L(s) = 1 | + 2-s + 5-s + 7-s − 8-s + 10-s + 14-s − 16-s − 23-s − 29-s + 35-s − 40-s − 41-s − 2·43-s − 46-s − 47-s + 49-s − 56-s − 58-s + 61-s + 64-s + 67-s + 70-s − 80-s − 82-s − 83-s − 2·86-s + 2·89-s + ⋯ |
L(s) = 1 | + 2-s + 5-s + 7-s − 8-s + 10-s + 14-s − 16-s − 23-s − 29-s + 35-s − 40-s − 41-s − 2·43-s − 46-s − 47-s + 49-s − 56-s − 58-s + 61-s + 64-s + 67-s + 70-s − 80-s − 82-s − 83-s − 2·86-s + 2·89-s + ⋯ |
Λ(s)=(=(291600s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(291600s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
291600
= 24⋅36⋅52
|
Sign: |
1
|
Analytic conductor: |
0.0726276 |
Root analytic conductor: |
0.519129 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 291600, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.362240344 |
L(21) |
≈ |
1.362240344 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 3 | | 1 |
| 5 | C2 | 1−T+T2 |
good | 7 | C1×C2 | (1−T)2(1+T+T2) |
| 11 | C2 | (1−T+T2)(1+T+T2) |
| 13 | C2 | (1−T+T2)(1+T+T2) |
| 17 | C1×C1 | (1−T)2(1+T)2 |
| 19 | C1×C1 | (1−T)2(1+T)2 |
| 23 | C1×C2 | (1+T)2(1−T+T2) |
| 29 | C1×C2 | (1+T)2(1−T+T2) |
| 31 | C2 | (1−T+T2)(1+T+T2) |
| 37 | C1×C1 | (1−T)2(1+T)2 |
| 41 | C1×C2 | (1+T)2(1−T+T2) |
| 43 | C2 | (1+T+T2)2 |
| 47 | C1×C2 | (1+T)2(1−T+T2) |
| 53 | C1×C1 | (1−T)2(1+T)2 |
| 59 | C2 | (1−T+T2)(1+T+T2) |
| 61 | C1×C2 | (1−T)2(1+T+T2) |
| 67 | C1×C2 | (1−T)2(1+T+T2) |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C1×C1 | (1−T)2(1+T)2 |
| 79 | C2 | (1−T+T2)(1+T+T2) |
| 83 | C1×C2 | (1+T)2(1−T+T2) |
| 89 | C2 | (1−T+T2)2 |
| 97 | C2 | (1−T+T2)(1+T+T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.70225816721088247338415274469, −10.89664684612161506203859970544, −10.23325456326375212320291222532, −10.05384256778273470565226863028, −9.499566059348226330290444137282, −9.146436524116860180669508754909, −8.478473002340239398692614497072, −8.277525887460268212554830754048, −7.70815261552396702511844814822, −7.06821756023737041524021857298, −6.44199065028002407760298267795, −6.18358575565569073566325391242, −5.52900259488754075856356566529, −5.06249212530784345061425221832, −4.97919979098446550649991846714, −4.01063383425975005748374740452, −3.75325010947034271814718782800, −2.93819880043402743187568511838, −2.12142809824458251968121301207, −1.65891548502932067179509079584,
1.65891548502932067179509079584, 2.12142809824458251968121301207, 2.93819880043402743187568511838, 3.75325010947034271814718782800, 4.01063383425975005748374740452, 4.97919979098446550649991846714, 5.06249212530784345061425221832, 5.52900259488754075856356566529, 6.18358575565569073566325391242, 6.44199065028002407760298267795, 7.06821756023737041524021857298, 7.70815261552396702511844814822, 8.277525887460268212554830754048, 8.478473002340239398692614497072, 9.146436524116860180669508754909, 9.499566059348226330290444137282, 10.05384256778273470565226863028, 10.23325456326375212320291222532, 10.89664684612161506203859970544, 11.70225816721088247338415274469