749i
\(411\) 0 0
\(412\) −5.99795e9 + 1.03888e10i −0.208168 + 0.360558i
\(413\) 1.84584e10i 0.634446i
\(414\) 0 0
\(415\) −4.54265e10 −1.53150
\(416\) 1.55674e9 + 8.98786e8i 0.0519809 + 0.0300112i
\(417\) 0 0
\(418\) −1.41234e10 2.44625e10i −0.462632 0.801302i
\(419\) −2.20697e10 + 1.27420e10i −0.716046 + 0.413409i −0.813296 0.581851i \(-0.802329\pi\)
0.0972497 + 0.995260i \(0.468995\pi\)
\(420\) 0 0
\(421\) 7.22114e7 1.25074e8i 0.00229867 0.00398142i −0.864874 0.501989i \(-0.832602\pi\)
0.867172 + 0.498008i \(0.165935\pi\)
\(422\) 9.87561e9i 0.311397i
\(423\) 0 0
\(424\) 1.00854e10 0.312055
\(425\) −1.10460e10 6.37740e9i −0.338570 0.195474i
\(426\) 0 0
\(427\) −3.40087e9 5.89049e9i −0.102301 0.177190i
\(428\) 1.49157e10 8.61161e9i 0.444498 0.256631i
\(429\) 0 0
\(430\) 7.63794e9 1.32293e10i 0.223410 0.386957i
\(431\) 6.31640e9i 0.183046i −0.995803 0.0915231i \(-0.970826\pi\)
0.995803 0.0915231i \(-0.0291735\pi\)
\(432\) 0 0
\(433\) −3.96241e10 −1.12722 −0.563609 0.826042i \(-0.690587\pi\)
−0.563609 + 0.826042i \(0.690587\pi\)
\(434\) 3.73581e10 + 2.15687e10i 1.05299 + 0.607946i
\(435\) 0 0
\(436\) −3.40395e9 5.89582e9i −0.0941971 0.163154i
\(437\) 4.01731e10 2.31940e10i 1.10156 0.635988i
\(438\) 0 0
\(439\) −1.57438e10 + 2.72691e10i −0.423889 + 0.734196i −0.996316 0.0857589i \(-0.972669\pi\)
0.572427 + 0.819955i \(0.306002\pi\)
\(440\) 2.96693e10i 0.791584i
\(441\) 0 0
\(442\) −4.68145e9 −0.122657
\(443\) −3.86111e10 2.22921e10i −1.00253 0.578810i −0.0935330 0.995616i \(-0.529816\pi\)
−0.908995 + 0.416806i \(0.863149\pi\)
\(444\) 0 0
\(445\) 2.92699e9 + 5.06970e9i 0.0746417 + 0.129283i
\(446\) 3.33018e9 1.92268e9i 0.0841644 0.0485923i
\(447\) 0 0
\(448\) −2.81733e9 + 4.87977e9i −0.0699401 + 0.121140i
\(449\) 2.35548e10i 0.579553i 0.957094 + 0.289777i \(0.0935810\pi\)
−0.957094 + 0.289777i \(0.906419\pi\)
\(450\) 0 0
\(451\) 5.69555e10 1.37667
\(452\) 1.46392e10 + 8.45192e9i 0.350722 + 0.202489i
\(453\) 0 0
\(454\) 5.13576e9 + 8.89540e9i 0.120887 + 0.209383i
\(455\) −1.87376e10 + 1.08181e10i −0.437187 + 0.252410i
\(456\) 0 0
\(457\) −2.05058e10 + 3.55170e10i −0.470122 + 0.814276i −0.999416 0.0341626i \(-0.989124\pi\)
0.529294 + 0.848439i \(0.322457\pi\)
\(458\) 4.34372e8i 0.00987188i
\(459\) 0 0
\(460\) 4.87239e10 1.08820
\(461\) 3.37174e9 + 1.94668e9i 0.0746536 + 0.0431013i 0.536862 0.843670i \(-0.319610\pi\)
−0.462209 + 0.886771i \(0.652943\pi\)
\(462\) 0 0
\(463\) −2.67932e10 4.64073e10i −0.583044 1.00986i −0.995116 0.0987107i \(-0.968528\pi\)
0.412072 0.911151i \(-0.364805\pi\)
\(464\) 9.45617e9 5.45952e9i 0.204006 0.117783i
\(465\) 0 0
\(466\) 1.92121e10 3.32764e10i 0.407410 0.705655i
\(467\) 4.53162e10i 0.952766i −0.879238 0.476383i \(-0.841948\pi\)
0.879238 0.476383i \(-0.158052\pi\)
\(468\) 0 0
\(469\) 8.51049e10 1.75899
\(470\) 3.17800e10 + 1.83482e10i 0.651272 + 0.376012i
\(471\) 0 0
\(472\) −4.97441e9 8.61593e9i −0.100224 0.173594i
\(473\) −3.47424e10 + 2.00585e10i −0.694089 + 0.400733i
\(474\) 0 0
\(475\) 1.51247e10 2.61967e10i 0.297106 0.514602i
\(476\) 1.46745e10i 0.285848i
\(477\) 0 0
\(478\) 3.39728e9 0.0650758
\(479\) −4.92416e9 2.84297e9i −0.0935385 0.0540045i 0.452501 0.891764i \(-0.350532\pi\)
−0.546040 + 0.837759i \(0.683865\pi\)
\(480\) 0 0
\(481\) −7.88329e9 1.36543e10i −0.147274 0.255087i
\(482\) −5.23763e10 + 3.02395e10i −0.970392 + 0.560256i
\(483\) 0 0
\(484\) −2.52394e10 + 4.37159e10i −0.459936 + 0.796632i
