Properties

Label 4-540e2-1.1-c0e2-0-1
Degree $4$
Conductor $291600$
Sign $1$
Analytic cond. $0.0726276$
Root an. cond. $0.519129$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 5-s + 7-s − 8-s + 10-s + 14-s − 16-s − 23-s − 29-s + 35-s − 40-s − 41-s − 2·43-s − 46-s − 47-s + 49-s − 56-s − 58-s + 61-s + 64-s + 67-s + 70-s − 80-s − 82-s − 83-s − 2·86-s + 2·89-s + ⋯
L(s)  = 1  + 2-s + 5-s + 7-s − 8-s + 10-s + 14-s − 16-s − 23-s − 29-s + 35-s − 40-s − 41-s − 2·43-s − 46-s − 47-s + 49-s − 56-s − 58-s + 61-s + 64-s + 67-s + 70-s − 80-s − 82-s − 83-s − 2·86-s + 2·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 291600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 291600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(291600\)    =    \(2^{4} \cdot 3^{6} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.0726276\)
Root analytic conductor: \(0.519129\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 291600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.362240344\)
\(L(\frac12)\) \(\approx\) \(1.362240344\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 - T + T^{2} \)
good7$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
29$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
43$C_2$ \( ( 1 + T + T^{2} )^{2} \)
47$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
89$C_2$ \( ( 1 - T + T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.70225816721088247338415274469, −10.89664684612161506203859970544, −10.23325456326375212320291222532, −10.05384256778273470565226863028, −9.499566059348226330290444137282, −9.146436524116860180669508754909, −8.478473002340239398692614497072, −8.277525887460268212554830754048, −7.70815261552396702511844814822, −7.06821756023737041524021857298, −6.44199065028002407760298267795, −6.18358575565569073566325391242, −5.52900259488754075856356566529, −5.06249212530784345061425221832, −4.97919979098446550649991846714, −4.01063383425975005748374740452, −3.75325010947034271814718782800, −2.93819880043402743187568511838, −2.12142809824458251968121301207, −1.65891548502932067179509079584, 1.65891548502932067179509079584, 2.12142809824458251968121301207, 2.93819880043402743187568511838, 3.75325010947034271814718782800, 4.01063383425975005748374740452, 4.97919979098446550649991846714, 5.06249212530784345061425221832, 5.52900259488754075856356566529, 6.18358575565569073566325391242, 6.44199065028002407760298267795, 7.06821756023737041524021857298, 7.70815261552396702511844814822, 8.277525887460268212554830754048, 8.478473002340239398692614497072, 9.146436524116860180669508754909, 9.499566059348226330290444137282, 10.05384256778273470565226863028, 10.23325456326375212320291222532, 10.89664684612161506203859970544, 11.70225816721088247338415274469

Graph of the $Z$-function along the critical line