\(485\) 8.54208e10i 1.54382i
\(486\) 0 0
\(487\) 3.64760e10 0.648472 0.324236 0.945976i \(-0.394893\pi\)
0.324236 + 0.945976i \(0.394893\pi\)
\(488\) 3.17488e9 + 1.83302e9i 0.0559820 + 0.0323212i
\(489\) 0 0
\(490\) −6.83095e9 1.18316e10i −0.118494 0.205238i
\(491\) 5.07409e10 2.92952e10i 0.873035 0.504047i 0.00467962 0.999989i \(-0.498510\pi\)
0.868356 + 0.495942i \(0.165177\pi\)
\(492\) 0 0
\(493\) −1.42183e10 + 2.46269e10i −0.240692 + 0.416890i
\(494\) 1.11025e10i 0.186429i
\(495\) 0 0
\(496\) −2.32504e10 −0.384152
\(497\) 4.08354e10 + 2.35763e10i 0.669285 + 0.386412i
\(498\) 0 0
\(499\) 3.18425e10 + 5.51528e10i 0.513576 + 0.889541i 0.999876 + 0.0157483i \(0.00501306\pi\)
−0.486300 + 0.873792i \(0.661654\pi\)
\(500\) −8.44112e9 + 4.87348e9i −0.135058 + 0.0779757i
\(501\) 0 0
\(502\) −1.22075e9 + 2.11440e9i −0.0192225 + 0.0332944i
\(503\) 1.09134e10i 0.170486i −0.996360 0.0852430i \(-0.972833\pi\)
0.996360 0.0852430i \(-0.0271667\pi\)
\(504\) 0 0
\(505\) 7.77953e10 1.19616
\(506\) −1.10814e11 6.39786e10i −1.69041 0.975961i
\(507\) 0 0
\(508\) 3.66277e9 + 6.34410e9i 0.0549989 + 0.0952609i
\(509\) 9.71431e9 5.60856e9i 0.144724 0.0835565i −0.425889 0.904775i \(-0.640039\pi\)
0.570614 + 0.821219i \(0.306705\pi\)
\(510\) 0 0
\(511\) −3.85519e10 + 6.67739e10i −0.565409 + 0.979316i
\(512\) 3.03700e9i 0.0441942i
\(513\) 0 0
\(514\) −1.70165e10 −0.243790
\(515\) 6.73963e10 + 3.89113e10i 0.958092 + 0.553155i
\(516\) 0 0
\(517\) −4.81854e10 8.34596e10i −0.674456 1.16819i
\(518\) 4.28006e10 2.47110e10i 0.594472 0.343218i
\(519\) 0 0
\(520\) 5.83081e9 1.00993e10i 0.0797472 0.138126i
\(521\) 1.03375e11i 1.40302i 0.712658 + 0.701511i \(0.247491\pi\)
−0.712658 + 0.701511i \(0.752509\pi\)
\(522\) 0 0
\(523\) −6.50405e10 −0.869314 −0.434657 0.900596i \(-0.643130\pi\)
−0.434657 + 0.900596i \(0.643130\pi\)
\(524\) 1.25390e10 + 7.23938e9i 0.166317 + 0.0960232i
\(525\) 0 0
\(526\) 3.17528e10 + 5.49975e10i 0.414800 + 0.718456i
\(527\) 5.24390e10 3.02757e10i 0.679849 0.392511i
\(528\) 0 0
\(529\) 6.59121e10 1.14163e11i 0.841671 1.45782i
\(530\) 6.54284e10i 0.829207i
\(531\) 0 0
\(532\) 3.48020e10 0.434468
\(533\) 1.93873e10 + 1.11933e10i 0.240220 + 0.138691i
\(534\) 0 0
\(535\) −5.58672e10 9.67648e10i −0.681933 1.18114i
\(536\) −3.97248e10 + 2.29351e10i −0.481285 + 0.277870i
\(537\) 0 0
\(538\) −3.03684e10 + 5.25995e10i −0.362487 + 0.627845i
\(539\) 3.58785e10i 0.425088i
\(540\) 0 0
\(541\) 9.26356e10 1.08141 0.540703 0.841214i \(-0.318158\pi\)
0.540703 + 0.841214i \(0.318158\pi\)
\(542\) −3.28204e10 1.89489e10i −0.380318 0.219577i
\(543\) 0 0
\(544\) 3.95466e9 + 6.84967e9i 0.0451558 + 0.0782121i
\(545\) −3.82487e10 + 2.20829e10i −0.433541 + 0.250305i
\(546\) 0 0
\(547\) −6.17442e9 + 1.06944e10i −0.0689679 + 0.119456i −0.898447 0.439081i \(-0.855304\pi\)
0.829479 + 0.558537i \(0.188637\pi\)
\(548\) 1.75946e10i 0.195100i
\(549\) 0 0
\(550\) −8.34402e10 −0.911852
\(551\) −5.84051e10 3.37202e10i −0.633643 0.365834i
\(552\) 0 0
\(553\) 9.14387e10 + 1.58376e11i 0.977753 + 1.69352i
\(554\) 7.95385e9 4.59216e9i 0.0844381 0.0487503i
\(555\) 0 0
\(556\) 1.24268e10 2.15238e10i 0.130035 0.225227i
\(557\) 1.17871e9i 0.0122458i 0.999981 + 0.00612290i \(0.00194899\pi\)
−0.999981 + 0.00612290i \(0.998051\pi\)
\(558\) 0 0
\(559\) −1.57681e10 −0.161485
\(560\) 3.16571e10 + 1.82772e10i 0.321899 + 0.185848i
\(561\) 0 0
\(562\) 6.03658e9 + 1.04557e10i 0.0605126 + 0.104811i
\(563\) 4.60975e10 2.66144e10i 0.458822 0.264901i −0.252727 0.967538i \(-0.581327\pi\)
0.711549 + 0.702637i \(0.247994\pi\)
\(564\) 0 0
\(565\) 5.48312e10 9.49705e10i 0.538064 0.931955i
\(566\) 9.46487e10i 0.922251i
\(567\) 0 0
\(568\) −2.54146e10 −0.244168
\(569\) 7.89230e9 + 4.55662e9i 0.0752930 + 0.0434704i 0.537174 0.843472i \(-0.319492\pi\)
−0.461881 + 0.886942i \(0.652825\pi\)
\(570\) 0 0
\(571\) −8.93207e10 1.54708e11i −0.840248 1.45535i −0.889685 0.456575i \(-0.849076\pi\)
0.0494367 0.998777i \(-0.484257\pi\)
\(572\) −2.65224e10 + 1.53127e10i −0.247758 + 0.143043i
\(573\) 0 0
\(574\) −3.50864e10 + 6.07715e10i −0.323215 + 0.559825i
\(575\) 1.37028e11i 1.25354i
\(576\) 0 0
\(577\) −1.57035e11 −1.41675 −0.708374 0.705837i \(-0.750571\pi\)
−0.708374 + 0.705837i \(0.750571\pi\)
\(578\) 5.05095e10 + 2.91617e10i 0.452545 + 0.261277i
\(579\) 0 0
\(580\) −3.54183e10 6.13462e10i −0.312979 0.542096i
\(581\) −1.27290e11 + 7.34911e10i −1.11710 + 0.644957i
\(582\) 0 0
\(583\) −8.59131e10 + 1.48806e11i −0.743679 + 1.28809i
\(584\) 4.15578e10i 0.357274i
\(585\) 0 0
\(586\) 1.53197e10 0.129915
\(587\) −7.02172e10 4.05399e10i −0.591413 0.341452i 0.174243 0.984703i \(-0.444252\pi\)
−0.765656 + 0.643250i \(0.777586\pi\)
\(588\) 0 0
\(589\) 7.18018e10 + 1.24364e11i 0.596588 + 1.03332i
\(590\) −5.58952e10 + 3.22711e10i −0.461282 + 0.266321i
\(591\) 0 0
\(592\) −1.33188e10 + 2.30689e10i −0.108437 + 0.187819i
\(593\) 2.32095e11i 1.87693i 0.345379 + 0.938463i \(0.387750\pi\)
−0.345379 + 0.938463i \(0.612250\pi\)
\(594\) 0 0
\(595\) −9.51995e10 −0.759569
\(596\) −8.58779e10 4.95816e10i −0.680607 0.392949i
\(597\) 0 0
\(598\) −2.51470e10 4.35558e10i −0.196644 0.340598i
\(599\) 6.67859e9 3.85589e9i 0.0518773 0.0299514i −0.473837 0.880613i \(-0.657131\pi\)
0.525714 + 0.850661i \(0.323798\pi\)
\(600\) 0 0
\(601\) 8.64971e10 1.49817e11i 0.662985 1.14832i −0.316842 0.948478i \(-0.602623\pi\)
0.979827 0.199846i \(-0.0640441\pi\)
\(602\) 4.94268e10i 0.376337i
\(603\) 0 0
\(604\) −8.91062e10 −0.669515
\(605\) 2.83604e11 + 1.63739e11i 2.11685 + 1.22216i
\(606\) 0 0
\(607\) 6.33224e10 + 1.09678e11i 0.466448 + 0.807911i 0.999266 0.0383189i \(-0.0122003\pi\)
−0.532818 + 0.846230i \(0.678867\pi\)
\(608\) −1.62447e10 + 9.37887e9i −0.118877 + 0.0686335i
\(609\) 0 0
\(610\) 1.18916e10 2.05968e10i 0.0858855 0.148758i
\(611\) 3.78789e10i 0.271789i
\(612\) 0 0
\(613\) −1.90947e11 −1.35230 −0.676148 0.736765i \(-0.736352\pi\)
−0.676148 + 0.736765i \(0.736352\pi\)
\(614\) 3.27863e10 + 1.89292e10i 0.230685 + 0.133186i
\(615\) 0 0
\(616\) −4.79992e10 8.31370e10i −0.333358 0.577393i
\(617\) −3.94255e10 + 2.27623e10i −0.272043 + 0.157064i −0.629816 0.776745i \(-0.716870\pi\)
0.357773 + 0.933809i \(0.383536\pi\)
\(618\) 0 0
\(619\) 2.52527e10 4.37390e10i 0.172007 0.297925i −0.767114 0.641510i \(-0.778308\pi\)
0.939121 + 0.343585i \(0.111642\pi\)
\(620\) 1.50835e11i 1.02079i
\(621\) 0 0
\(622\) 9.24275e10 0.617504
\(623\) 1.64036e10 + 9.47061e9i 0.108890 + 0.0628674i
\(624\) 0 0
\(625\) 8.99998e10 + 1.55884e11i 0.589823 + 1.02160i
\(626\) 1.27231e11 7.34569e10i 0.828506 0.478338i
\(627\) 0 0
\(628\) 6.39186e8 1.10710e9i 0.00410950 0.00711786i
\(629\) 6.93730e10i 0.443188i
\(630\) 0 0
\(631\) 7.46120e10 0.470642 0.235321 0.971918i \(-0.424386\pi\)
0.235321 + 0.971918i \(0.424386\pi\)
\(632\) −8.53625e10 4.92840e10i −0.535055 0.308914i
\(633\) 0 0
\(634\) 1.48657e10 + 2.57481e10i 0.0920085 + 0.159363i
\(635\) 4.11568e10 2.37619e10i 0.253132 0.146146i
\(636\) 0 0
\(637\) −7.05107e9 + 1.22128e10i −0.0428250 + 0.0741751i
\(638\) 1.86029e11i 1.12279i
\(639\) 0 0
\(640\) −1.97023e10 −0.117435
\(641\) −2.44739e11 1.41300e11i −1.44968 0.836972i −0.451215 0.892415i \(-0.649009\pi\)
−0.998462 + 0.0554435i \(0.982343\pi\)
\(642\) 0 0
\(643\) 8.57408e10 + 1.48507e11i 0.501584 + 0.868769i 0.999998 + 0.00183012i \(0.000582545\pi\)
−0.498414 + 0.866939i \(0.666084\pi\)
\(644\) 1.36530e11 7.88257e10i 0.793752 0.458273i
\(645\) 0 0
\(646\) 2.44256e10 4.23063e10i 0.140254 0.242927i
\(647\) 6.51359e10i 0.371709i 0.982577 + 0.185855i \(0.0595053\pi\)
−0.982577 + 0.185855i \(0.940495\pi\)
\(648\) 0 0
\(649\) 1.69499e11 0.955406
\(650\) −2.84025e10 1.63982e10i −0.159112 0.0918635i
\(651\) 0 0
\(652\) 7.86411e10 + 1.36210e11i 0.435170 + 0.753737i
\(653\) −2.27135e10 + 1.31137e10i −0.124920 + 0.0721226i −0.561158 0.827709i \(-0.689644\pi\)
0.436238 + 0.899831i \(0.356311\pi\)
\(654\) 0 0
\(655\) 4.69649e10 8.13456e10i 0.255158 0.441946i
\(656\) 3.78221e10i 0.204235i
\(657\) 0 0
\(658\) 1.18735e11 0.633396
\(659\) −2.34946e11 1.35646e11i −1.24574 0.719228i −0.275483 0.961306i \(-0.588838\pi\)
−0.970257 + 0.242078i \(0.922171\pi\)
\(660\) 0 0
\(661\) −1.12700e11 1.95203e11i −0.590364 1.02254i −0.994183 0.107702i \(-0.965651\pi\)
0.403819 0.914839i \(-0.367682\pi\)
\(662\) 1.05450e11 6.08815e10i 0.549052 0.316995i
\(663\) 0 0
\(664\) 3.96106e10 6.86076e10i 0.203769 0.352939i
\(665\) 2.25775e11i 1.15449i
\(666\) 0 0
\(667\) −3.05502e11 −1.54352
\(668\) −9.48597e10 5.47673e10i −0.476405 0.275052i
\(669\) 0 0
\(670\) 1.48790e11 + 2.57712e11i 0.738370 + 1.27890i
\(671\) −5.40907e10 + 3.12293e10i −0.266829 + 0.154054i
\(672\) 0 0
\(673\) −7.58538e10 + 1.31383e11i −0.369757 + 0.640439i −0.989527 0.144345i \(-0.953893\pi\)
0.619770 + 0.784784i \(0.287226\pi\)
\(674\) 1.46925e11i 0.711962i
\(675\) 0 0
\(676\) 9.23761e10 0.442357
\(677\) 2.20192e11 + 1.27128e11i 1.04821 + 0.605183i 0.922147 0.386839i \(-0.126433\pi\)
0.126061 + 0.992023i \(0.459767\pi\)
\(678\) 0 0
\(679\) −1.38194e11 2.39359e11i −0.650145 1.12608i
\(680\) 4.44367e10 2.56555e10i 0.207829 0.119990i
\(681\) 0 0
\(682\) 1.98059e11 3.43049e11i 0.915499 1.58569i
\(683\) 2.98251e11i 1.37056i −0.728279 0.685281i \(-0.759679\pi\)
0.728279 0.685281i \(-0.240321\pi\)
\(684\) 0 0
\(685\) 1.14144e11 0.518429
\(686\) 1.13478e11 + 6.55166e10i 0.512408 + 0.295839i
\(687\) 0 0
\(688\) 1.33201e10 + 2.30712e10i 0.0594505 + 0.102971i
\(689\) −5.84886e10 + 3.37684e10i −0.259534 + 0.149842i
\(690\) 0 0
\(691\) 1.50423e11 2.60541e11i 0.659785 1.14278i −0.320886 0.947118i \(-0.603981\pi\)
0.980671 0.195663i \(-0.0626860\pi\)
\(692\) 5.86053e10i 0.255572i
\(693\) 0 0
\(694\) −2.76005e10 −0.118981
\(695\) −1.39634e11 8.06177e10i −0.598483 0.345534i
\(696\) 0 0
\(697\) 4.92504e10 + 8.53041e10i 0.208679 + 0.361442i
\(698\) 2.13579e11 1.23310e11i 0.899782 0.519489i
\(699\) 0 0
\(700\) 5.14018e10 8.90305e10i 0.214085 0.370806i
\(701\) 2.33302e11i 0.966156i −0.875577 0.483078i \(-0.839519\pi\)
0.875577 0.483078i \(-0.160481\pi\)
\(702\) 0 0
\(703\) 1.64525e11 0.673613
\(704\) 4.48096e10 + 2.58708e10i 0.182423 + 0.105322i
\(705\) 0 0
\(706\) −8.02255e10 1.38955e11i −0.322919 0.559312i
\(707\) 2.17992e11 1.25858e11i 0.872494 0.503735i
\(708\) 0 0
\(709\) −1.36103e11 + 2.35737e11i −0.538620 + 0.932918i 0.460358 + 0.887733i \(0.347721\pi\)
−0.998979 + 0.0451845i \(0.985612\pi\)
\(710\) 1.64875e11i 0.648816i
\(711\) 0 0
\(712\) −1.02090e10 −0.0397250
\(713\) 5.63365e11 + 3.25259e11i 2.17988 + 1.25855i
\(714\) 0 0
\(715\) 9.93400e10 + 1.72062e11i 0.380102 + 0.658356i
\(716\) −1.62688e11 + 9.39278e10i −0.619017 + 0.357390i
\(717\) 0 0
\(718\) −9.18479e10 + 1.59085e11i −0.345598 + 0.598594i
\(719\) 4.94299e11i 1.84958i 0.380473 + 0.924792i \(0.375761\pi\)
−0.380473 + 0.924792i \(0.624239\pi\)
\(720\) 0 0
\(721\) 2.51803e11 0.931796
\(722\) −6.60706e10 3.81459e10i −0.243142 0.140378i
\(723\) 0 0
\(724\) −1.01935e11 1.76557e11i −0.370996 0.642585i
\(725\) −1.72526e11 + 9.96081e10i −0.624458 + 0.360531i
\(726\) 0 0
\(727\) 7.37697e10 1.27773e11i 0.264083 0.457405i −0.703240 0.710952i \(-0.748264\pi\)
0.967323 + 0.253548i \(0.0815974\pi\)
\(728\) 3.77324e10i 0.134335i
\(729\) 0 0
\(730\) −2.69603e11 −0.949365
\(731\) −6.00847e10 3.46899e10i −0.210423 0.121488i
\(732\) 0 0
\(733\) 2.03374e10 + 3.52254e10i 0.0704497 + 0.122022i 0.899098 0.437746i \(-0.144223\pi\)
−0.828649 + 0.559769i \(0.810890\pi\)
\(734\) 9.25358e10 5.34256e10i 0.318805 0.184062i
\(735\) 0 0
\(736\) −4.24859e10 + 7.35877e10i −0.144788 + 0.250780i
\(737\) 7.81495e11i 2.64884i
\(738\) 0 0
\(739\) −4.39058e11 −1.47212 −0.736062 0.676915i \(-0.763317\pi\)
−0.736062 + 0.676915i \(0.763317\pi\)
\(740\) 1.49658e11 + 8.64049e10i 0.499082 + 0.288145i
\(741\) 0 0
\(742\) −1.05850e11 1.83338e11i −0.349202 0.604836i
\(743\) −2.39798e11 + 1.38447e11i −0.786846 + 0.454286i −0.838851 0.544361i \(-0.816772\pi\)
0.0520049 + 0.998647i \(0.483439\pi\)
\(744\) 0 0
\(745\) −3.21657e11 + 5.57127e11i −1.04416 + 1.80854i
\(746\) 1.55543e11i 0.502220i
\(747\) 0 0
\(748\) −1.34752e11 −0.430455
\(749\) −3.13093e11 1.80764e11i −0.994824 0.574362i
\(750\) 0 0
\(751\) −2.18499e10 3.78451e10i −0.0686893 0.118973i 0.829635 0.558306i \(-0.188548\pi\)
−0.898325 + 0.439332i \(0.855215\pi\)
\(752\) −5.54225e10 + 3.19982e10i −0.173306 + 0.100059i
\(753\) 0 0
\(754\) −3.65596e10 + 6.33231e10i −0.113114 + 0.195919i
\(755\) 5.78070e11i 1.77907i
\(756\) 0 0
\(757\) −2.44223e11 −0.743708 −0.371854 0.928291i \(-0.621278\pi\)
−0.371854 + 0.928291i \(0.621278\pi\)
\(758\) −7.93691e10 4.58238e10i −0.240422 0.138808i
\(759\) 0 0
\(760\) 6.08447e10 + 1.05386e11i 0.182376 + 0.315885i
\(761\) −3.60019e11 + 2.07857e11i −1.07346 + 0.619764i −0.929125 0.369765i \(-0.879438\pi\)
−0.144337 + 0.989529i \(0.546105\pi\)
\(762\) 0 0
\(763\) −7.14516e10 + 1.23758e11i −0.210821 + 0.365153i
\(764\) 2.37804e10i 0.0697985i
\(765\) 0 0
\(766\) 4.26293e11 1.23821
\(767\) 5.76964e10 + 3.33110e10i 0.166712 + 0.0962512i
\(768\) 0 0
\(769\) −5.75903e10 9.97493e10i −0.164681 0.285236i 0.771861 0.635792i \(-0.219326\pi\)
−0.936542 + 0.350555i \(0.885993\pi\)
\(770\) −5.39345e11 + 3.11391e11i −1.53428 + 0.885815i
\(771\) 0 0
\(772\) 7.49215e10 1.29768e11i 0.210929 0.365340i
\(773\) 1.78665e11i 0.500406i 0.968193 + 0.250203i \(0.0804973\pi\)
−0.968193 + 0.250203i \(0.919503\pi\)
\(774\) 0 0
\(775\) 4.24199e11 1.17588
\(776\) 1.29011e11 + 7.44845e10i 0.355779 + 0.205409i
\(777\) 0 0
\(778\) 4.86441e10 + 8.42541e10i 0.132774 + 0.229971i
\(779\) −2.02307e11 + 1.16802e11i −0.549366 + 0.317177i
\(780\) 0 0
\(781\) 2.16495e11 3.74981e11i 0.581894 1.00787i
\(782\) 2.21293e11i 0.591754i
\(783\) 0 0
\(784\) 2.38256e10 0.0630637
\(785\) −7.18225e9 4.14667e9i −0.0189139 0.0109200i
\(786\) 0 0
\(787\) 2.61255e11 + 4.52507e11i 0.681029 + 1.17958i 0.974667 + 0.223660i \(0.0718005\pi\)
−0.293638 + 0.955917i \(0.594866\pi\)
\(788\) 2.11077e11 1.21865e11i 0.547439 0.316064i
\(789\) 0 0
\(790\) −3.19727e11 + 5.53783e11i −0.820862 + 1.42178i
\(791\) 3.54825e11i 0.906376i
\(792\) 0 0
\(793\) −2.45495e10 −0.0620798
\(794\) −7.38627e10 4.26446e10i −0.185842 0.107296i
\(795\) 0 0
\(796\) 1.01993e11 + 1.76656e11i 0.254048 + 0.440024i
\(797\) −1.67664e11 + 9.68008e10i −0.415534 + 0.239908i −0.693165 0.720779i \(-0.743784\pi\)
0.277631 + 0.960688i \(0.410451\pi\)
\(798\) 0 0
\(799\) 8.33335e10 1.44338e11i 0.204471 0.354155i
\(800\) 5.54096e10i 0.135277i
\(801\) 0 0
\(802\) 3.17336e10 0.0767047
\(803\) 6.13166e11 + 3.54012e11i 1.47474 + 0.851443i
\(804\) 0 0
\(805\) −5.11376e11 8.85729e11i −1.21775 2.10920i
\(806\) 1.34836e11 7.78478e10i 0.319497 0.184462i
\(807\) 0 0
\(808\) −6.78354e10 + 1.17494e11i −0.159151 + 0.275658i
\(809\) 4.05968e11i 0.947760i 0.880590 + 0.473880i \(0.157147\pi\)
−0.880590 + 0.473880i \(0.842853\pi\)
\(810\) 0 0
\(811\) −3.49637e11 −0.808229 −0.404115 0.914708i \(-0.632420\pi\)
−0.404115 + 0.914708i \(0.632420\pi\)
\(812\) −1.98492e11 1.14600e11i −0.456583 0.263608i
\(813\) 0 0
\(814\) −2.26914e11 3.93027e11i −0.516849 0.895209i
\(815\) 8.83654e11 5.10178e11i 2.00287 1.15636i
\(816\) 0 0
\(817\) 8.22706e10 1.42497e11i 0.184653 0.319828i
\(818\) 9.77005e10i 0.218215i
\(819\) 0 0
\(820\) −2.45368e11 −0.542703
\(821\) 1.48992e11 + 8.60206e10i 0.327937 + 0.189334i 0.654925 0.755694i \(-0.272700\pi\)
−0.326988 + 0.945029i \(0.606034\pi\)
\(822\) 0 0
\(823\) −1.51520e11 2.62440e11i −0.330271 0.572046i 0.652294 0.757966i \(-0.273807\pi\)
−0.982565 + 0.185920i \(0.940473\pi\)
\(824\) −1.17535e11 + 6.78591e10i −0.254953 + 0.147197i
\(825\) 0 0
\(826\) −1.04417e11 + 1.80855e11i −0.224311 + 0.388517i
\(827\) 7.71110e11i 1.64852i 0.566211 + 0.824260i \(0.308409\pi\)
−0.566211 + 0.824260i \(0.691591\pi\)
\(828\) 0 0
\(829\) 1.56682e11 0.331742 0.165871 0.986147i \(-0.446956\pi\)
0.165871 + 0.986147i \(0.446956\pi\)
\(830\) −4.45087e11 2.56971e11i −0.937847 0.541466i
\(831\) 0 0
\(832\) 1.01686e10 + 1.76125e10i 0.0212211 + 0.0367560i
\(833\) −5.37364e10 + 3.10247e10i −0.111606 + 0.0644359i
\(834\) 0 0
\(835\) −3.55299e11 + 6.15396e11i −0.730883 + 1.26593i
\(836\) 3.19577e11i 0.654260i
\(837\) 0 0
\(838\) −2.88318e11 −0.584649
\(839\) −4.22447e11 2.43900e11i −0.852559 0.492225i 0.00895468 0.999960i \(-0.497150\pi\)
−0.861513 + 0.507735i \(0.830483\pi\)
\(840\) 0 0
\(841\) −2.80482e10 4.85809e10i −0.0560688 0.0971140i
\(842\) 1.41505e9 8.16978e8i 0.00281529 0.00162541i
\(843\) 0 0
\(844\) −5.58649e10 + 9.67608e10i −0.110095 + 0.190691i
\(845\) 5.99283e11i 1.17545i
\(846\) 0 0
\(847\) 1.05959e12 2.05875
\(848\) 9.88166e10 + 5.70518e10i 0.191094 + 0.110328i
\(849\) 0 0
\(850\) −7.21521e10 1.24971e11i −0.138221 0.239405i
\(851\) 6.45441e11 3.72645e11i 1.23066 0.710522i
\(852\) 0 0
\(853\) −5.07020e10 + 8.78185e10i −0.0957699 + 0.165878i −0.909930 0.414763i \(-0.863865\pi\)
0.814160 + 0.580641i \(0.197198\pi\)
\(854\) 7.69530e10i 0.144675i
\(855\) 0 0
\(856\) 1.94859e11 0.362931
\(857\) −2.37864e11 1.37331e11i −0.440967 0.254592i 0.263041 0.964785i \(-0.415275\pi\)
−0.704008 + 0.710192i \(0.748608\pi\)
\(858\) 0 0
\(859\) −2.10607e11 3.64783e11i −0.386813 0.669980i 0.605206 0.796069i \(-0.293091\pi\)
−0.992019 + 0.126089i \(0.959757\pi\)
\(860\) 1.49673e11 8.64135e10i 0.273620 0.157975i
\(861\) 0 0
\(862\) 3.57310e10 6.18879e10i 0.0647166 0.112092i
\(863\) 8.61056e11i 1.55235i 0.630520 + 0.776173i \(0.282842\pi\)
−0.630520 + 0.776173i \(0.717158\pi\)
\(864\) 0 0
\(865\) 3.80198e11 0.679117
\(866\) −3.88235e11 2.24148e11i −0.690277 0.398532i
\(867\) 0 0
\(868\) 2.44022e11 + 4.22658e11i 0.429882 + 0.744578i
\(869\) 1.45433e12 8.39656e11i 2.55025 1.47239i
\(870\) 0 0
\(871\) 1.53585e11 2.66016e11i 0.266855 0.462206i
\(872\) 7.70227e10i 0.133215i
\(873\) 0 0
\(874\) 5.24819e11 0.899423
\(875\) 1.77186e11 + 1.02298e11i 0.302271 + 0.174516i
\(876\) 0 0
\(877\) −3.14825e11 5.45294e11i −0.532196 0.921790i −0.999293 0.0375845i \(-0.988034\pi\)
0.467098 0.884206i \(-0.345300\pi\)
\(878\) −3.08514e11 + 1.78121e11i −0.519155 + 0.299734i
\(879\) 0 0
\(880\) 1.67835e11 2.90699e11i 0.279867 0.484744i
\(881\) 8.26944e11i 1.37269i −0.727276 0.686345i \(-0.759214\pi\)
0.727276 0.686345i \(-0.240786\pi\)
\(882\) 0 0
\(883\) 1.00813e12 1.65834 0.829168 0.558999i \(-0.188815\pi\)
0.829168 + 0.558999i \(0.188815\pi\)
\(884\) −4.58687e10 2.64823e10i −0.0751116 0.0433657i
\(885\) 0 0
\(886\) −2.52206e11 4.36834e11i −0.409281 0.708895i
\(887\) −8.45160e11 + 4.87954e11i −1.36535 + 0.788286i −0.990330 0.138730i \(-0.955698\pi\)
−0.375022 + 0.927016i \(0.622365\pi\)
\(888\) 0 0
\(889\) 7.68843e10 1.33167e11i 0.123092 0.213202i
\(890\) 6.62303e10i 0.105559i
\(891\) 0 0
\(892\) 4.35053e10 0.0687199
\(893\) 3.42312e11 + 1.97634e11i 0.538289 + 0.310781i
\(894\) 0 0
\(895\) 6.09349e11 + 1.05542e12i 0.949673 + 1.64488i
\(896\) −5.52083e10 + 3.18745e10i −0.0856588 + 0.0494551i
\(897\) 0 0
\(898\) −1.33246e11 + 2.30789e11i −0.204903 + 0.354902i
\(899\) 9.45747e11i 1.44789i
\(900\) 0 0
\(901\) −2.97162e11 −0.450914
\(902\) 5.58048e11 + 3.22189e11i 0.843034 + 0.486726i
\(903\) 0 0
\(904\) 9.56226e10 + 1.65623e11i 0.143181 + 0.247998i
\(905\) −1.14540e12 + 6.61297e11i −1.70751 + 0.985830i
\(906\) 0 0
\(907\) 2.98209e11 5.16514e11i 0.440648 0.763225i −0.557089 0.830453i \(-0.688082\pi\)
0.997738 + 0.0672273i \(0.0214153\pi\)
\(908\) 1.16209e11i 0.170961i
\(909\) 0 0
\(910\) −2.44786e11 −0.356962
\(911\) −1.16083e12 6.70203e11i −1.68536 0.973045i −0.957989 0.286804i \(-0.907407\pi\)
−0.727374 0.686241i \(-0.759259\pi\)
\(912\) 0 0
\(913\) 6.74849e11 + 1.16887e12i 0.971234 + 1.68223i
\(914\) −4.01829e11 + 2.31996e11i −0.575780 + 0.332427i
\(915\) 0 0
\(916\) −2.45718e9 + 4.25596e9i −0.00349024 + 0.00604527i
\(917\) 3.03920e11i 0.429816i
\(918\) 0 0
\(919\) −3.60905e11 −0.505977 −0.252988 0.967469i \(-0.581413\pi\)
−0.252988 + 0.967469i \(0.581413\pi\)
\(920\) 4.77394e11 + 2.75624e11i 0.666386 + 0.384738i
\(921\) 0 0
\(922\) 2.20241e10 + 3.81469e10i 0.0304772 + 0.0527880i
\(923\) 1.47387e11 8.50941e10i 0.203073 0.117244i
\(924\) 0 0
\(925\) 2.43000e11 4.20888e11i 0.331924 0.574910i
\(926\) 6.06262e11i 0.824549i
\(927\) 0 0
\(928\) 1.23535e11 0.166570
\(929\) −8.27772e10 4.77914e10i −0.111134 0.0641634i 0.443403 0.896323i \(-0.353771\pi\)
−0.554537 + 0.832159i \(0.687105\pi\)
\(930\) 0 0
\(931\) −7.35782e10 1.27441e11i −0.0979378 0.169633i
\(932\) 3.76479e11 2.17360e11i 0.498973 0.288082i
\(933\) 0 0
\(934\) 2.56347e11 4.44006e11i 0.336854 0.583448i
\(935\) 8.74192e11i 1.14383i
\(936\) 0 0
\(937\) −1.26218e12 −1.63743 −0.818714 0.574201i \(-0.805313\pi\)
−0.818714 + 0.574201i \(0.805313\pi\)
\(938\) 8.33855e11 + 4.81426e11i 1.07716 + 0.621897i
\(939\) 0 0
\(940\) 2.07586e11 + 3.59549e11i 0.265880 + 0.460519i
\(941\) 5.84641e11 3.37543e11i 0.745643 0.430497i −0.0784743 0.996916i \(-0.525005\pi\)
0.824118 + 0.566419i \(0.191672\pi\)
\(942\) 0 0
\(943\) −5.29109e11 + 9.16443e11i −0.669111 + 1.15893i
\(944\) 1.12558e11i 0.141739i
\(945\) 0 0
\(946\) −4.53873e11 −0.566722
\(947\) −4.41361e11 2.54820e11i −0.548775 0.316835i 0.199853 0.979826i \(-0.435954\pi\)
−0.748628 + 0.662991i \(0.769287\pi\)
\(948\) 0 0
\(949\) 1.39145e11 + 2.41007e11i 0.171555 + 0.297142i
\(950\) 2.96381e11 1.71116e11i 0.363879 0.210085i
\(951\) 0 0
\(952\) 8.30113e10 1.43780e11i 0.101062 0.175045i
\(953\) 1.54025e12i 1.86732i 0.358160 + 0.933660i \(0.383404\pi\)
−0.358160 + 0.933660i \(0.616596\pi\)
\(954\) 0 0
\(955\) 1.54274e11 0.185472
\(956\) 3.32864e10 + 1.92179e10i 0.0398506 + 0.0230078i
\(957\) 0 0
\(958\) −3.21645e10 5.57106e10i −0.0381869 0.0661417i
\(959\) 3.19844e11 1.84662e11i 0.378150 0.218325i
\(960\) 0 0
\(961\) −5.80464e11 + 1.00539e12i −0.680584 + 1.17881i
\(962\) 1.78379e11i 0.208277i
\(963\) 0 0
\(964\) −6.84242e11 −0.792321
\(965\) −8.41859e11 4.86048e11i −0.970801 0.560492i
\(966\) 0 0
\(967\) −4.00962e11 6.94486e11i −0.458561 0.794251i 0.540324 0.841457i \(-0.318302\pi\)
−0.998885 + 0.0472059i \(0.984968\pi\)
\(968\) −4.94589e11 + 2.85551e11i −0.563304 + 0.325224i
\(969\) 0 0
\(970\) 4.83213e11 8.36949e11i 0.545823 0.945393i
\(971\) 5.82235e11i 0.654970i 0.944856 + 0.327485i \(0.106201\pi\)
−0.944856 + 0.327485i \(0.893799\pi\)
\(972\) 0 0
\(973\) −5.21695e11 −0.582057
\(974\) 3.57390e11 + 2.06339e11i 0.397106 + 0.229269i
\(975\) 0 0
\(976\) 2.07382e10 + 3.59197e10i 0.0228545 + 0.0395852i
\(977\) −1.00625e12 + 5.80962e11i −1.10441 + 0.637631i −0.937375 0.348321i \(-0.886752\pi\)
−0.167033 + 0.985951i \(0.553419\pi\)
\(978\) 0 0
\(979\) 8.69660e10 1.50630e11i 0.0946714 0.163976i
\(980\) 1.54567e11i 0.167576i
\(981\) 0 0
\(982\) 6.62876e11 0.712830
\(983\) 1.19414e12 + 6.89439e11i 1.27892 + 0.738383i 0.976649 0.214840i \(-0.0689230\pi\)
0.302268 + 0.953223i \(0.402256\pi\)
\(984\) 0 0
\(985\) −7.90592e11 1.36935e12i −0.839861 1.45468i
\(986\) −2.78621e11 + 1.60862e11i −0.294786 + 0.170195i
\(987\) 0 0
\(988\) 6.28054e10 1.08782e11i 0.0659127 0.114164i
\(989\) 7.45364e11i 0.779082i
\(990\) 0 0
\(991\) −8.57390e11 −0.888963 −0.444482 0.895788i \(-0.646612\pi\)
−0.444482 + 0.895788i \(0.646612\pi\)
\(992\) −2.27806e11 1.31524e11i −0.235244 0.135818i
\(993\) 0 0
\(994\) 2.66736e11 + 4.62000e11i 0.273235 + 0.473256i
\(995\) 1.14604e12 6.61669e11i 1.16925 0.675070i
\(996\) 0 0
\(997\) 7.94454e11 1.37603e12i 0.804060 1.39267i −0.112865 0.993610i \(-0.536003\pi\)
0.916924 0.399062i \(-0.130664\pi\)
\(998\) 7.20514e11i 0.726307i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.9.d.a.35.8 16
3.2 odd 2 18.9.d.a.11.1 yes 16
4.3 odd 2 432.9.q.c.305.7 16
9.2 odd 6 162.9.b.c.161.10 16
9.4 even 3 18.9.d.a.5.1 16
9.5 odd 6 inner 54.9.d.a.17.8 16
9.7 even 3 162.9.b.c.161.7 16
12.11 even 2 144.9.q.b.65.8 16
36.23 even 6 432.9.q.c.17.7 16
36.31 odd 6 144.9.q.b.113.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.9.d.a.5.1 16 9.4 even 3
18.9.d.a.11.1 yes 16 3.2 odd 2
54.9.d.a.17.8 16 9.5 odd 6 inner
54.9.d.a.35.8 16 1.1 even 1 trivial
144.9.q.b.65.8 16 12.11 even 2
144.9.q.b.113.8 16 36.31 odd 6
162.9.b.c.161.7 16 9.7 even 3
162.9.b.c.161.10 16 9.2 odd 6
432.9.q.c.17.7 16 36.23 even 6
432.9.q.c.305.7 16 4.3 odd 2